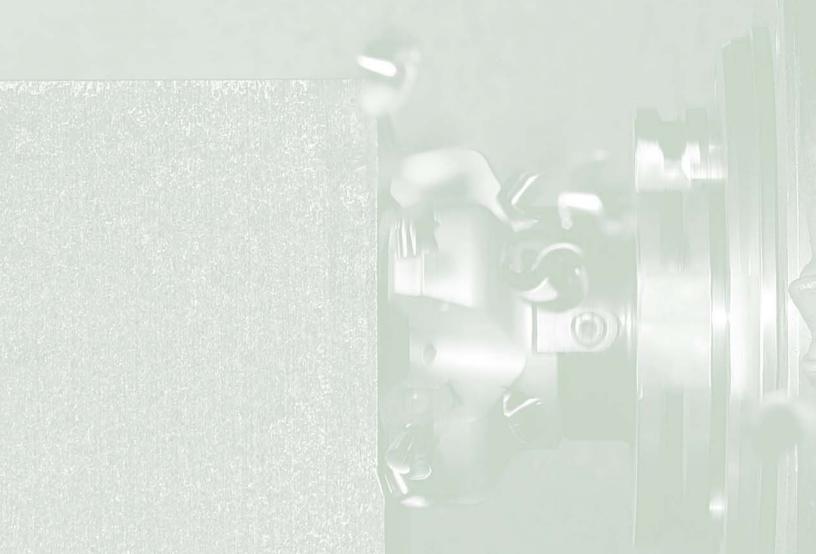


ФРЕЗЫ СО СМЕННЫМИ ПЛАСТИНАМИ И ОСЕВОЙ ИНСТРУМЕНТ



Фрезы со сменными режущими пластинами и осевой инструмент

Введение	ii–vii
Фрезы со сменными режущими пластинами	A1–A229
Инструмент для обработки отверстий	B1-B111
Специальный инструмент	
Техническая поддержка и сервис	D1-D11
Техническая информация	E1–E34
Указатель по номеру заказа	F2-F11
Указатель по номеру в каталоге	F12–F21
Контактная Информация по Металлообработке	

WIDIA™ означает абсолютное качество

Покупая инструменты торговой марки WIDIA, Вы приобретаете не только скорость, производительность и точность — Вы получаете абсолютное качество.

Торговая марка WIDIA Products Group предлагает наиболее широкий ассортимент высококачественной продукции и специальных решений. Благодаря развитой сети официальных дистрибьюторов и нашему широкому ассортименту, который насчитывает 14 000 изделий, предназначенных для токарной обработки, сверления отверстий и фрезерования, у Вас есть возможность получить весь необходимый инструмент от одного поставщика.

Более 80 лет качества

1925

Заявка на регистрацию торговой марки «WIDIA»

1930

WIDIA получает Гран-При на всемирной выставке EXPO в г. Льеж

1962

Выдан первый патент на твердосплавные пластины с покрытием

1987

Ввод в эксплуатацию инструментальной системы Widaflex™, предназначенной для сверления и фрезерования на обрабатывающих центрах

2006

WIDIA празднует 80-ую годовщину

1926

Начато производство твердого сплава

1968

Первый выпуск твердого сплава с покрытием

2000

Сертификаты QS 9000 TES и VDA 6.4 для предприятий WIDIA в городах Эссен и Лихтенау 2009

Выпуск новой торцевой минифрезы M1200

Технический опыт, на который можно положиться

Реализация режущих инструментов с торговой маркой WIDIA осуществляется исключительно через специализированную сеть официальных дистрибьюторов, сфера деятельности которых не ограничивается только продажей изделий.

Их услуги и консультации позволят Вам:

- Достичь заметного повышения производительности.
- Существенно сократить время рабочего цикла.
- Повысить эффективность использования возможностей оборудования.
- Воспользоваться надежными решениями в области менеджмента инструмента.
- Получить доступ к локальным производственным ресурсам и лучшей в своем классе службе технической поддержки.
- Проводить на месте испытания новейших инструментальных решений.

Внушительное семейство инструментальных брендов

Семейство торговых марок WIDIA — это глобальная сеть официальных дистрибьюторов, специализирующихся в конкретных областях производства

Токарная обработка, обработка отверстий, фрезы со сменными режущими пластинами и инструментальная оснастка

WIDIA CLAPPDICO

WIDIA CIRCLE

Цельные твердосплавные концевые фрезы, сверла и развертки

WIDIA HANITA

WIDIA RÜBIG

Нарезание резьбы в отверстиях

Простота оформления заказа

Правильный выбор инструментов WIDIA для конкретных условий обработки никогда еще не был так прост. Наши инженеры и официальные дистрибьюторы — настоящие эксперты в области высокопроизводительной обработки. В сотрудничестве с вами, они помогут выбрать требуемый для вашего производства инструмент, а затем оформить заказ, после чего доставят продукцию с таким уровнем внимания к клиенту, который можно ожидать лишь от мирового лидера.

Инструментообеспечение

Независимо от того, что представляет собой ваше предприятие — серийное производство, небольшой парк станков или оборудование, объединенное в линии или участки — наша программа инструментообеспечения устранит излишние накладные расходы, обеспечит наличие инструментов, сократит время наладки и уменьшит затраты на 30–90%.

Наши решения быстро окупаются на практике, экономя средства, которые значительно превышают ваши годовые расходы на режущие инструменты и дополнительные ресурсы.

Глобальное производство

Продукция WIDIA разрабатывается и производится в наших промышленных центрах, расположенных в следующих городах:

- Эссен, Германия
- Лихтенау, Германия
- Наббург, Германия
- Джонсон-Сити, Теннеси, США
- Нью-Маркет, Вирджиния, США
- Орвелл, Огайо, США
- Солон, Огайо, США
- Бангалор, Индия
- Шломи, Израиль

Эффективные программы обучения

Являясь клиентом WIDIA, вы получаете доступ к нашим уникальным программам обучения онлайн, где вы найдете десятки учебных курсов по нашим новейшим продуктам и услугам.

Интернет

Посетите наш веб-сайт, чтобы получить самую свежую информацию о новых изделиях, загрузить электронные версии каталогов инструментов и просмотреть список отраслевых мероприятий, в которых мы принимаем участие. Также на сайте www.widia.com к вашим услугам поиск ближайшего официального дистрибьютора.

Если вы претендуете на скорость, производительность и точность, а также на абсолютное качество положитесь на WIDIA.

Чтобы найти ближайшего по расположению официального дистрибьютора WIDIA, воспользуйтесь системой поиска дистрибьюторов на **www.widia.com**.

Фрезы со сменными режущими пластинами,

сверла и развертки по индивидуальному заказу

Мы специализируемся на разработке и производстве специального инструмента для фрезерования, сверления и развертывания. Инженеры нашей компании, высококвалифицированные эксперты и технологи готовы к совместной работе над индивидуальными конструкторскими решениями для достижения максимальной производительности и эффективности.

Уникальные преимущества, такие как фирменное оборудование для нанесения высококачественных покрытий PVD методом (TiN, TiCN, TiAlN, AlTiN, и Z-покрытие), широкий выбор материала заготовок (быстрорежущая сталь, сталь HSS-E, порошковая быстрорежущая сталь, цельные твердосплавные заготовки, напайные твердосплавные пластины) и широкий диапазон диаметров (от 0,25 мм до 75 мм), позволяют назвать WIDIA наиболее предпочтительной торговой маркой по обеспечению высококачественным специальным инструментом.

Мы специализируемся на разработке и изготовлении чертежей следующих видов инструментов:

- Концевые фрезы
- Фрезы с креплением на оправку
- Твердосплавные сверла (цилиндрические и ступенчатые)
- Фасонные фрезы
- Развертки
- Зенковки
- Метчики
- Резьбовые фрезы

Экологическая ответственность

Мы считаем своим долгом проектировать и производить продукцию на основе принципов экологической ответственности, что позволяет выпускать изделия высокого качества и признанной ценности. Опираясь на десятилетиями накапливаемый опыт в инструментальном оснащении механообрабатывающих производств, в сочетании с тщательными инженерными разработками, мы предлагаем клиентам наиболее эффективные решения для экологически рационального производства.

Проектирование с учетом

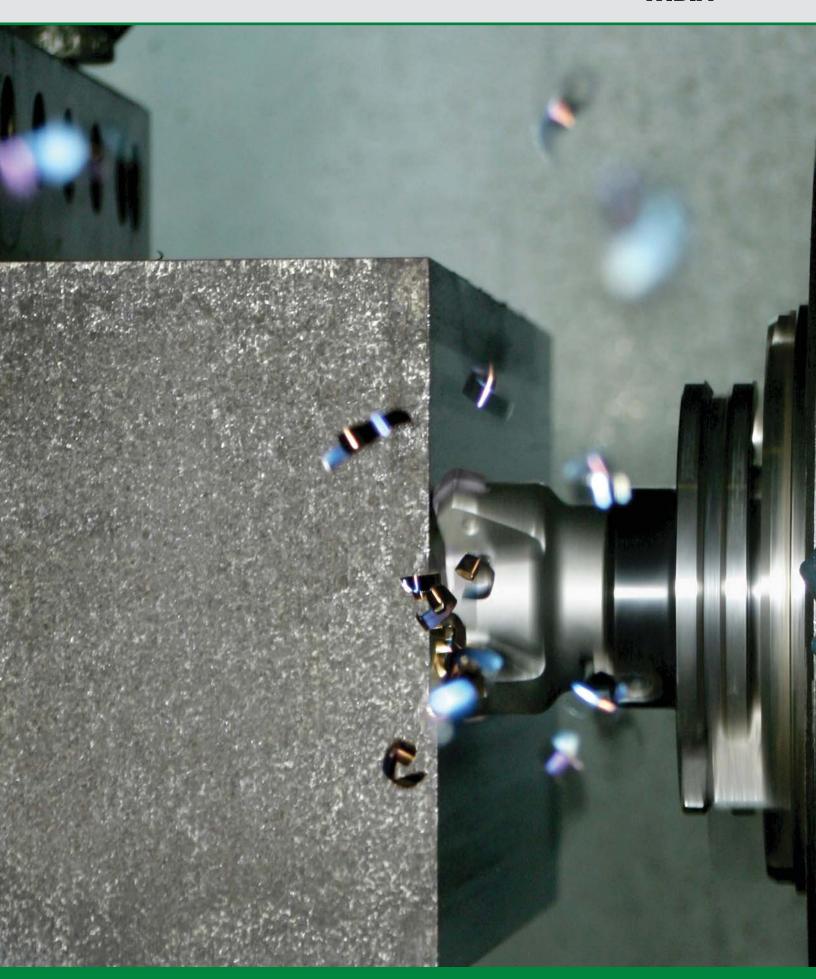
экологической безопасности

Лидерство в области инновационных инженерных разработок как в отношении стандартного, так и специального инструмента. Признанные стратегии и надежное партнерство.

Основными предпосылками успешной реализации проекта являются грамотное планирование, четкое взаимодействие всех служб и соблюдение сроков выполнения работ. На базе нашего богатого опыта по разработке и внедрению технологических ноу-хау, мы первыми создали специальную методику, позволяющую изготовлять новые изделия и быстро выводить их на рынок. Перед началом проектирования внимательно описываются и согласовываются условия разработки документации в соответствии с техническим заданием. Мы тщательно отслеживаем этапы выполнения проекта и результаты проектирования, находясь в постоянном контакте с нашими заказчиками посредством наших систем управления процессом.

Благодаря нашей уникальной методике, Вы станете свидетелем ускоренного внедрения нового изделия, добьетесь снижения совокупных расходов и уменьшения рисков в процессе реализации новых технологий.

Предпочтительный поставщик


Мы обслуживаем все главные промышленные рынки по всему миру и являемся ведущим брендом в наиболее требовательных отраслях, включая аэрокосмическую промышленность, производство пресс-форм и штампов, автомобильную промышленность, тяжелое машиностроение, производство медицинской техники и общее машиностроение. За более чем 80-летнюю историю мы заработали репутацию компании, постоянно обеспечивающей своих клиентов новыми и уникальными изделиями и видами услуг, специально разрабатываемых для достижения максимальной эффективности и производительности. Мы предоставляем нашим клиентам возможность стать более конкурентоспособными и более рентабельными в своей отрасли, производя изделия за

меньшее время, с меньшим числом смен инструмента и более длительным сроком его службы.

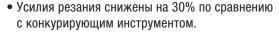
Мы искренне заинтересованы в обеспечении своих клиентов инструментами и услугами, которые бы максимально полно соответствовали их запросам, и рады тому, что смогли представить в данном каталоге некоторые из своих последних разработок. Дополнительную информацию о том, как наши изделия и услуги могут повлиять на практический результат вашей деятельности, можно узнать у регионального официального дистрибьютора WIDIA уже сегодня!

WIDIA

Фрезы со сменными режущими пластинами

Введение	A2–A11
Торцевые фрезы	A13–A52
Фрезы для обработки уступов с углом 90°	A55–A97
Фрезы с винтовым расположением зубьев	A99–A117
Пазовые фрезы	A119–A130
Фрезы для профильной обработки	A133–A203
Фрезы для обработки фасок	A205–A211
Торцевые фрезы общего назначения	A213-A225
Дополнительные пластины	A227–A229

WWW.WIDIA.COM A1



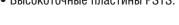
Самые горячие предложения в области фрезерования сменными режущими пластинами

Компания WIDIA справедливо завоевала доверие на рынке металлорежущего инструмента, благодаря высочайшему качеству и надежности предлагаемых ею фрез со сменными режущими пластинами. Современная конструкция, небольшие усилия резания и непревзойденная производительность фрез данного типа обеспечивает компании WIDIA лидирующее положение среди других инструментальных брендов.

Серия Victory™ M1200

Если Вам требуется стабильно высокая производительность, то Вашим наилучшим выбором является торцевая фреза WIDIA серии M1200. Применение простых в эксплуатации фрез M1200, M1200 Mini и M1200 High-Feed гарантирует высокую стойкость инструмента, сокращение времени обработки и максимальную производительность.

- Возможность установки зачистной пластины и уникальная форма гнезд под пластины, гарантирующая их надженое закрепление.
- Высокие скорости и подачи обеспечивают большой удельный съем металла.


Серия М170

Фрезы серии М170 идеально вписываются в технологию изготовления штампов и пресс-форм, демонстрируя высочайшую производительность и экономическую эффективность. Режущие пластины данных фрез разработаны в соответствии с общепринятыми стандартами. Фрезы отличаются прочной конструкцией корпуса и подходят для обработки высокопрочных сталей в тяжелых условиях.

- Никелевое покрытие корпуса фрезы гарантирует высокую стойкость и улучшенный сход стружки.
- Крепление фрез на оправке и резьбовое крепление.
- Большое количество зубьев оптимально для высокоскоростной обработки (HSM).
- Высокоточные пластины PSTS.

Усовершенствованные фрезы М690

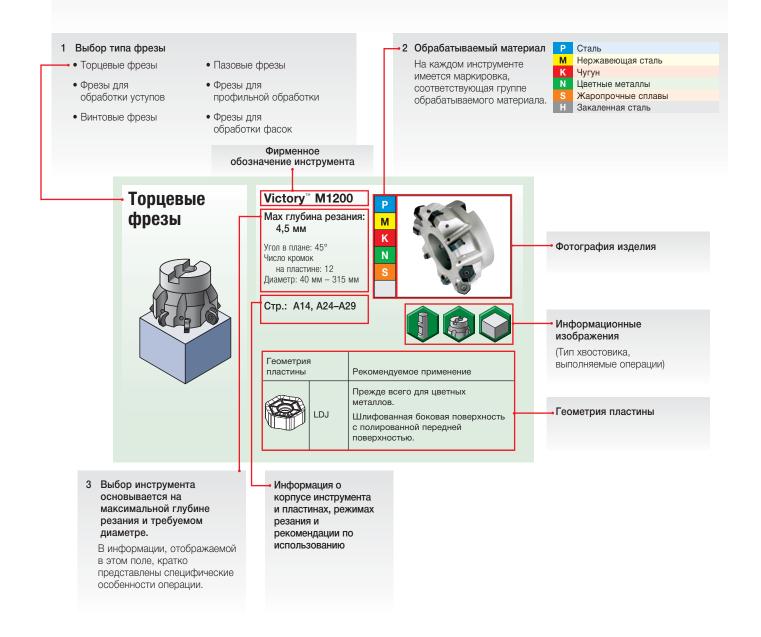
Фрезы серии M690 для обработки уступов с углом 90° разработаны для простого решения самых сложных задач. Они обеспечивают оптимальный стружкоотвод, превосходное качество поверхности обработанных уступов и плавное резание. Цельная конструкция фрезы способствует максимально надежному положению пластин.

- Возможность применения для обработки пазов и профильной обработки.
- Четыре режущие кромки и высокая перпендикулярность стенки.

Высокопроизводительные фрезы М270

Фрезы серии M270 включают сферические и тороидальные сменные режущие пластины для черновой и чистовой обработки. А в настоящее время появились и ультрасовременные пластины «High-Feed» для высокопроизводительного фрезерования с большими подачами.

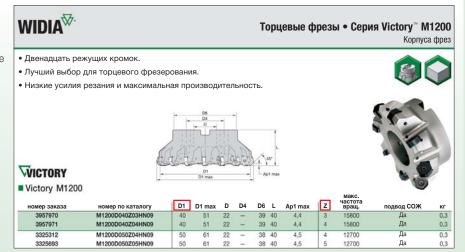
- В наличии имеются стальные и твердосплавные хвостовики.
- Стандартное предложение включает пластины «High-Feed» (HF), обеспечивающие повышение производительности.
- Максимальная устойчивость и точность при фрезеровании в любых условиях.



Самые современные в отрасли решения для фрезерования

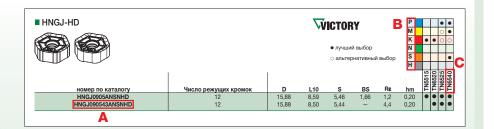
Вы можете доверять компании WIDIA, которая предоставляет наиболее полный спектр надежных металлорежущих инструментов, обеспечивающих непревзойденное качество, эффективность и производительность. Какие бы фрезы со сменными режущими пластинами Вам ни потребовались, будьте уверены, что в этом комплексном и простом в использовании руководстве, Вы найдете оптимальное решение.

Мы предлагаем ЛУЧШИЕ инструменты, подходящие для любой операции фрезерования, любой детали и используемого оборудования. Наши инструменты созданы, чтобы сократить Ваше машинное время, обеспечить превосходное качество обработанной поверхности и конкурентоспособность.

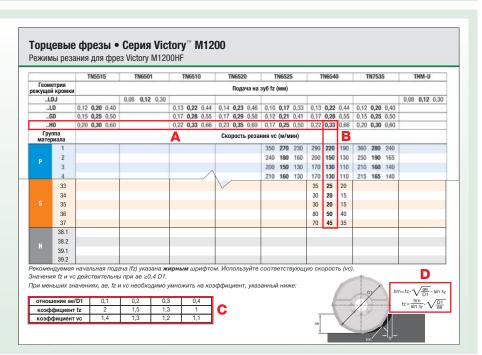


Выбор корпуса фрезы, пластин и режимов резания

4 Выбор корпуса фрезы:


Выберите диаметр (D1) и шаг зубьев (Z) фрезы.

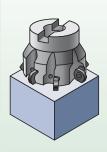
ПРИМЕЧАНИЕ: проверьте соответствие выбранного Вами типа хвостовика фрезы и имеющихся возможностей закрепления на Вашем станке. Для получения информации об инструментальной оснастке посетите сайт www.widia.com/erickson.


5 Выбор пластины:

- **A** Выбор пластины определяется требуемой геометрией.
- в Определитесь с материалом заготовки. Описание обрабатываемых материалов см. на **стр. E34**.
- с Выберите марку твердого сплава пластины. Черная точка в ячейках таблицы указывает на лучшее решение для определенной группы материалов.

6 Выбор режимов резания:

- А Выбор начальных значений подачи (fz) и скорости резания (vc) определяется маркой твердого сплава и геометрией режущей кромки. Рекомендуемое начальное значение подачи выделено жирным шрифтом.
- в Из вертикальной колонки выберите соответствующую подаче скорость резания.
- с Рекомендуемые подача и скорость справедливы для ае ≥0,4 D1. При меньших значениях ае, fz и vс должны быть изменены с учетом коэффициентов, указанных внизу страницы.
- В качестве альтернативного варианта подачу можно вычислить по указанной формуле.



Обзорная таблица инструмента

Торцевые фрезы

Торцевые фрезы

Victorv[™] M1200 Mini

Мах глубина резания: 3,5 MM

Угол в плане: 45° Число кромок на пластине: 12 Диаметр: 25 мм – 100 мм

Стр.: A14, A16-A23

11189

Victory M1200

Мах глубина резания: 4,5 MM

Угол в плане: 45° Число кромок на пластине: 12 Диаметр: 40 мм – 315 мм

Стр.: А14, А24-А29

Мах глубина резания: 2,2 MM

Угол в плане: 14,5° Число кромок на пластине: 12 Диаметр: 50 мм - 160 мм

Стр.: А14, А30-А32

M640

Мах глубина резания: 4,8 MM

Угол в плане: 58° Число кромок на пластине: 6 Диаметр: 32 мм - 160 мм

Стр.: А34-А41

M660 SN1205...

Мах глубина резания: 6,4mm

Угол в плане: 45° Число кромок на пластине: 4 Диаметр: 20 мм - 160 мм

Стр.: А42, А44-А49

M660 SN1505..

Мах глубина резания: 8,0 MM

Угол в плане: 45° Число кромок на пластине: 4 Диаметр: 63 мм - 160 мм

Стр.: А42, А50-А52

M68 SE1203...

Мах глубина резания: 6,0 мм

Угол в плане: 45° Число кромок на пластине: 4 Диаметр: 50 мм - 315 мм

Стр.: А214, А216-А218 (раздел «Торцевые фрезы общего назначения»)

M68 SE1204...

Мах глубина резания: 6,0 MM

Угол в плане: 45° Число кромок на пластине: 4 Диаметр: 50 мм - 250 мм

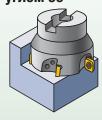
Стр.: А214, А220-А222 (раздел «Торцевые фрезы общего назначения»)

M68 SE1504..


Мах глубина резания: 8.3 MM

Угол в плане: 45° Число кромок на пластине: 4 Диаметр: 80 мм - 315 мм

Стр.: А214, А223-А225 (раздел «Торцевые фрезы общего назначения»)



Фрезы для обработки уступов с углом 90°

Фрезы для обработки уступов с углом 90°

M6800S

Мах глубина резания: 6,0 MM

Угол в плане: 90° Число кромок на пластине: 2 Диаметр: 12 мм - 63 мм

Стр.: А56, А58-А61

M6800M

Мах глубина резания: 10,0 MM

Угол в плане: 90° Число кромок на пластине: 2 Диаметр: 16 мм - 160 мм Стр.: А56, А62-А66

M6800LX

Мах глубина резания:

Угол в плане: 90° Число кромок на пластине: 2

Стр.: А56, А68-А72

15.7 MM

Диаметр: 25 мм - 160 мм

M690 SD1204..

Мах глубина резания: 10,0 MM

Угол в плане: 90° Число кромок на пластине: 4 Диаметр: 50 мм – 160 мм

Стр.: А74, А76-А79

M690 SD1506...

Мах глубина резания: 12,0 мм

Угол в плане: 90° Число кромок на пластине: 4 Диаметр: 50 мм - 125 мм

Стр.: А74, А80-А82

M680+

Мах глубина резания: 9,5 мм

Угол в плане: 90° Число кромок на пластине: 2 Диаметр: 25 мм - 63 мм

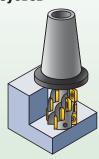
Стр.: А84, А86-А91

M680

Мах глубина резания: 14,0 мм

Угол в плане: 90° Число кромок на пластине: 2 Диаметр: 25 мм - 160 мм

Стр.: А84, А92-А97



Обзорная таблица инструмента

Фрезы с винтовым расположением зубьев и пазовые фрезы

Фрезы с винтовым расположение . Зубьев

M390 SD1204...

Мах глубина резания: 117,0 мм

Угол в плане: 90° Число кромок на пластине: 4 Диаметр: 50 мм – 80 мм

Стр.: А100-А105

M300+

Мах глубина резания: 46,0 MM

Угол в плане: 90° Число кромок на пластине: 2 Диаметр: 25 мм – 40 мм

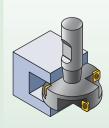
Стр.: А106, А108-А111

M300

Мах глубина резания: 112,0 мм

Угол в плане: 90° Число кромок на пластине: 2 Диаметр: 50 мм - 80 мм

Стр.: А106, А112-А117



Пазовые фрезы

M16

Диапазон ширины паза: 11,0 MM - 21,9 MM

Число кромок на пластине: 2 Диаметр: 25 мм – 50 мм

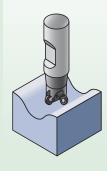
Стр.: А120-А124

M94

Диапазон ширины паза: 2,73 MM - 5,23 MM

Число кромок на пластине: 3 Диаметр: 25 мм – 80 мм

Стр.: А126-А130



Фрезы для профильной обработки

M170 RD07...

Мах глубина резания: 3,5 мм

Диаметр: 12 мм - 35 мм Стр.: А134, А136-А143

M170 RD1003...

Мах глубина резания: 5,0 MM

Диаметр: 20 мм - 52 мм Стр.: А134, А144-А149

M170 RD12T3...

Мах глубина резания: 6,0 MM

Диаметр: 24 мм - 100 мм Стр.: А134, А150-А155

M170 RD1604...

Мах глубина резания: 8,0 мм

Диаметр: 32 мм - 125 мм Стр.: А134, А156-А159

Сферические фрезы М270


Мах глубина резания: 5,0 MM - 16,0 MM

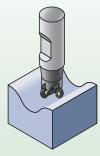
Диаметр: 10 мм - 32 мм Стр.: А160, А162-А167

Диаметр: 10 мм - 20 мм

Стр.: А160, А170-А173

Фрезы для работы с большими подачами М270

Мах глубина резания: 0,6 MM - 1,1 MMДиаметр: 10 мм - 20 мм Стр.: А160, А174-А179



Обзорная таблица инструмента

Фрезы для профильной обработки и обработки фасок

M100 RD0802...

Мах глубина резания: 4,0 MM

Диаметр: 12 мм - 16 мм Стр.: А180, А182-А184

M100 RD1003...

Мах глубина резания: 5,0 MM

Диаметр: 20 мм - 30 мм Стр.: А180, А186-А189

M100 RD1204...

Мах глубина резания: 6,0 MM

Диаметр: 24 мм - 125 мм Стр.: А180, А190-А195

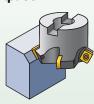
M100 RD1605...

Мах глубина резания: 8,0 MM

Диаметр: 32 мм - 125 мм Стр.: А180, А196-А199

M100 RC1606... Мах глубина резания: 8,0 MM

Диаметр: 50 мм - 200 мм Стр.: А180, А200-А203



Фрезы для обработки фасок

M25 SD0903...

Мах глубина резания: 6,4 MM

Угол в плане: 45° Число кромок на пластине: 4 Диаметр: 25 мм – 40 мм

Стр.: А206, А208-А211

M25 SP1204...

Мах глубина резания: 8,3 мм

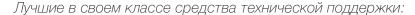
Угол в плане: 45° Число кромок на пластине: 4 Диаметр: 50 мм - 63 мм

Стр.: А206, А209-А211

Техническая поддержка клиента

Получите быстрые и точные ответы на интересующие Вас вопросы по обработке металлов резанием

Наша команда технической поддержки клиента (CAS) занимает лидирующее положение в металлообрабатывающей промышленности по имеющимся средствам технического сопровождения пользователей металлорежущего инструмента!

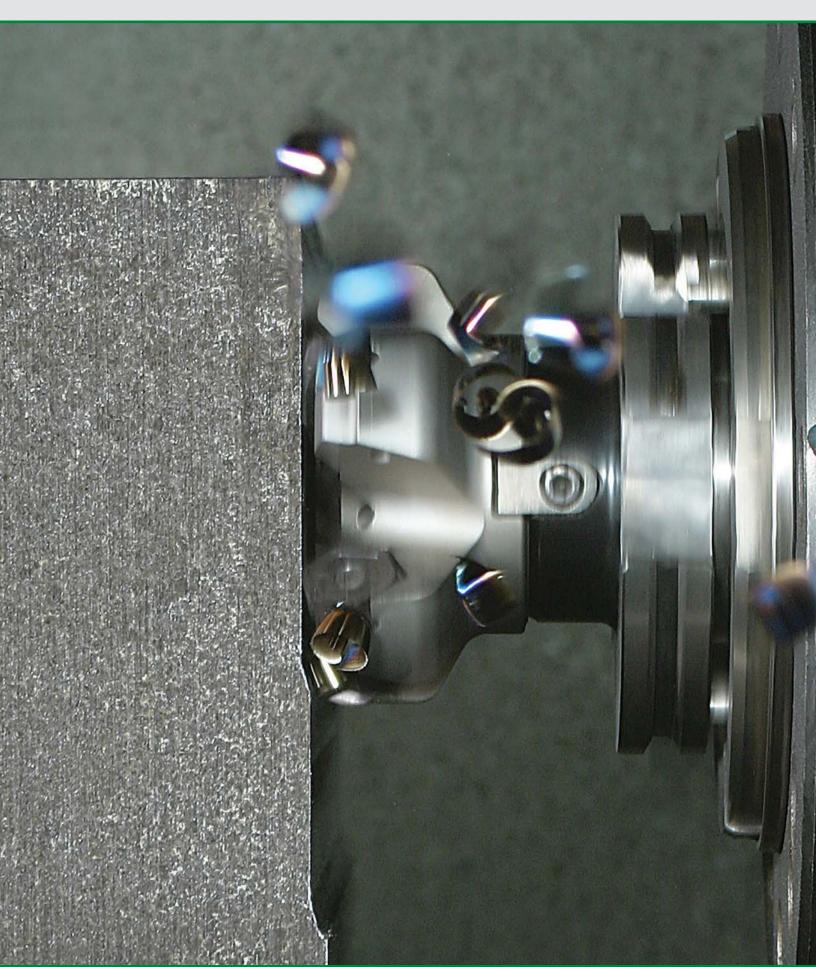

- Легкий доступ к проверенной технической информации.
- Высокий уровень технического обслуживания.
- Лучшие в своем классе средства технической поддержки.

Высокий уровень технического обслуживания:

- Быстрый ответ по телефону.
- Быстрый поиск грамотных решений.
- Квалифицированное сопровождение клиентов.

Оказываемые услуги:

- Подбор инструмента.
- Выбор режимов резания.
- Выявление и устранение неисправностей.
- Оптимизация технологического процесса.
- Программное обеспечение.



- Эксперты в области стратегий обработки.
- База данных обрабатываемых материалов.
- Вычисления на основе реальных данных.

Фрезы со сменными режущими пластинами • Торцевые фрезы

Серия М1200	
M1200 Mini	
M1200	
Фрезы для работы с большими подачами М1200	
Серия М640	A34–A4
Серия М660	
M660 SN1205	
M660 SN1505	A50-A52

WWW.WIDIA.COM

Одна серия объединяет все торцевые фрезы • Серия М1200

Торцевые фрезы WIDIA серии M1200 являются образцами высокотехнологичного инструмента для фрезерования плоскостей. Фрезы M1200, M1200 Mini и M1200 High-Feed гарантируют достижение максимальной производительности.

- Небольшие усилия резания и сокращенное оперативное время.
- Универсальность при обработке всех групп материалов.
- Увеличенный срок службы инструмента и высокая производительность.

Торцевые фрезы

Victory M1200 Mini

Мах глубина резания: 3,5 мм

Угол в плане: 45° Число кромок на пластине: 12

Стр.: А16-А23

Геометрия	пластины	Рекомендуемое применение
	LDJ	В первую очередь для обработки алюминия и цветных металлов. Пришлифованная боковая поверхность с полированной передней поверхностью.
	LD	Рекомендуется для обработки при легких режимах резания и обработки нержавеющей стали.
	32LD	Оптимально подходит для легких режимов резания, когда требуется обеспечение безопасности в большой зоне. Вольшой радиус закругления в месте расположения фасеты смазочного гребня.

	Геометрия	пластины	Рекомендуемое применение					
		GD	Рекомендуется для обработки стали и чугуна. Лучший выбор для операций общего назначения.					
		HD	Рекомендуется для нагруженных проходов.					
_		32HD	Оптимально подходит для нагруженных проходов, когда требуется повышенная надежность. Большой радиус скругления на зачистной пластине.					
И		LDJ3W	Пластина Wiper для чистовой обработки алюминия и цветных металлов.					
е		LD3W	Пластина Wiper для чистовой обработки стали, нержавеющей стали и чугуна.					

Victory M1200

Мах глубина резания: 4,5 MM

Угол в плане: 45° Число кромок на пластине: 12 Диаметр: 40 мм - 315 мм

Стр.: А24-А29

Геометрия	пластины	Рекомендуемое применение
	LDJ	Прежде всего для цветных металлов. Шлифованная боковая и полированная передняя поверхности.
	LD	Рекомендуется для легких режимов резания. Низкие усилия резания.

Геометрия пластины		Рекомендуемое применение					
	GD	Рекомендуется для обработки стали и чугуна. Лучший выбор для операций общего назначения.					
	HD	Рекомендуется для нагруженных проходов.					
	43HD	Оптимально подходит для нагруженных проходов, когда т ребуется повышенная надежность. Большой радиус скругления на зачистной пластине.					
	LDJ3W	Пластина Wiper для чистовой обработки алюминия и цветных металлов.					

стали и чугуна.

GD3W

Геометрия пластины

GD

Пластина Wiper для чистовой

Рекомендуемое применение

Рекомендуется для торцевого фрезерования с большой

обработки стали, нержавеющей

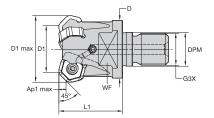
Victory M1200HF

Мах глубина резания: 2,2 MM

Угол в плане: 14,5° Диа

Ст

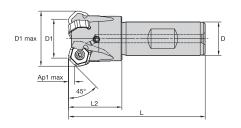
гол в плане: 14,5° исло кромок на пластине: 12	I	подачей нержавеющей стали и жаропрочных сплавов.
иаметр: 50 мм – 160 мм стр.: A30–A32	HD	Альтернативный выбор для торцевого фрезерования с большой подачей стали и чугуна.
Геометрия пластины Рекомендуемое применение Прежде всего для цветных металлов. Шлифованная боковая и полированная передняя поверхности.	43HD	Рекомендуется для торцевого фрезерования с большой подачей стали и чугуна. Большой радиус закругления. Лучший выбор для операций общего назначения.


Фрезы со сменными режущими пластинами • Торцевые фрезы

- Двенадцать режущих кромок.
- Рекомендуется для торцевого фрезерования с малой глубиной резания.
- Максимальное число зубьев на диаметр.

max

VICTORY


■ Victory M1200 Mini

номер заказа	номер по каталогу	D1	D1 max	D	DPM	G3X	L1	WF	Ap1 max	z	частота вращ.	подвод СОЖ	кг
3957839	M1200D025Z02M16HN07	25	34	29	17,0	M16	32	22	3,5	2	20000	Да	0,1
3957840	M1200D025Z03M16HN07	25	34	29	17,0	M16	32	22	3,5	3	20000	Да	0,1
3957841	M1200D032Z03M16HN07	32	41	29	17,0	M16	40	22	3,5	3	17600	Да	0,2
3957842	M1200D032Z04M16HN07	32	41	29	17,0	M16	40	22	3,5	4	17600	Да	0,2
3957963	M1200D040Z04M16HN07	40	49	29	17,0	M16	40	22	3,5	4	15800	Да	0,2
3957964	M1200D040Z05M16HN07	40	49	29	17,0	M16	40	22	3,5	5	15800	Да	0,3

■ Victory M1200 Mini • Комплектующие

D1	винт пластины	Нм	ключ Torx
25	12146034500	3,5	12148082400
32	12146034500	3,5	12148082400
40	12146034500	3.5	12148082400

max

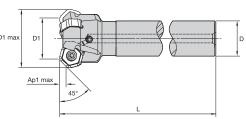
VICTORY

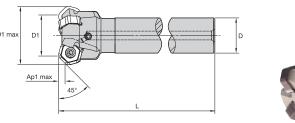
■ Victory M1200 Mini

		1							частота		
номер заказа	номер по каталогу	D1	D1 max	D	L	L2	Ap1 max	Z	вращ.	подвод СОЖ	KΓ
3958011	M1200D025Z02B20HN07	25	34	20	82	32	3,5	2	20000	Да	0,2
3958012	M1200D025Z03B20HN07	25	34	20	82	32	3,5	3	20000	Да	0,2
3958023	M1200D032Z03B25HN07	32	41	25	97	40	3,5	3	17600	Да	0,4
3958024	M1200D032Z04B25HN07	32	41	25	97	40	3,5	4	17600	Да	0,4

■ Victory M1200 Mini • Комплектующие

D1	винт пластины	Нм	ключ Torx
25	12146034500	3,5	12148082400
32	12146034500	3,5	12148082400

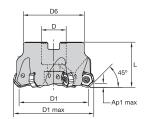



- Двенадцать режущих кромок.
- Рекомендуется для торцевого фрезерования с малой глубиной резания.
- Максимальное число зубьев на диаметр.

VICTORY

■ Victory M1200 Mini

							ı	частота		
номер заказа	номер по каталогу	D1	D1 max	D	L	Ap1 max	Z	вращ.	подвод СОЖ	KΓ
3958025	M1200D025Z02A20HN07L120	25	34	20	120	3,5	2	20000	Да	0,3
3958026	M1200D025Z03A20HN07L120	25	34	20	120	3,5	3	20000	Да	0,3
3958029	M1200D025Z02A25HN07L200	25	34	25	200	3,5	2	20000	Да	0,7
3958030	M1200D025Z03A25HN07L200	25	34	25	200	3,5	3	20000	Да	0,7
3958027	M1200D032Z03A25HN07L130	32	41	25	130	3,5	3	17600	Да	0,5
3958028	M1200D032Z04A25HN07L130	32	41	25	130	3,5	4	17600	Да	0,5


■ Victory M1200 Mini • Комплектующие

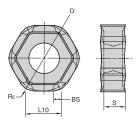
D1	винт пластины	Нм	ключ Torx
25	12146034500	3,5	12148082400
32	12146034500	3.5	12148082400

- Двенадцать режущих кромок.
- Рекомендуется для торцевого фрезерования с малой глубиной резания.
- Максимальное число зубьев на диаметр.

VICTORY

Фрезы со сменными режущими пластинами • Торцевые фрезы

■ Victory M1200 Mini


Victory Wi1200 N	/11111								тах частота		
номер заказа	номер по каталогу	D1	D1 max	D	D6	L	Ap1 max	Z	вращ.	подвод СОЖ	ΚΓ
3957995	M1200D040Z04HN07	40	49	22	38	40	3,5	4	15800	Да	0,3
3957996	M1200D040Z05HN07	40	49	22	38	40	3,5	5	15800	Да	0,3
3957997	M1200D050Z04HN07	50	59	22	38	40	3,5	4	12700	Да	0,4
3957998	M1200D050Z05HN07	50	59	22	38	40	3,5	5	12700	Да	0,4
3957999	M1200D050Z06HN07	50	59	22	38	40	3,5	6	12700	Да	0,4
3958000	M1200D063Z04HN07	63	72	22	50	40	3,5	4	10100	Да	0,6
3958001	M1200D063Z06HN07	63	72	22	50	40	3,5	6	10100	Да	0,7
3958002	M1200D063Z08HN07	63	72	22	50	40	3,5	8	10100	Да	0,6
3958003	M1200D080Z05HN07	80	89	27	60	50	3,5	5	7900	Да	1,1
3958004	M1200D080Z08HN07	80	89	27	60	50	3,5	8	7900	Да	1,2
3958005	M1200D080Z10HN07	80	89	27	60	50	3,5	10	7900	Да	1,2
3958006	M1200D100Z06HN07	100	109	32	80	50	3,5	6	6300	Да	1,7
3958007	M1200D100Z09HN07	100	109	32	80	50	3,5	9	6300	Да	1,8
3958008	M1200D100Z12HN07	100	109	32	80	50	3,5	12	6300	Да	1,8

■ Victory M1200 Mini • Комплектующие

D1	винт пластины	Нм	ключ Тогх	зажимной винт с каналом для СОЖ	SHCS с канавкой для СОЖ
40	12146034500	3,5	12148082400	_	12146109200
50	12146034500	3,5	12148082400	_	12146101000
63	12146034500	3,5	12148082400	_	12146101000
80	12146034500	3,5	12148082400	_	12146101800
100	12146034500	3,5	12148082400	12146109400	_

■ HNGJ-LDJ

лучший выборальтернативный выбор

M		
K		
N	•	•
S		
Н		
	501	1-N

P

номер по каталогу	число режущих кромок	D	L10	s	BS	Rε	hm	JAH T
HNGJ0704ANFNLDJ	12	12,70	6,80	4,48	1,60	1,2	0,08	•

■ HNGJ-LD

• лучший выбор

альтернативный выбор

	Р			•			•	•
	M						0	•
	K		•	•	•	•	0	0
	N							
р	S							•
	Н							
	hm		TN5515	TN6505	TN6510	TN6520	TN6525	TN6540
(0,08	}				•	•	•

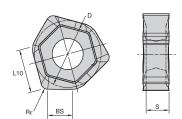
номер по каталогу	число режущих кромок	D	L10	s	BS	Rε	hm	ž	ž		
HNGJ0704ANENLD	12	12,70	6,80	4,43	1,60	1,2	0,08				
HNGJ070432ANENLD	12	12,70	6,80	4,48	_	3,2	0,08			•	

■ HNPJ-GD

лучший выборальтернативный выбор

номер по каталогу	число режущих кромок	D	L10	s	BS	Rε	hm	
HNPJ0704ANSNGD	12	12,70	6,80	4,45	1,27	1,2	0,10	

■ HNPJ-HD


VICTORY

лучший выборальтернативный выбор

Н	TN5515	TN6510	TN6520	TN6540	FN7535
N S					
K	•	•	•	0	0
M				•	0
P				•	•

номер по каталогу	число режущих кромок	D	L10	s	BS	Rε	hm	TN5	1N6	TN6	TNG	Ž
HNPJ0704ANSNHD	12	12,70	6,80	4,41	1,25	1,2	0,14	•				
HNPJ070432ANSNHD	12	12,70	6,80	4,42	_	3,2	0,14			•	•	

VICTORY

■ Зачистная пластина XNGJ-LDJ-3

• лучший выбор

○ альтернативный выбор

•						
Re	Н	S	N	K	M	Р
TN6501			•			
THM-U			•			

							19:	⋛
номер по каталогу	число режущих кромок*	D	L10	S	BS	Rε	<u> F </u>	E
XNGJ0704ANFNLDJ3W	3	12,70	6,78	4,47	6,78	1,3		
***		•						_

^{*3} RH и 3 LH режущих кромки.

■ Зачистная пластина XNGJ-LD3

• лучший выбор

○ альтернативный выбор

R	N5515	N6510	N6520	N6525	N6540
Н					
S					•
N					
K	•	•	•	0	0
М				0	•
Р				•	•

							55	S 8	202	9 5	65
номер по каталогу	число режущих кромок*	D	L10	S	BS	Rε	F F	= F	- F	= i	⊨
XNGJ0704ANENLD3W	3	12,70	6,78	4,47	6,78	1,3					•

^{*3} RH и 3 LH режущих кромки.

Торцевые фрезы серии **Victory™ M1200**

M1200 45° | Фрезы для обработки с большой подачей M1200 High-Feed | M1200 Mini

Двенадцать режущих кромок на пластине обеспечивают бесшумную работу на высоких скоростях и подачах. Фрезы менее энергозатратны по сравнению с ЛЮБЫМИ аналогами с двухсторонними пластинами.

Производительность: исключительное ломание и удаление стружки при обработке любого материала. Качество обработки: превосходное качество обработанной поверхности.

Преимущество: исключительная стойкость инструмента при фрезеровании любых деталей в различных условиях.

Фрезы для обработки с большой подачей M1200 High-Feed

- Подача до 2,5 мм на зуб.
- Угол в плане 15° обеспечивает превосходное разделение стружки.

M1200 Mini

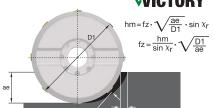
- Идеально подходит для обработки с малой глубиной резания.
- Осевая глубина резания до 3,5 мм.

VICTOR
Win with Widi

Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт **www.widia.com**.

Торцевые фрезы • Серия Victory™ M1200

Режимы резания для фрез Victory M1200 Mini



			TN5515			TN6501			TN6505			TN6510			TN6520	
Геом	етрия й кромки							Подача	на зуб fz	z (мм)						
L	-				0,06	0,10	0,30									
L		0,08	0,15	0,25	-,	-, -	-,	0,08	0,10	0,25	0,09	0,17	0,28	0,09	0,17	0,29
0		0,12	0,20	0,35							0,13	0,22	0,39	0,14	0,23	0,40
		0,18	0,25	0,55							0,20	0,28	0,61	0,21	0,29	0,64
Гру матер	ппа риала						C	корость р	езания v	с (м/мин)						
	1							460	350	300						
	2							310	230	210						
	3							260	200	170						
	4							270	210	170						
	5							220	170	140						
	6							300	220	180						
Р	7							220	170	160						
	8							200	160	130						
	9							170	130	100						
	10							220	180	170						
	11							160	120	90						
	12							290	220	180						
	13.1							250	180	160						
	13.2							130	90	80						
	14.1															
M	14.2															
	14.3															
	14.4 15	530	390	280							480	350	250	380	280	200
	16	410	310	230					_	_	370	280	210	300	220	170
	17	460	310	230				310	230	210	420	280	210	340	220	170
K	18	300	220	170				260	200	170	270	200	150	220	160	120
	19	370	290	220				_	_	_	340	260	200	270	210	160
	20	310	230	180				_	_	_	280	210	160	220	170	130
	21				2000	1050	650									
	22				980	550	450									
	23				1800	950	600									
	24				1050	650	500									
N	25				750	500	350									
N	26				_	_	_									
	27				-	_	_									
	28				_	_	_									
	29				_	_	_									
	30				_											
	31															
	32															
	33															
S	34															
	35															
	36															
	37 38.1															
	38.2															
Н	39.1															
	39.1															
				(6-)	kasaha wur			1	×							

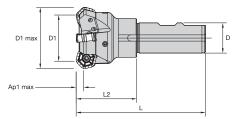
Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ае, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,1	0,2	0,3	0,4
коэффициент fz	2	1,5	1,3	1
коэффициент vc	1,4	1,3	1,2	1,1

	TN6525			TN6540			TN7535			THM-U			
					Подача на	а зуб fz (м	м)					Геомо режущей	етрия (кромки
							-		0,06	0,10	0,30		DJ
0,08	0,12	0,25	0,11	0,17	0,33	0,10	0,15	0,30	2,00	-,	-,		
0,10	0,17	0,29	0,13	0,22	0,39	0,12	0,20	0,35				0	
0,15	0,21	0,50	0,20	0,28	0,66	0,18	0,25	0,60					
				Ско	рость рез	ания vc (м	/мин)					Груг матер	
350	270	228	290	220	190	360	280	240				1	
240	180	160	200	150	130	250	190	165				2	
200	150	130	170	130	110	210	160	140				3	
210	160	130	170	130	110	215	165	140				4	
170	130	110	140	100	90	180	130	110				5	
228	170	140	190	140	120	240	180	150				6	
170	130	120	140	110	100	180	140	120				7	Р
150	120	100	130	100	80	160	120	100				8	
130	100	80	110	80	60	140	100	80				9	
170	140	130	140	120	100	180	145	130				10	
120	90	70	100	70	60	120	90	70				11	
220	170	140	180	140	120	230	175	150				12	
190	140	120	160	120	100	200	145	120				13.1	
96	70	60	80	60	50	100	75	60				13.2	
190	120	90	160	100	70	200	120	90				14.1	
150	90	70	130	80	60	160	95	70				14.2	М
120	70	50	100	60	40	120	70	55				14.3	
100	60	40	80	50	40	100	60	45				14.4	
_	_	_	_	_	_	_	_	_				15	
_	_		_	_	_	_	_					16	
240	180	160	200	150	130	250	190	165				17	K
200	150	130	170	130	110	210	160	140				18	
_	_	_	_	_	_	_	_	_				19	
			_			_						20	
									1800	950	590	21	
									880	500	405	22	
									1600	860	540	23	
									950	590	450	24	
									680	450	315	25	N
									670	500	310	26	
									700	610	500	27	
									750	660	540	28	
									750	650 655	530	29	
			60	50	15				700	655	500	30	
			60 50	50 40	45 35							31 32	
			50	25								33	
			35 30	20	20 15							33	s
			30	20									,
			80	50	15 40							35 36	
			70	45	35							36	
			70	40	33							38.1	
												38.2	
												39.1	Н
												39.2	
												00.2	

VICTORY



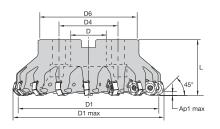
- Двенадцать режущих кромок.
- Лучший выбор для торцевого фрезерования.
- Низкие усилия резания и максимальная производительность.

max

VICTORY

■ Victory M1200

									частота		
номер заказа	номер по каталогу	D1	D1 max	D	L	L2	Ap1 max	Z	вращ.	подвод СОЖ	ΚГ
3325310	M1200D040Z03B25HN09	40	51	25	107	50	4,5	3	15800	Да	0,5
3325311	M1200D040Z04B25HN09	40	51	25	107	50	4,5	4	15800	Да	0,5


■ Victory M1200 • Комплектующие

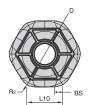
D1	винт пластины	Нм	ключ Тогх	крепежный винт
40	12146034500	3,5	12148082400	12148577000

- Двенадцать режущих кромок.
- Лучший выбор для торцевого фрезерования.
- Низкие усилия резания и максимальная производительность.

VICTORY

■ Victory M1200

•												
номер заказа	номер по каталогу	D1	D1 max	D	D4	D6	L	Ap1 max	z	тах настота враш.	подвод СОЖ	ΚΓ
3957970	M1200D040Z03HN09	40	51	22	_	39	40	4.4	3	15800	Да	0,3
3957971	M1200D040Z04HN09	40	51	22	_	39	40	4,4	4	15800	Да	0,3
3325312	M1200D050Z04HN09	50	61	22	_	38	40	4,5	4	12700	Да	0,3
3325693	M1200D050Z05HN09	50	61	22	_	38	40	4,5	5	12700	Да	0,3
3650535	M1200D063Z04HN09	63	74	22	_	50	40	4,5	4	10100	Да	0,6
3093594	M1200D063Z06HN09	63	74	22	_	50	40	4,5	6	10100	Да	0,6
3025376	M1200D063Z07HN09	63	74	22	_	50	40	4,5	7	10100	Да	0,6
3650536	M1200D080Z05HN09	80	91	27	_	60	50	4,5	5	7900	Да	1,1
3081507	M1200D080Z06HN09	80	91	27	_	60	50	4,5	6	7900	Да	1,1
3025377	M1200D080Z09HN09	80	91	27	_	60	50	4,5	9	7900	Да	1,1
3650537	M1200D100Z06HN09	100	111	32	_	80	50	4,5	6	6300	Да	1,7
3325694	M1200D100Z08HN09	100	111	32	_	80	50	4,5	8	6300	Да	1,7
3025378	M1200D100Z11HN09	100	111	32	_	80	50	4,5	11	6300	Да	1,7
3650538	M1200D125Z08HN09	125	136	40	_	90	63	4,5	8	5050	Да	2,8
3081508	M1200D125Z10HN09	125	136	40	_	90	63	4,5	10	5050	Да	2,8
3093593	M1200D125Z14HN09	125	136	40	_	90	63	4,5	14	5050	Да	2,9
3066118	M1200D160Z12HN09	160	171	40	66,7	110	63	4,5	12	3900	Да	4,6
3066119	M1200D160Z16HN09	160	171	40	66,7	110	63	4,5	16	3900	Да	4,7
3957972	M1200D200Z16HN09	200	211	60	101,6	130	63	4,5	16	3180	Да	6,4
3957993	M1200D250Z20HN09	250	261	60	101,6	130	63	4,5	20	2550	Да	9,9
3957994	M1200D315Z24HN09	315	326	60	101,6	230	80	4,5	24	2020	Да	22,9


■ Victory M1200 • Комплектующие

			_		наконечник	
D1	винт пластины	Нм	ключ Torx	зажимной винт с каналом для СОЖ	для СОЖ	SHCS с канавкой для СОЖ
40	12146034500	3,5	12148082400	_	_	12146109200
50	12146034500	3,5	12148082400	_	_	12146101900
63	12146034500	3,5	12148082400	_	_	12146101000
80	12146034500	3,5	12148082400	_	_	12146101800
100	12146034500	3,5	12148082400	12146109400	_	_
125	12146034500	3,5	12148082400	12146107000	12146111000	_
160	12146034500	3,5	12148082400	12146107000	12146111100	_
200	12146034500	3,5	12148082400	_	12146111200	_
250	12146034500	3,5	12148082400	_	12146111300	_
315	12146034500	3,5	12148082400	_	12146111400	_

N S

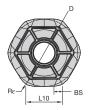
■ HNGJ-LDJ

• лучший выбор

○ альтернативный выбор

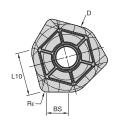
 номер по каталогу
 число режущих кромок
 D
 L10
 S
 BS
 Rε
 hm
 H

 HNGJ0905ANFNLDJ
 12
 15,88
 9,00
 5,56
 1,80
 1,2
 0,08
 ●


■ HNGJ-LD **VICTORY** M K N S • лучший выбор ○ альтернативный выбор номер по каталогу D L10 BS Rε hm число режущих кромок HNGJ0905ANENLD 15,88 9,00 5,56 1,80 1,2 0,10 12

HNPJ-GD VICTORY • K N • лучший выбор S ○ альтернативный выбор TN6520 TN6540 TN7535 номер по каталогу HNPJ0905ANSNGD D L10 s BS Rε hm число режущих кромок 15,88 8,58 5,56 1,80 1,2 0,15

■ HNGJ-GD


$\overline{}$			-					
VICTO	1BV		Р					
VVIOI	9111		M			0	•	0
			K	•	•	0	0	0
• лучший в	выбор		N					
○ альтерна	ативный	выбор	S				•	
			Н					
				15515	16520	16525	16540	17535
 •		D-		_	_	_	_	_

номер по каталогу	число режущих кромок	D	L10	s	BS	Rε	hm	TN5515 TN6520 TN6525 TN6540 TN7535
HNGJ0905ANSNGD	12	15,88	9,00	5,56	1,80	1,2	0,15	

■ HNPJ-HD P M VICTORY K N • лучший выбор S ○ альтернативный выбор число режущих кромок D L10 BS Rε номер по каталогу hm HNPJ0905ANSNHD 15,88 5,46 1,2 8,59 1,66 0,20 12 HNPJ090543ANSNHD 12 15,88 5,44 4,3 0,20

■ HNGJ-HD **VICTORY** М K N • лучший выбор ○ альтернативный выбор TN6520 TN6525 TN6540 номер по каталогу число режущих кромок D L10 BS Rε hm 1,2 4,4 HNGJ0905ANSNHD 12 15,88 8,59 5,46 1,66 0,20 HNGJ090543ANSNHD 12 15,88 8,50 5,44 0,20

■ Зачистная пластина XNGJ-LDJ3

лучший выборальтернативный выбор

VICTORY

P M			
K		•	
N			•
S			
Н			
R		1059NT	III-MHT
1,6	3		

номер по каталогу	число режущих кромок*	l D	L10	s	BS	Rε	Z L	Ê
XNGJ0905ANFNLDJ3W	3	15,88	9,60	6,35	6,00	1,6		•

число режущих кромок*

■ Зачистная пластина XNGJ-GD3

• лучший выбор
○ альтернативный выбор

6,35

VICTORY

L10

9,60

15,88

1,0	3	•	•	•	
R	E	1N6510	TN6520	TN6525	TN6540
Н					
					•
N S					
K		•	•	0	0
M				0	•
Р				•	•

BS

6,00

номер по каталогу XNGJ0905ANSNGD3W *3 RH и 3 LH режущих кромки.

^{*3} RH и 3 LH режущих кромки.

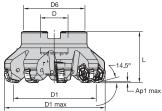
Режимы резания для фрез Victory M1200

		T	N551	5	Т	N6501		Т	N651)	T	N6520)	Т	N652	5	T	N654	0	Т	N753	5	1	HM-U	ı
	етрия											Пода	ча на :	зуб fz	(мм)										
	й кромки .DJ				0.08	0,12	0.30							_	. ,								0.08	0,12	0.30
	LD	0.12	0,20	0.40	0,00	0,12	0,50	0.13	0,22	0.44	0.14	0,23	0.46	0.10	0.17	0,33	0.13	0,22	0.44	0.12	0,20	0.40	0,00	0,12	0,00
	GD		0,25					_	0,28		_	0,29		0,12			<u> </u>	0,28		_	0,25				
	HD		0,30					0,22	0,33	0,66	0,23	0,35	0,69	0,17	0,25	0,50	0,22	0,33	0,66	0,20	0,30	0,60			
	ппа										Ско	рость	резаі	ния ус	(м/м	ин)									
Mate	риала 1												-	350	270	230	290	220	190	360	280	240			
	2													240		160	200		130	250	190				
	3													200		130	170		110	210	160				
	4													210		130	170		110	215	165				
	5													170		110	140	100	90	180	130				
	6													228	170		190		120	240	180				
	7													170		120	140		100	180	140				
P	8													150		100	130	100	80	160	120	100			
	9													130	100	80	110	80	60	140	100	80			
	10													170		130	140	120	100	180	145	130			
	11													120	90	70	100	70	60	120	90	70			
	12													220	170	140	180	140	120	230	175	150			
	13.1													190	140	120	160	120	100	200	145	120			
	13.2													96	70	60	80	60	50	100	75	60			
	14.1													190	120	90	160	100	70	200	120	90			
	14.2													150	90	70	130	80	60	160	95	70			
M	14.3													120	70	50	100	60	40	120	70	55			
	14.4													100	60	40	80	50	40	100	60	45			
	15	530	390	280				480	350	250	380	280	200	_	_	_	-	_	_	-	_	_			
	16	410	310	230				370	280	210	300	220	170	_	_	_	_	_	_	_	_	_			
К	17	460	310	230				420	280	210	340	220	170	240	180	160	200	150	130	250	190	165			
	18	300	220	170				270	200	150	220	160	120	200	150	130	170	130	110	210	160	140			
	19		290	220				340	260	200	270		160	_	_	_	_	_	_	_	_	_			
	20	310	230	180				280	210	160	220	170	130	_	_		_	_		_	_				
	21					1050																	1800		590
	22				980	550	450																880	500	405
	23				1800	950	600																1600	860	540
	24				1050	650	500																950	590	450
N	25				750	500	350																680	450	315
	26				_	_	_																670	500	310
	27				_	_	_																700	610	500
	28					_	_																750	660	
	29 30				_																			650 655	
	30 31																60	50	45				700	UJJ	500
	32																50	40	35						
	33																	25							
s	34																30		15						
	35																30		15						
	36																80	50	40						
	37																70	45							
	38.1																, ,								
	38.2																								
Н	39.1																								
	39.2																								
	нлуемая				(5.)					,													$\overline{}$		

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ae, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,1	0,2	0,3	0,4
коэффициент fz	2	1,5	1,3	1
коэффициент vc	1,4	1,3	1,2	1,1


A29

- Двенадцать режущих кромок.
- Черновое торцевое фрезерование с большими подачами.

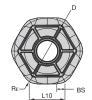
• Используйте стандартные пластины

max

VICTORY

■ Victory M1200HF

		1 -						1 -	частота		
номер заказа	номер по каталогу	D1	D1 max	D	D6	L	Ap1 max	Z	вращ	подвод СОЖ	ΚГ
3750370	M1200HF050Z04HN09	50	68	22	38	40	2,2	4	11400	Да	0,7
3750372	M1200HF063Z05HN09	63	81	22	50	40	2,2	5	8950	Да	0,7
3750434	M1200HF080Z06HN09	80	98	27	60	50	2,2	6	7300	Да	1,2
3750435	M1200HF100Z08HN09	100	118	32	80	50	2,2	8	5900	Да	1,9
3750436	M1200HF125Z09HN09	125	143	40	90	63	2,2	9	4800	Да	3,2
3957969	M1200HF160Z12HN09	160	178	40	110	63	2,2	12	3900	Да	5,1


■ Victory M1200HF • Запасные части

D1	винт пластины	Нм	ключ Torx	зажимной винт с каналом для СОЖ	наконечник для СОЖ	SHCS с канавкой для СОЖ
50	12146034500	3,5	12148082400	_	_	12146101000
63	12146034500	3,5	12148082400	-	-	12146101000
80	12146034500	3,5	12148082400	_	_	12146101800
100	12146034500	3,5	12148082400	12146109400	_	_
125	12146034500	3,5	12148082400	12146107000	12146111000	_
160	12146034500	3,5	12148082400	12146107000	12146111100	-

■ HNGJ-LDJ

• лучший выбор

○ альтернативный выбор

								165(≱
номер по каталогу	число режущих кромок	D	L10	S	BS	Rε	hm	F	E
HNGJ0905ANFNLDJ	12	15,88	9,00	5,56	1,80	1,2	0,08		•

■ HNPJ-GD

VICTORY

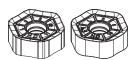
• лучший выбор

○ альтернативный выбор

0,15	TN5515 TN6520 TN6540 TN7535	S	N	K • • 0 0	M O	
------	--------------------------------------	---	---	-----------	-----	--

номер по каталогу	число режущих кромок	D	L10	s	BS	Rε	hm	TNS	TNG	TNG	TN7
HNPJ0905ANSNGD	12	15,88	8,58	5,56	1,80	1,2	0,15	•		•	

■ HNGJ-GD

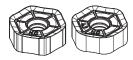


- лучший выбор
- альтернативный выбор

Р			•	•	•
M			0	•	0
K	•	•	0	0	0
N S					
S				•	
Н					
	15	20	25	40	35
	FN5515	N6520	V6525	N6540	FN7535
hm	⊨	⊨	⊨	⊨	f

номер по каталогу	число режущих кромок	D	L10	s	BS	Rε	hm	TN5	J9NL	39N⊥	TN6	TN7
HNGJ0905ANSNGD	12	15,88	9,00	5,56	1,80	1,2	0,15		•		•	

■ HNPJ-HD


• лучший выбор

○ альтернативный выбор

P M K N S	•	•	• •
Н	TN5515	N6520	N6540

								ાક્	비얼	15	ᆲ
номер по каталогу	число режущих кромок	D	L10	S	BS	Rε	hm	=	F	ĮF	-
HNPJ0905ANSNHD	12	15,88	8,59	5,46	1,66	1,2	0,20	•			,
HNPJ090543ANSNHD	12	15,88	8,50	5,44	_	4,3	0,20			•	,
											41

■ HNGJ-HD

VICTORY

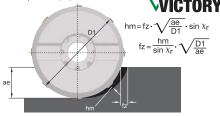
лучший выборальтернативный выбор

	K	•	•	0	0	
	N					
	S				•	
	Н					
h	m	TN5515	TN6520	TN6525	TN6540	
0,	20	•	•	•	•	

номер по каталогу	число режущих кромок	D	L10	s	BS	Rε	hm	TNG
HNGJ0905ANSNHD	12	15,88	8,59	5,46	1,66	1,2	0,20	
HNGJ090543ANSNHD	12	15,88	8,50	5,44	_	4,4	0,20	

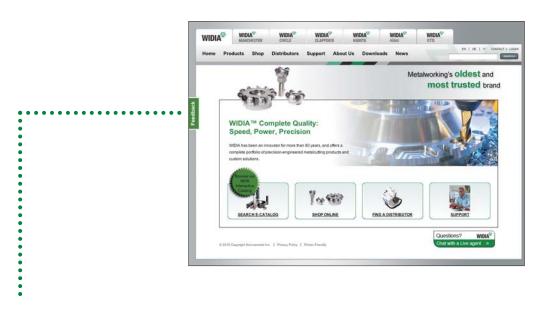
Торцевые фрезы • Серия Victory™ M1200

Режимы резания для фрез Victory M1200HF



		Т	N551	5	Т	N6501		Т	N6510)	Т	N6520)	Т	N652	5	Т	N654	0	T	N753	5	1	НМ-І	J
	етрия й кромки											Пода	ча на	зуб fz	(мм)										
	.DJ				0,20	0,45	1,00																0,20	0,45	1,00
	GD	0,50						_	0,95		_	1,00		_		1,50	_		2,00		0,85				
	HD	0,65	1,20	2,50				0,70	1,30	2,75	0,75	1,35	2,80	0,55	1,00	2,00	0,70	1,30	2,80	0,65	1,20	2,50			
	/ппа										Cvc	nocti	กดวา	ния ус	(84/84	MIN)									
мате	риала 1										- OKC	poort	posai			230	290	220	190	360	280	240			
	2													240		160	200		130	250	190				
	3													200		130		130		210	160				
	4													210		130	170		110	215	165				
	5													170		110	140	100	90	180	130				
	6													228	170		190		120	240	180	150			
	7													170		120	140	110		180	140				
P	8													150		100	130	100	80	160	120				
	9													130	100		110	80	60	140	100	80			
	10													170	140		140		100	180	145	130			
	11													120	90	70	100	70	60	120	90	70			
	12													220		140	180		120	230	175	150			
	13.1													190	140		160		100	200	145	120			
	13.1													96	70	60	80	60	50	100	75	60			
	14.1													190	120	90	160	100	70	200	120	90			
	14.2													150	90	70	130	80	60	160	95	70			
M	14.3													120	70	50	100	60	40	120	70	55			
	14.4													100	60	40	80	50	40	100	60	45			
	15	530	390	280				480	350	250	380	280	200	_	_	_	_	_	_	_	_	_			
	16		310					370	280	210	300	220		_	_	_	_	_	_	_	_	_			
	17	460	310	230				420	280	210	340	220	170	240	180	160	200	150	130	250	190	165			
K	18	300	220	170				270	200	150	220	160	120	200	150	130	170	130	110	210	160	140			
	19		290					340	260	200	270		160	_	_	_	_	_	_	_	_	_			
	20		230						210			170		_	_	_	_	_	_	_	_	_			
	21				2000	1050	650																1800	950	590
	22				980	550	450																880	500	405
	23				1800	950	600																1600	860	540
	24				1050	650	500																950	590	450
	25				750	500	350																680	450	315
N	26				_	_	_																670	500	310
	27				_	_	_																700	610	500
	28				_	_	_																750	660	540
	29				_	_	_																750	650	530
	30				_	_	_																700	655	500
	31																60	50	45						
	32																50	40	35						
	33																35	25	20						
S	34																30	20	15						
	35																30	20	15						
	36																80	50	40						
	37																70	45	35						
	38.1																								
н	38.2																								
	39.1																								
	39.2										L						IVIO CK								

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.


При меньших значениях ае, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,1	0,2	0,3	0,4
коэффициент fz	2	1,5	1,3	1
коэффициент vc	1,4	1,3	1,2	1,1

Интернет

Быстрота и простота регистрации

Вы можете легко зарегистрироваться на www.widia.com для получения полного доступа ко всем разделам сайта.

Выберите ближайшего к Вам регионального официального дистрибьютора WIDIA

WIDIA Products Group предлагает изделия мирового класса и глобальное сервисное обслуживание. Наши дистрибьюторы хорошо знакомы с нашей продукцией, но еще лучше они знают Ваши потребности. Они в состоянии найти грамотное применение глобальным ресурсам компании WIDIA в Ваших конкретных условиях - на Вашем производстве, в Вашем регионе, способствуя развитию Вашего бизнеса.

Свяжитесь с нами

Наши клиенты — наша главная ценность. Поэтому мы стремимся предложить Вам сервис и техническую поддержку самого высокого уровня. Мы открыты для диалога и готовы ответить на все Ваши вопросы и замечания в течение 24 часов.

Продукция WIDIA

Чем бы вы ни занимались, точением, фрезерованием или сверлением компания WIDIA предоставит Вам высокопроизводительный инструмент, отвечающий Вашим конкретным условиям. Наш ассортимент объединяет широкую программу стандартного инструмента и возможности изготовления специальной продукции для большинства производственных областей.

Обеспечивает низкие усилия резания • Серия М640

Фрезы серии M640 обеспечивают высокую производительность, отличное качество поверхности и плавность процесса фрезерования. Пластины с шестью режущими кромками устанавливаются в корпус оптимизированной формы. Инструмент идеально подходит для использования даже на маломощных станках.

- Большой передний угол определяет низкие усилия резания.
- Стандартный ассортимент включает пластины из различных сплавов и геометрий для решения любых задач.
- Простая, быстрая и точная смена режущих пластин.

M640

С целью снижения биения и повышения прочности гнезда под пластины обрабатываются в закаленном состоянии.

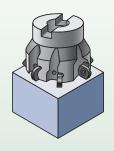
Внутренний подвод СОЖ через отверстие диаметром до 80 мм.

Оптимальная конструкция корпуса фрезы разработана с применением самой современной технологии.

Быстрая и точная смена режущей пластины осуществляется с помощью одного винта.

Пластины с зачистной режущей кромкой обеспечивают низкие усилия резания.

Специальная геометрия wiper обеспечивает очень плавное резание на финишных операциях в сочетании с высокой производительностью.


Шесть эффективных режущих кромок.

Большой положительный передний угол:

- Предельно низкие усилия резания.
- Для маломощных станков и при недостаточной жесткости закрепления.
- Стружколом и марки сплавов для решения любых задач.
- Внутренний подвод СОЖ через отверстие диаметром до 80 мм.

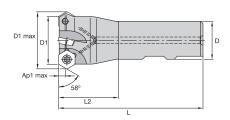
Торцевые фрезы

M640

Мах глубина резания: 4,8 мм

Угол в плане: 58° Число кромок на пластине: 6 Диаметр: 32 мм – 160 мм

Стр.: А36-А41

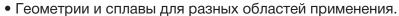

Геометрия пластины	7	Рекомендуемое применение
	LDAL	Прежде всего для цветных металлов. Шлифованная боковая и полированная передняя поверхности и острые режущие кромки. Мах глубина резания для данной геометрии 3,2 мм.
	LD	Рекомендуется для легких режимов резания и чистовой обработки. Низкие усилия резания за счет большого положительного переднего угла. Мах глубина резания для данной геометрии 3,0 мм.
	GD	Рекомендуется для обработки стали, нержавеющей стали и чугуна. Лучший выбор для операций общего назначения.
	GD3W	Пластина Wiper для чистовой обработки стали, нержавеющей стали и чугуна. Для достижения лучших результатов, используйте только в сочетании со шлифованными пластинами.

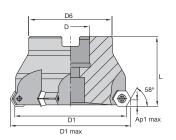
- Шесть режущих кромок.
- Большой положительный передний угол для маломощных станков или нежесткого закрепления.

• Геометрии и сплавы для разных областей применения.

■ M640

		1						1	частота		
номер заказа	номер по каталогу	D1	D1 max	D	L	L2	Ap1 max	Z	вращ	подвод СОЖ	ΚГ
2263164	12395400200	32	38	32	100	40	4,8	3	29500	Да	0,4
2263165	12395405200	32	38	32	100	40	4,8	4	29500	Да	0,4
2263166	12395400600	40	46	32	100	40	4,8	4	23500	Да	0,6
2263167	12395405600	40	46	32	100	40	4,8	5	23500	Да	0,6


■ M640 • Комплектующие


D1	винт пластины	Нм	ключ Torx
32	12148038800	4,0	12148000600
40	12148038800	4,0	12148000600

- Шесть режущих кромок.
- Большой положительный передний угол для маломощных станков или нежесткого закрепления.

■ M640


- 1010-10									max частота		
номер заказа	номер по каталогу	D1	D1 max	D	D6	L	Ap1 max	Z	вращ	подвод СОЖ	ΚГ
2263132	12395410200	50	56	22	47	40	4,8	4	19000	Да	0,4
2263153	12395415200	50	56	22	47	40	4,8	6	19000	Да	0,4
2263154	12395410400	63	69	22	50	40	4,8	5	15000	Да	0,6
2263155	12395415400	63	69	22	50	40	4,8	8	15000	Да	0,6
2263156	12395410600	80	86	27	60	50	4,8	6	11500	Да	1,1
2263157	12395415600	80	86	27	60	50	4,8	9	11500	Да	1,2
2263158	12395410800	100	106	32	78	50	4,8	7	9500	Нет	1,5
2263159	12395415800	100	106	32	78	50	4,8	10	9500	Нет	1,7
2263160	12395411000	125	131	40	89	63	4,8	8	7500	Нет	2,9
2263161	12395416000	125	131	40	89	63	4,8	12	7500	Нет	3,1
2263162	12395411200	160	166	40	90	63	4,8	10	5500	Нет	4,1
2263163	12395416200	160	166	40	90	63	4,8	15	5500	Нет	4,3

■ M640 • Комплектующие

D1	винт пластины	Нм	ключ Torx
50	12148038800	4,0	12148000600
63	12148038800	4,0	12148000600
80	12148038800	4,0	12148000600
100	12148038800	4,0	12148000600
125	12148038800	4,0	12148000600
160	12148038800	4,0	12148000600

■ HPGT-LDAL

• лучший выбор ○ альтернативный выбор

	FN6501	FN6502	MH.	N-MH.
Н				
S			0	
N	•	•	•	•
K			0	

номер по каталогу HPGT06T3DZFRLDAL **hm** 0,08 D Rε число режущих кромок 4,00 11,00 0,9

ПРИМЕЧАНИЕ: для данной геометрии Ар1 тах = 3,2 мм.

■ HPGT-LD

• лучший выбор

○ альтернативный выбор

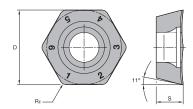
	N2510	N5515	N6510	N6520	N6525	N7525
Н	•					
S						
N						
K	•	•	•	•	0	
M					0	0

номер по каталогу HPGT06T3DZERLD s Rε D число режущих кромок hm 10,90 3,99 1,0 0,08

ПРИМЕЧАНИЕ: для данной геометрии Ар1 max = 3,0 мм.

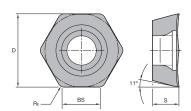
■ HPPT-GD

• лучший выбор ○ альтернативный выб


		_	_	_				_
h	m	TN5515	TN6510	TN6520	TN6525	TN6540	TN7525	TN7535
	Н							
бор	S					•		
	N							
	K	•	•	•	0	0		0
	M				0	•	0	0

						133	191	199	189	199		1	ž
номер по каталогу	число режущих кромок	D	S	Rε	hm	F	F	F	F	F	F	F	=
HPPT06T3DZENGD	6	10,97	3,97	1,0	0,10	•		•	•	•	•	•	

■ HPGT-GD



• лучший выбор

○ альтернативный выбор

••	-	551	N651	S	S	4	S	က
	TN2510	5	0	N6520	N6525	N6540	N7525	535
Н	•							
S						•		
N								
K	•	•	•	•	0	0		0
M					0	•	0	0
Р	0				•	•	•	•

номер по каталогу	число режущих кромок	D	S	Rε	hm	TN56
HPGT06T3DZENGD	6	10,98	3,97	1,0	0,10	

■ Зачистная пластина HPGT-GD

• лучший выбор

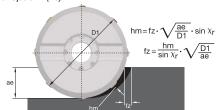
○ альтернативный выбор

1 ()			•	•	•
Re	:	TN2510	TN5515	TN6510	TN6525	TN7525
Н		•				
S						
N						
K		•	•	•	0	
M					0	0
Р		0			•	•

_	номер по каталогу	число режущих кромок	D	S	BS	Rε	TN2	9NL	9 L	Ĭ
	HPGT06T3DZERGD3W	3	11,14	4,00	2,88	1,0			•	

Торцевые фрезы • Серия М640

Режимы резания для фрез М640



			TN2510)		TN5515			TN6501			TN6502			TN6510			TN6520	
Геомо режущей	етрия і кромки								По	дача на	зуб fz (м	м)							
	\L							0,06	0,12	0,20	0,07	0,18	0,28						
L		0,10	0,21	0,28	0,12	0,26	0,35							0,13	0,29	0,39	0,14	0,30	0,40
G	iD	0,14	0,29	0,40	0,18	0,36	0,50							0,20	0,40	0,55	0,21	0,42	0,58
Груг матер	ппа								Скоро	сть реза	НИЯ VC (М	/мин)							
	1	390	300	250															
	2	260	200	180															
	3	220	170	140															
	4	230	180	140															
	5	190	140	120															
	6	250	190	150															
	7	190	140	130															
P	8	170	130	110															
	9	140	110	90															
	10	190	150	140															
	11	130	100	80															
	12	240	190	150															
	13.1	210	150	130															
	13.1	110	80	70															
	14.1	110	ου	70															
	14.1																		
M	14.2																		
	14.3																		
	15	690	500	340	530	390	280							480	350	250	380	280	200
	16	530	400	300	410	310	230							370	280	210	300	220	170
	17	610	400	300	460	310	230							420	280	210	340	220	170
K	18	390	290	220	300	220	170							270	200	150	220	160	120
		150				290								340	260				
	19 20	400	370 300	290 220	370 310	230	220 180							280	210	200 160	270 220	210 170	160 130
	21	400	300	220	310	230	100	2000	1050	650	1900	1000	620	200	210	100	220	170	130
	22							980	550	450	930	525	430						
	23							1800	950	600	1700	905	570						
	24							1050	650	500	1000	620	475						
	25							750	500	350	715	475	330						
N	26							—	_		—	_	_						
	27							_	_	_	_	_	_						
	28							_	_	_	_	_	_						
	29																		
	30							_	_	_	_	_	_						
	31																		
	32																		
	33																		
s	34																		
	35																		
	36																		
	37																		
	38.1	130	105	80															
	38.2	130	105	80															
Н	39.1	110	85	65															
	39.1	110	85	65															
	33.2										COOTBO			DOCT! ((vc)				

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ae, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,1	0,2	0,3	0,4
коэффициент fz	2	1,5	1,3	1
коэффициент vc	1,4	1,3	1,2	1,1

Режимы резания для фрез М640

	TN6525	5		TN6540			TN7525	i		TN7535			THM			THM-U			
							Г	Іодача на	зуб fz (м	им)									етрия й кромки
												0,15	0,35	0,50	0,15	0,35	0,50	-	AL
0,10	0,21	0,29	0,13	0,29	0,39	0,10	0,21	0,28	0,12	0,26	0,35								LD
0,12	0,26	0,37	0,17	0,35	0,50	0,12	0,26	0,36	0,15	0,32	0,45							(GD
																		Fnv	ппа
								ость реза										мате	риала
350	270	230	290	220	190	410	320	280	360	280	240							1	
240	180	160	200	150	130	290	220	195.5	250	190	170							2	
200	150	130	170	130	110	240	180	160	210	160	140							3	
210	160	130	170	130	110	250	190	160	215	170	140							4	
170	130	110	140	100	90	210	150	130	180	130	110							5	
230	170	140	190	140	120	280	210	170	240	180	150							6	
170	130	120	140	110	100	210	160	140	180	140	120							7	Р
150	120	100	130	100	80	180	140	120	160	120	100							8	
130	100	80	110	80	60	160	120	90	140	100	80							9	
170	140	130	140	120	100	210	170	149.5	180	150	130							10	
120	90	70	100	70	60	140	100	80	120	90	70							11	
220	170	140	180	144	120	270	200	170	230	180	150							12	
190	140	120	160	120	100	230	170	140	200	150	120							13.1	
100	70 120	60 90	80 160	100	50 70	120 230	90	70 100	100	80 120	90							13.2	
190 150	90	70	130	80	60	180	110	80	160	95	70							14.1	
120	70	50	100	60	40	140	80	60	120	70	50							14.2	M
100	60	40	80	50	40	120	70	50	100	60	40							14.3	
			_			120	70	30	100		-	_						15	
_	_	_	_	_	_				_	_	_	_	_	_				16	
240	180	160	200	150	130				250	190	165	230	170	150				17	
200	150	130	170	130	110				210	160	140	190	140	130				18	K
_	_	_	_	_	_				_	_	_	_	_	_				19	
_	_	_	_	_	_				_	_	_	_	_	_				20	
												1000	750	600	1800	950	590	21	
												500	360	300	880	500	405	22	
												1000	750	600	1600	860	540	23	
												800	600	500	950	590	450	24	
												500	350	250	680	450	315	25	N
												_	_	_	670	500	310	26	- N
												_	_	_	700	610	500	27	
												_	_	_	750	660	540	28	
												_	_	_	750	650	530	29	
												_	_	_	700	655	500	30	
			60	50	45							40	25	_				31	
			50	40	35							30	20	_				32	
			35	25	20							25	15	_				33	
			30	20	15							20	15	_				34	S
			30	20	15							20	15	_				35	
			80	50	40							80	40	_				36	
			70	45	35							60	30					37	
																		38.1	
																		38.2	Н
																		39.1	
																		39.2	

Идеальная конструкция торцевой фрезы для тяжелых режимов резания • **Серия М660**

Серия фрез М660 сочетает в себе прочную конструкцию корпуса и низкие показатели осевого и радиального биения, а также максимально высокую производительность при тяжелых режимах обработки стали и чугуна.

- Три уникальных стружколома и увеличенный объем стружечных канавок обеспечивает превосходный контроль над стружкообразованием.
- Простое и надежное крепление гарантирует точность при замене режущих пластин.
- Пластины большой толщины обеспечивают стабильный и большой удельный съем металла.

M660

Прочная конструкция корпуса фрезы обеспечивает большой удельный съем металла (MRR).

Большие стружечные канавки обеспечивают великолепное удаление стружки.

Простое и надежное крепление:

С помощью одного винта обеспечивается быстрая и точная смена режущей пластины.

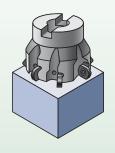
Малое осевое и радиальное биение.

Прочная конструкция корпуса фрезы.

Три уникальных стружколома (-20, -21, -31) обеспечивают возможность обработки стали и чугуна при тяжелых режимах.

Положительный передний угол:

- Плавное резание.
- Снижение требуемой мощности, уменьшение сколов на деталях из чугуна и заусенцев на деталях из стали.
- Возможность работы с большой подачей.


Зачистная кромка пластины Wiper:

Хорошее качество поверхности при тяжелых режимах черновой обработки.

Пластины большой толщины обеспечивают надежность и большой удельный съем металла.

Торцевые фрезы

M660 SN1205...

Мах глубина резания: 6,4 мм

Угол в плане: 45° Число кромок на пластине: 4 Диаметр: 20 мм – 160 мм

Стр.: А44-А49

Геометрия пластины	Рекомендуемое применение
20	Рекомендуется для обработки стали, нержавеющей стали и чугуна на легких режимах. Небольшие усилия резания — лучший выбор для нестабильных условий резания и маломощных станков.
21	Рекомендуется для обработки чугуна.
31	Рекомендуется для обработки стали и нержавеющей стали на тяжелых режимах. Лучший выбор для операций общего фрезерования.
11	Для чистовой обработки стали рекомендуются пластины с зачистной кромкой. Стружколом в зоне зачистной кромки. Используйте зачистную пластину в комбинации с пластинами со шлифованной боковой поверхностью.
12	Для чистовой обработки чугуна рекомендуется пластина с зачистной кромкой. Отсутствие стружколома в зоне зачистной кромки. Рекомендуется для обработки

M660 SN1505...

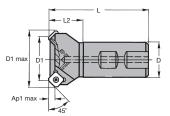
Мах глубина резания: 8,0 мм

Угол в плане: 45° Число кромок на пластине: 4 Диаметр: 63 мм – 160 мм

Стр.: А50-А52

Геометрия пластины		Рекомендуемое применение
	21	Рекомендуется для обработки чугуна на тяжелых режимах.
	31	Рекомендуется для обработки стали и нержавеющей стали на тяжелых режимах. Лучший выбор для операций общего фрезерования.

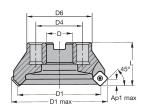
чугуна на тяжелых режимах.


Корпуса фрез M660 • SN1205..

- Четыре режущих кромки.
- Прочная конструкция корпуса фрезы.
- Превосходное удаление стружки.

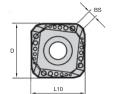
■ M660

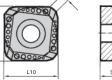
									тах частота		
номер заказа	номер по каталогу	D1	D1 max	D	L	L2	Ap1 max	Z	вращ	подвод СОЖ	ΚГ
2002367	12396202200	20	34	25	86	30	6,4	2	17000	Да	0,3
2002370	12396202600	25	39	25	91	35	6,4	2	15000	Да	0,4
2003500	12396203200	32	46	32	100	40	6,4	3	13500	Да	0,7
2003522	12396203600	40	54	32	100	40	6,4	4	12000	Да	0,8


■ M660 • Комплектующие

D1	винт пластины	Нм	ключ Torx
20	12148007200	3,5	12148007500
25	12148007200	3,5	12148007500
32	12148007200	3,5	12148007500
40	12148007200	3,5	12148007500

- Четыре режущих кромки.
- Прочная конструкция корпуса фрезы.
- Превосходное удаление стружки.


■ M660


номер заказа	номер по каталогу	D1	D1 max	D	D4	D6	L	Ap1 max	z	тах частота вращ	подвод СОЖ	ΚΓ
2003533	12396206000	40	54	22	_	50	45	6,4	3	14000	Да	0,5
2003541	12396203800	50	64	22	_	50	40	6,4	4	12500	Да	0,5
2003558	12396204200	63	77	22	_	50	40	6,4	5	11000	Да	0,6
2003575	12396204600	80	94	27	_	60	50	6,4	6	9900	Да	1,2
2003582	12396205000	100	113	32	_	78	50	6,4	7	8900	Нет	1,6
2003679	12396205400	125	138	40	_	89	63	6,4	8	7900	Нет	2,8
2003780	12396205800	160	173	40	66,7	90	63	6,4	10	7000	Нет	4,1

■ M660 • Комплектующие

D1	винт пластины	Нм	ключ Torx
40	12148007200	3,5	12148007500
50	12148007200	3,5	12148007500
63	12148007200	3,5	12148007500
80	12148007200	3,5	12148007500
100	12148007200	3,5	12148007500
125	12148007200	3,5	12148007500
160	12148007200	3,5	12148007500

■ SNKT-20

• лучший выбор ○ альтернативный выбор

N S	K • • O O	
	K • • o o	

							N25 N55 N75 N75 N75 N75 N75 N75 N75 N75 N7
номер по каталогу	число режущих кромок	D	L10	S	BS	hm	
SNKT1205AZER20	4	12,70	12,70	5,51	1,54	0,10	

■ SNKT-21

• лучший выбор

	•		
) a	альтернатив	ный	выбор

L		FN2510	N5515	N7525	TI25	LHM
	Н	•				
	S					0
	N					•
	K	•	•			0
	М			0	0	

номер по каталогу	число режущих кромок	D	L10	s	BS	hm	TNS THE
SNKT1205AZR21	4	12,70	12,70	5,56	1,54	0,15	

■ SNMT-31

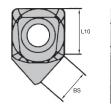
• лучший выбор ○ альтернативный выбор

	N2510	N5515	N6525	N6540	N7525	N7535	LM
Н	•						
S				•			
N							
K	0	•	0	0		0	0
IVI			0	•	0	0	0

							125 165 175 175
номер по каталогу	число режущих кромок	D	L10	S	BS	hm	
SNMT1205AZR31	4	12,70	12,70	5,56	1,54	0,16	

■ SNKT-31

• лучший выбор ○ альтернативный выбор


^	10							
h	ım	TN2510	TN5515	TN6525	TN6540	TN7525	2827NT	WLL
	Н	•						
	S				•			
	N							
	K	•	•	0	0		0	0
	M			0	•	0	0	0

P 0 0 0 0 0 0

							21	15515	52	2	N	17535)	
номер по каталогу	число режущих кромок	D	L10	S	BS	hm	F	F	F	F	F	F	ŀF	
SNKT1205AZR31	4	12,70	12,70	5,56	1,54	0,16					•	•	•	l

■ Зачистная пластина XNKT-12

• лучший выбор

○ альтернативный выбор

		N2510	N5505	N5515	N7525	F125
İ	Н	•				
	S					
	N S					
	K	•	•	•		
	P M K				0	0
	Р	0			•	•

			_		NZ	Š	<u>1</u> 2	Ë	12
номер по каталогу	число режущих кромок	L10	S	BS	F	F	\vdash	F	ι –
XNKT1205AZTR12	1	12,70	5,15	8,00		•	•	•	•

■ Зачистная пластина XNKT-11

• лучший выбор

○ альтернативный выбор

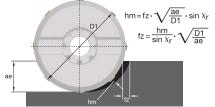
Ī	B :	00						•
	В	s	TN2510	TN5505	TN5515	TN7525	TT125	THM
		Н	•					
)		S						0
		N						•
		K	•	•	•			0
		М				0	0	

P 0 • •

						120	120	刿	걸	₹
номер по каталогу	число режущих кромок	L10	S	BS	ΙF	F	F	F	\vdash	F
XNKT1205AZER11	1	12,70	5,15	8,00		•	•			•

Торцевые фрезы • Серия М660

Режимы резания для фрез M660 • SN1205..



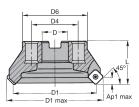
			TN2510			TN5515			TN6520			TN6525			TN6540	
Геомо режущей	етрия и кромки							Подач	іа на зуб	fz (MM)						
2		0,08	0,13	0,16	0,10	0,16	0,20	0,12	0,18	0,23	0,08	0,12	0,15	0,11	0,18	0,22
2		0,10 0,14	0,21 0,21	0,28 0,40	0,12 0,18	0,26 0,26	0,35 0,50	0,14 0,21	0,30 0,30	0,40 0,58	0,11	0,24	0,34	0,17	0,35	0,50
3	51	0,14	0,21	0,40	0,18	0,20	0,50	0,21	0,30	0,58	0,11	0,24	0,34	0,17	0,35	0,50
Груг матер					I			Скорость	резания	vc (м/мин))					
	1	390	300	250							350	270	230	290	220	190
	2	260	200	180							240	180	160	200	150	130
	3	230	170	140							200	150	130	170	130	110
	4	230	180	140							210	160	130	170	130	110
	5	190	140	120							170	130	110	140	100	90
	6	250	190	150							230	170	140	190	140	120
	7	190	140	130							170	130	120	140	110	100
P	8	170	130	110							150	120	100	130	100	80
	9	140	110	90							130	100	80	110	80	60
	10	190	150	140							170	140	130	140	120	100
	11	130	100	80							120	90	70	100	70	60
	12	240	190	150							220	170	140	180	144	120
	13.1	210	150	130							190	140	120	160	120	100
	13.2	110	80	70							96	70	60	80	60	50
	14.1										190	120	90	160	100	70
	14.2										150	90	70	130	80	60
M	14.3										120	70	50	100	60	40
	14.4										100	60	40	80	50	40
	15	690	500	340	530	390	280	380	280	200	_	_	_	_	_	_
	16	530	400	300	410	310	230	300	220	170	_	_	_	_	_	_
v	17	610	400	300	460	310	230	340	220	170	240	180	160	200	150	130
K	18	390	290	220	300	220	170	220	160	120	200	150	130	170	130	110
	19	445	370	290	370	290	220	270	210	160	_	_	_	_	_	_
	20	400	300	220	310	230	180	220	170	130	-	_	_	_	_	
	21															
	22															
	23															
	24															
N	25															
	26															
	27															
	28															
	29															
	30															
	31													60	50	45
	32													50	40	35
	33													35	25	20
S	34													30	20	15
	35													30	20	15
	36													80	50	40
	37													70	45	35
	38.1	130	105	80												
н	38.2	130	105	80												
	39.1	110	85	65												
	39.2	110	85	65												

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ae, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,1	0,2	0,3	0,4
коэффициент fz	2	1,5	1,3	1
коэффициент vc	1,4	1,3	1,2	1,1

Режимы резания для фрез M660 • SN1205...


	TN7525			TN7535			TTI25			THM			TTM			
						Пода	ча на зуб	fz (MM)							Геом	етрия й кромки
0.08	0,13	0,16	0,10	0,16	0,20	0,10	0,16	0,20							-	20
0,10	0,21	0,28	5,10	-,	-,	0,12	0,24	0,32	0,12	0,26	0,35					21
0,12	0,26	0,36	0,15	0,32	0,45	0,18	0,42	0,60	0,15	0,32	0,45	0,15	0,32	0,45		31
															<u> </u>	
						Скорость	резания	vc (м/миі	н)							ппа риала
410	320	280	360	280	240	450	350	300				220	200	180	1	
290	220	190	250	190	170	380	280	240				160	130	120	2	
240	180	160	210	160	140	310	240	200				130	100	90	3	
250	190	160	220	170	140	350	260	220				140	110	100	4	
210	150	130	180	130	110	_	_	_				110	90	80	5	
280	210	170	240	180	150	380	280	220				160	130	120	6	
210	160	140	180	140	120	310	220	190				120	100	90	7	P
180	140	120	160	120	100	250	180	150				100	80	70	8	
160	120	90	140	100	80	_	_	_				90	60	50	9	
210	170	150	180	150	130	360	270	220				140	110	100	10	
140	100	80	120	90	70	_	_	_				90	60	50	11	
270	200	170	230	180	150	350	260	220				150	120	110	12	
230	170	140	200	150	120	300	230	200				130	100	90	13.1	
120	90	70	100	75	60	150	120	100				70	50	40	13.2	
230	140	100	200	120	90	300	240	180				120	80	60	14.1	
180	110	80	160	95	70	250	220	160				100	70	50	14.2	М
140	80	60	120	70	60	190	160	110				80	60	40	14.3	
120	70	50	100	60	40	150	120	90				60	50	40	14.4	
			_	_	_				_	_	_	_	_	_	15	
				_					_	_			_	_	16	
			250	190	170				230	170	150	180	140	120	17	К
			210	160	140				190	140	130	150	120	100	18	
			_	_	_				_	_	_	_	_	_	19 20	
				_	<u> </u>				1000	750	600	_		_	21	
									500	360	300				22	
									1000	750	600				23	
									800	600	500				24	
									500	350	250				25	
									_	_					26	N
									_	_	_				27	
									_	_	_				28	
									_	_	_				29	
									_	_	_				30	
									40	25	_				31	
									30	20	_				32	
									25	15	_				33	
									20	15	_				34	S
									20	15	_				35	
									80	40	_				36	
									60	30	_				37	
															38.1	
															38.2	н
															39.1	
															39.2	

Корпуса фрез M660 • SN1505...

- Четыре режущих кромки.
- Прочная конструкция корпуса фрезы.
- Пластины большой толщины для обеспечения надежности.

■ M660

- 111000										тах частота		
номер заказа	номер по каталогу	D1	D1 max	D	D4	D6	L	Ap1 max	Z	вращ	подвод СОЖ	ΚГ
2003559	12396214200	63	80	22	_	50	40	8,0	5	11000	Да	0,6
2003576	12396214600	80	97	27	_	60	50	8,0	6	9900	Да	1,2
2003593	12396215000	100	117	32	_	78	50	8,0	7	8900	Нет	1,6
2003680	12396215400	125	142	40	_	89	63	8,0	8	7900	Нет	2,8
2003781	12396215800	160	177	40	66,7	90	63	8,0	10	7000	Нет	4,1

■ M660 • Комплектующие

D1	винт пластины	Нм	ключ Torx
63	12148007200	3,5	12148007500
80	12148007200	3,5	12148007500
100	12148007200	3,5	12148007500
125	12148007200	3,5	12148007500
160	12148007200	3,5	12148007500

• • •

K

Ł	4	Щ.
Ь	-\	Ш
V	//	3
K	//	4
	S	
	_	-

лучший вь	ыбор		N		
○ альтернат	ивный	выбор	S		
,		•	Н		
140	0	DC.		N5515	

номер по каталогу	число режущих кромок	_ D	L10	S	BS	hm	TNS
SNKT1505AZR21	4	15,88	15,88	5,56	2,00	0,15	

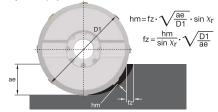
■ SNMT-31

• лучший выбор ○ альтернативный выбор TN5515 TN6525 TN7525 TN7535 номер по каталогу SNMT1505AZR31 L10 BS число режущих кромок s hm 15,88 15,88 5,56 2,00 0,16 4

■ SNKT-31 P M K N S • лучший выбор ○ альтернативный выбор Н номер по каталогу SNKT1505AZR31 число режущих кромок D L10 s BS hm 15,88 5,56 15,88 2,00 0,16

Торцевые фрезы • Серия М660

Режимы резания для фрез M660 • SN1505..



			TN5515			TN6525			TN7525			TN7535	
Геом режуще	етрия й кромки						Подача на	зуб fz (мм)					
	21	0,12	0,26	0,35									
	31	0,18	0,26	0,50	0,11	0,24	0,34	0,12	0,26	0,36	0,15	0,32	0,45
Гру	ппа												
матер	оиала							ния vc (м/м					
	1				350	270	230	410	320	280	360	280	240
	2				240	180	160	290	220	190	250	190	170
	3				200	150	130	240	180	160	210	160	140
	4				210	160	130	250	190	160	215	170	140
	5				170	130	110	210	150	130	180	130	110
	6				230	170	140	280	210	170	240	180	150
P	7				170	130	120	210	160	140	180	140	120
	8				150	120	100	180	140	120	160	120	100
	9				130	100	80	160	120	90	140	100	80
	10				170	140	130	210	170	150	180	150	130
	11				120	90	70	140	100	80	120	90	70
	12				220	170	140	270	200	170	230	180	150
	13.1				190	140	120	230	170	140	200	150	120
	13.2				96	70	60	120	90	70	100	80	60
	14.1				190	120	90	230	140	100	200	120	90
М	14.2				150	90	70	180	110	80	160	100	70
	14.3				120	70	50	140	80	60	120	70	50
	14.4				100	60	40	120	70	50	100	60	40
	15	530	390	280	_	_	_				_	_	_
	16	410	310	230	_	_					_	_	
К	17	460	310	230	240	180	160				250	190	170
	18	300	220	170	200	150	130				210	160	140
	19	370	290	220	_	_	_				_	_	_
	20	310	230	180	_						_		
	21												
	22												
	23												
	24												
N	25												
	26												
	27												
	28												
	29 30												
	31												
	32												
	33												
S	34												
3	35												
	36 37												
	38.1												
	38.1												
Н	39.1												
	39.1												
	JJ.Z												

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ае, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,1	0,2	0,3	0,4
коэффициент fz	2	1,5	1,3	1
коэффициент vc	1,4	1,3	1,2	1,1

МОЩНОСТЬ СПЕЦИАЛЬНОГО ИНСТРУМЕНТА

- Возможность работы с большими подачами благодаря мелкому шагу зубьев.
- Отвод тепла от режущих кромок во избежание их преждевременного износа.
- Пластины со вставками из поликристаллического алмаза обеспечивают увеличенный удельный съем металла.
- Жесткая система крепления пластины посредством клина исключает ее смещение в гнезде корпуса.
- Увеличенный срок службы инструмента.

Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт **www.widia.com**.

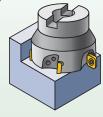
Фрезы со сменными режущими пластинами • Фрезы для обработки уступов с углом 90°

ерия М6800	
M6800S	
M6800M	
M6800LX	
ерия М690	
M690 SD1204	
M690 SD1506	
ерия М680	A84–A9
M680+	
M680	A92-A9

WWW.WIDIA.COM A55

Обновление диаметров фрез со сменными режущими пластинами • **Серия М6800**

Большой положительный передний угол и уникальная геометрия фрез серии M6800 позволяют Вам получать уступы с абсолютно точным углом 90°. Отличительными особенностями фрез являются плавность работы и низкие усилия резания.



- Небольшие усилия и плавное резание с большим передним углом.
- Улучшенная геометрия обеспечивает превосходное качество обработанной поверхности.
- Высокая точность гнезд под пластины, обеспечивающая получение уступов с абсолютно точным углом 90°.

Фрезы для обработки уступов с углом 90°

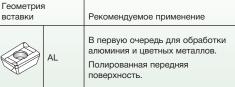
M6800S

Р	
M	
K	
	5.0
S	
	A Day

MIOOOOG	Геометрия		
Мах глубина резания: М	вставки		Рекомендуемое применение
Угол в плане: 90° Число кромок на пластине: 2 Диаметр: 12 мм – 63 мм Стр.: A58–A61		MS	Сниженные усилия резания для легких режимов обработки. Используйте для оптимизации и снижения усилий резания.
		ML	Универсальная геометрия для обработки любых материалов на различных режимах резания. Лучший выбор для операций общего фрезерования.

M6800M

Мах глубина резания: 10,0 MM

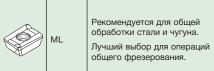

Угол в плане: 90° Число кромок на пластине: 2 Диаметр: 16 мм – 160 мм

Стр.: А62-А66

Рекомендуется для обработки нержавеющей и низкоуглеродистой стали.

Сниженное на 20% усилие резания по сравнению с геометрией ML.

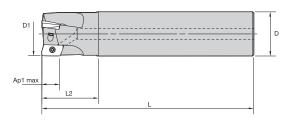
M6800LX


Мах глубина резания: 15,7 MM

Угол в плане: 90° Число кромок на пластине: 2 . Диаметр: 25 мм - 160 мм

Стр.: А68-А72

MS


Корпуса фрез M6800S

- Уступы с углом 90°.
- Превосходное качество обработанной поверхности.

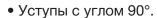
• Возможность наклонного врезания.

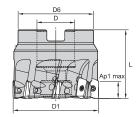
■ M6800S

номер заказа	номер по каталогу	D1	D	L	L2	Ap1 max	z	тах угол врезания	max частота вращ.	подвод СОЖ	КГ
3577805	12396440600	12	12	80	18	6,0	2	2.0°	46200	Да	0,1
3577806	12396440800	14	12	80	18	6,0	2	2.0°	44800	Да	0,1
3577807	12396441000	16	16	100	20	6,0	3	3.0°	43200	Да	0,2
3577808	12396441200	16	16	100	20	6,0	4	3.0°	43200	Да	0,2
3577809	12396441400	17	16	100	20	6,0	3	1.5°	42400	Да	0,2
3577810	12396441600	18	16	100	21	6,0	3	1.5°	41600	Да	0,2
3577811	12396441800	20	16	110	20	6,0	4	2.0°	40200	Да	0,2
3577812	12396442000	20	16	110	20	6,0	5	2.0°	40200	Да	0,2
3577813	12396442200	20	20	110	20	6,0	4	2.0°	40200	Да	0,2
3577814	12396442400	20	20	110	20	6,0	5	2.0°	40200	Да	0,3
3577815	12396442600	21	20	110	20	6,0	4	1.8°	39500	Да	0,2
3577816	12396442800	25	20	120	25	6,0	5	1.3°	37000	Да	0,2
3577817	12396443000	25	20	120	25	6,0	7	1.3°	37000	Да	0,3
3577818	12396443200	25	25	120	25	6,0	5	1.3°	37000	Да	0,5
3577819	12396443400	25	25	120	25	6,0	7	1.3°	37000	Да	0,5
3577820	12396443600	26	25	120	25	6,0	5	1.2°	36500	Да	0,5
3577821	12396443800	32	32	130	30	6,0	6	.8°	33600	Да	0,5
3577822	12396444000	32	32	130	30	6,0	8	.8°	33600	Да	0,8
3577823	12396444200	33	32	130	30	6,0	6	.5°	33100	Да	0,5

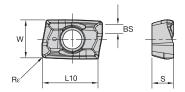
■ M6800S • Комплектующие

D1	винт пластины	Нм	ключ Тогх
12	12146120600	0,5	12148005900
14	12146120600	0,5	12148005900
16	12146120700	0,5	12148005900
17	12146120700	0,5	12148005900
18	12146120700	0,5	12148005900
20	12146120700	0,5	12148005900
21	12146120700	0,5	12148005900
25	12146120700	0,5	12148005900
26	12146120700	0,5	12148005900
32	12146120700	0,5	12148005900
33	12146120700	0,5	12148005900




Корпуса фрез M6800S

• Превосходное качество обработанной поверхности.


■ M6800S

номер заказа	номер по каталогу	D1	D	D6	L	Ap1 max	z	тах угол врезания	тах частота вращ.	подвод СОЖ	КГ
3577782	12396430400	40	22	38	40	6,0	10	_	30500	Да	0,3
3577803	12396431000	50	22	40	40	6,0	12	_	27700	Да	0,4
3577804	12396431600	63	22	40	40	6,0	14	_	24900	Да	0,6

■ M6800S • Комплектующие

D1	винт пластины	Нм	ключ Torx
40	12146120700	4,0	12148005900
50	12146120700	4,0	12148005900
63	12146120700	4.0	12148005900

■ BDMT-MS

• лучший выбор

 \bigcirc альтернативный выбор

6	n	ł	6	,	(1)
	TN6405		0		•		
	TN6425		•			•	0
r	0070141	Γ			(•

номер по каталогу	Число режущих кромок	L10	W	s	BS	Rε	hm	TN	Ĭ	Ž
BDMT070302ERMS	2	7,00	4,54	2,60	1,28	0,2	0,06			
BDMT070304ERMS	2	7,00	4,55	2,60	1,09	0,4	0,06			

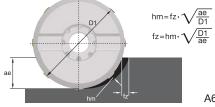
■ BDMT-ML

• лучший выбор

○ альтернативный выбор

N S H)5 	•	081
M K	•	•	0
P		0	•

номер по каталогу	Число режущих кромок	L10	w	s	BS	Rε	hm	JAN T	1		=
BDMT070302ERML	2	7,00	4,54	2,60	1,28	0,2	0,06			1	
BDMT070304ERML	2	7,00	4,55	2,60	1,09	0,4	0,08	•	•	4	•
BDMT070308ERML	2	7,00	4,57	2,60	0,71	0,8	0,08	•		•	•

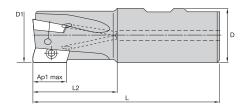

Режимы резания для фрез M6800S

			TN6405			TN6425			TN6430	
Геом	етрия й кромки				Под	цача на зуб fz (і	мм)			
	VIS				0,06	0,08	0,10	0,06	0,08	0,12
	ML	0,07	0,10	0,15	0,07	0,10	0,15	0,08	0,12	0,16
- Fns										
т ру мате	лпа риала					ть резания vc (
	1				220	180	140	280	230	180
	2				200	160	125	250	205	160
	3				185	150	120	235	195	155
	4				165	135	105	210	170	135
	5				120	100	75	155	125	100
	6				155	125	100	200	160	125
P	7				100	85	65	130	105	85
	8				135	110	85	170	140	110
	9				100	80	65	125	100	80
	10				85	70	55	110	90	70
	11				55	45	35	70	55	45
	12				160	130	100	200	165	130
	13.1				125	100	80	160	130	105
	13.2				90	75	60	115	100	80
	14.1				200	140	90			
M	14.2				155	110	80			
	14.3				110	85	55			
	14.4	050		400	100	70	45	400		100
	15	250	180	120				180	140	100
	16	190	140	100				135	110	85
K	17	210	150	100				150	115	85
	18	160	90	50				115	70	40
	19	210	130	80				150	100	65
	20	170	100	60				125	80	50
	21									
	22									
	23									
	24									
N	25									
	26									
	27									
	28									
	29									
	30 31	45	35		40	30				
				_			_			
	32	35	30 20	_	30	25 20	_			
S	33	30		_	25		_			
3	34	25	20	_	20	20	_			
	35	25	20	_	20	20	_			
	36	70	60	_	65	55 55				
	37 38.1	70	60		65	55				
Н	38.2									
	39.1 39.2									
			(f-)				тствующую ско			

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ае, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,02	0,05	0,1	0,2	0,4
коэффициент fz	3,5	3	2	1,5	1
коэффициент vc	1,6	1,5	1,4	1,3	1,1



- Уступы с углом 90°.
- Превосходное качество обработанной поверхности.

• Возможность наклонного врезания.

■ M6800M

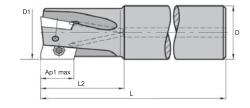
Фрезы со сменными режущими пластинами ∙ Фрезы для обработки уступов с углом 90˚

номер заказа	номер по каталогу	D1	D	L	L2	Ap1 max	z	тах угол врезания	тах частота вращ.	подвод СОЖ	КГ
3577831	12396455800	16	12	68	24	10,0	2	3.0°	43750	Нет	0,1
3577832	12396456000	16	16	68	25	10,0	2	3.0°	43750	Да	0,1
3577833	12396456200	18	16	68	24	10,0	2	3.0°	43000	Да	0,2
3577834	12396456600	20	16	68	25	10,0	3	5.0°	41000	Да	0,2
3577835	12396456800	20	20	81	31	10,0	3	5.0°	41000	Да	0,3
3577836	12396457000	22	20	81	27	10,0	3	2.5°	39600	Да	0,2
3577837	12396457400	25	20	81	30	10,0	3	2.5°	37500	Да	0,2
3577838	12396457600	25	25	88	33	10,0	3	2.5°	37500	Да	0,3
3577839	12396457800	28	25	88	30	10,0	3	1.5°	35800	Да	0,6
3577840	12396458200	30	25	88	33	10,0	4	1.5°	34800	Да	0,4
3577841	12396458600	32	25	88	33	10,0	4	1.5°	33900	Да	0,4
3577842	12396458800	32	32	100	41	10,0	4	1.5°	33900	Да	0,6
3577843	12396459000	40	32	110	51	10,0	5	.7°	30000	Да	0,7

■ M6800M • Комплектующие

D1	винт пластины	Нм	ключ Тогх
16	12146120900	1,2	12148086600
18	12146120900	1,2	12148086600
20	12146120900	1,2	12148086600
22	12146120900	1,2	12148086600
25	12146120900	1,2	12148086600
28	12146120900	1,2	12148086600
30	12146120900	1,2	12148086600
32	12146120900	1,2	12148086600
40	12146120900	1,2	12148086600

ПРИМЕЧАНИЕ: для стандартных фрез допускается использование пластин с радиусом при вершине до 2 мм, без модификации корпуса. Информация о модификации корпусов фрез на стр. E15.



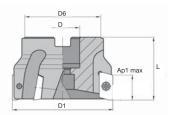
- Уступы с углом 90°.
- Превосходное качество обработанной поверхности.

• Возможность наклонного врезания.

■ M6800M

номер заказа	номер по каталогу	D1	D	L	L2	Ap1 max	z	тах угол врезания	тах частота вращ.	подвод СОЖ	ΚΓ
3577852	12396461600	16	12	100	24	10,0	2	3.0°	43750	Нет	0,2
3577853	12396461800	16	16	100	31	10,0	2	3.0°	43750	Да	0,3
3577854	12396462000	18	16	100	24	10,0	2	3.0°	43000	Да	0,3
3577855	12396462200	19	16	100	27	10,0	3	3.0°	42000	Да	0,3
3577856	12396462400	20	16	110	27	10,0	3	5.0°	41000	Да	0,3
3577858	12396462800	20	20	110	31	10,0	3	5.0°	41000	Да	0,4
3577859	12396463000	20	20	140	61	10,0	2	5.0°	41000	Да	0,4
3577857	12396462600	20	18	170	31	10,0	2	5.0°	41000	Да	0,4
3577860	12396463200	20	20	170	61	10,0	2	5.0°	41000	Да	0,4
3577861	12396463400	22	20	110	27	10,0	3	2.5°	39600	Да	0,4
3577862	12396463600	22	20	170	30	10,0	2	2.5°	39600	Да	0,3
3577863	12396463800	25	20	120	30	10,0	3	2.5°	37500	Да	0,4
3577865	12396464200	25	25	120	33	10,0	3	2.5°	37500	Да	0,5
3577866	12396464400	25	25	160	61	10,0	2	2.5°	37500	Да	0,7
3577864	12396464000	25	23	210	33	10,0	2	2.5°	37500	Да	0,7
3577867	12396464600	25	25	210	61	10,0	2	2.5°	37500	Да	0,7
3577868	12396464800	28	25	120	30	10,0	3	1.5°	35800	Да	0,6
3577869	12396465000	28	25	210	33	10,0	2	1.5°	35800	Да	0,7
3577870	12396465200	30	25	130	33	10,0	4	1.5°	34800	Да	0,6
3577871	12396465400	32	25	130	33	10,0	4	1.5°	33900	Да	0,6
3577873	12396465800	32	32	130	41	10,0	4	1.5°	33900	Да	0,9
3577874	12396466000	32	32	200	66	10,0	2	1.5°	33900	Да	1,3
3577872	12396465600	32	30	250	41	10,0	2	1.5°	33900	Да	1,4
3577875	12396466200	32	32	250	66	10,0	2	1.5°	33900	Да	1,8
3577876	12396466400	40	32	150	51	10,0	5	.7°	30000	No	1,1
3577877	12396466600	40	32	240	66	10,0	2	.7°	30000	Да	1,8
3577878	12396466800	50	32	150	51	10,0	5	_	22500	Да	1,2

■ M6800M • Комплектующие


D1	винт пластины	Нм	ключ Torx
16	12146120900	1,2	12148086600
18	12146120900	1,2	12148086600
19	12146120900	1,2	12148086600
20	12146120900	1,2	12148086600
22	12146120900	1,2	12148086600
25	12146120900	1,2	12148086600
28	12146120900	1,2	12148086600
30	12146120900	1,2	12148086600
32	12146120900	1,2	12148086600
40	12146120900	1,2	12148086600
50	12146120900	1,2	12148086600

Корпуса фрез М6800М

- Уступы с углом 90°.
- Превосходное качество обработанной поверхности.

■ M6800M

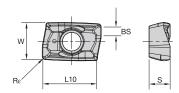
номер заказа	номер по каталогу	D1	D	D6	L	Ap1 max	z	тах угол врезания	тах частота вращ.	подвод СОЖ	кг
3577824	12396450400	40	16	34	40	10,0	5	_	30000	Да	0,3
3577825	12396451000	50	22	40	40	10,0	5	_	22500	Да	0,4
3577826	12396451600	63	22	40	40	10,0	6	_	20500	Да	0,5
3868761	12396452200	80	27	53	50	10,0	7	_	18500	Да	1,1
3868762	12396452800	100	32	65	55	10,0	9	_	17000	Да	1,8
3868873	12396453200	125	40	80	63	10,0	11	_	15000	Да	3,0

■ M6800M • Комплектующие

D1	винт пластины	Нм	ключ Torx
40	12146120900	1,2	12148086600
50	12146120900	1,2	12148086600
63	12146120900	1,2	12148086600
80	12146120900	1,2	12148086600
100	12146120900	1,2	12148086600
125	12146120900	1,2	12148086600

ПРИМЕЧАНИЕ: для стандартных фрез допускается использование пластин с радиусом при вершине до 2 мм, без модификации корпуса. Информация о модификации корпусов фрез на стр. E15.

■ M6800M JIS


								max	max		
номер заказа	номер по каталогу	D1	D	D6	L	Ap1 max	Z	угол врезания	частота вращ.	подвод СОЖ	ΚГ
3577355	16396451600	63	25,40	50	50	10,0	6	_	20500	Да	0,8
3577356	16396452200	80	25,40	53	50	10,0	7	_	18500	Да	1,1
3577357	16396452800	100	31,75	65	63	10,0	9	_	17000	Да	2,0
3577358	16396453200	125	38,10	80	63	10,0	11	_	15000	Да	3,4
3577359	16396453600	160	50,80	100	63	10,0	14	_	13900	Да	5,0

■ M6800M • Комплектующие

D1	винт пластины	Нм	ключ Torx
63	12146120900	1,2	12148086600
80	12146120900	1,2	12148086600
100	12146120900	1,2	12148086600
125	12146120900	1,2	12148086600
160	12146120900	1,2	12148086600

■ BDGT-AL

• лучший выбор

○ альтернативный выбор

	K		
	N	•	
	S		
	Н		
		HR-S	
h	m	Ė	
Λ	nα	•	

номер по каталогу	число режущих кромок	L10	W	S	BS	Rε	hm	픋
BDGT11T302FRAL	2	11,00	6,64	3,88	2,00	0,2	0,08	
BDGT11T304FRAL	2	11,00	6,67	3,88	1,80	0,4	0,08	
BDGT11T308FRAL	2	11,00	6,68	3,88	1,40	0,8	0,08	•

■ BDMT-MS

• лучший выбор

○ альтернативный выбор

	M	•	
	K		0
	N		
О	S	•	
	Н		
ŀ	ım	TN6425	TN6430
0	,08	•	

P 0 •

								9	9
номер по каталогу	число режущих кромок	L10	W	S	BS	Rε	hm	F	F
BDMT11T304ERMS	2	11,00	6,66	3,81	1,79	0,4	0,08		•
BDMT11T308ERMS	2	11,00	6,67	3,81	1,40	0,8	0,08		•

■ BDMT-ML

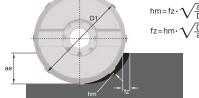
- лучший выбор
- альтернативный выбо

loop	3	0		
	Н			
:	hm	TN6405	TN6430	
1	0,10	•		
3	0,10	•		
7	0,10	•	•	
7	0,10	•	•	
	0,10			
	0 10			1

HOMOD BO KOTOBODY	THE TO DOWN THE YEAR OF	L10	w		BS	Rε	hm	Ž	ĮŽ
номер по каталогу	число режущих кромок	LIU	VV	<u> </u>	DO	116	111111	ᄪ	15
BDMT11T304ERML	2	11,00	6,66	3,81	1,79	0,4	0,10	•	
BDMT11T308ERML	2	11,00	6,67	3,81	1,40	0,8	0,10	•	
BDMT11T312ERML	2	11,00	6,69	3,81	1,01	1,2	0,10	•	•
BDMT11T316ERML	2	11,00	6,70	3,81	0,54	1,7	0,10	•	
BDMT11T320ERML	2	11,00	6,72	3,81	_	2,1	0,10	•	
BDMT11T331ERML	2	11,00	6,76	3,81	_	3,2	0,10	•	

Фрезы для обработки уступов с углом 90° • Серия М6800

WIDIA


Режимы резания для фрез М6800М

			TN6405			TN6425			TN6430			THR-S	
Геометрия режущей кромки							Подача на	зуб fz (мм)			•		
режуще	-										0,05	0,15	0,30
۸	ИS				0,08	0,10	0,15	0,08	0,10	0,15	,		,
	ИL	0,08	0,12	0,20				0,08	0,12	0,20			
Гру	ппо												
матер	риала							ния vc (м/ми					
	1				220	180	140	280	230	180			
	2				200	160	125	250	205	160			
	3				185	150	120	235	195	155			
	4				165	135	105	210	170	135			
	5				120	100	75	155	125	100			
	6				155	125	100	200	160	125			
Р	7				100	85	65	130	105	85			
	8				135	110	85	170	140	110			
	9				100	80	65	125	100	80			
	10				85	70	55	110	90	70			
	11				55	45	35	70	55	45			
	12				160	130	100	200	165	130			
	13.1				125	100	80	160	130	105			
	13.2				90	75	60	115	100	80			
	14.1				200	140	90						
M	14.2				155	110	80						
	14.3				110	85	55						
	14.4	050	400	100	100	70	45	100	140	100			
	15	250	180	120				180	140	100			
	16	190	140	100				135	110	85			
K	17 18	210 160	150 90	100 50				150 115	115 70	85 40			
	19	210	130	80				150	100	65			
	20	170	100	60				125	80	50			
	21	170	100	00				123	00	30	800	400	200
	22										400	200	100
	23										800	400	200
	24										440	220	100
	25										320	170	80
N	26										_	_	_
	27										_	_	_
	28										_	_	_
	29										_	_	_
	30										_	_	_
	31	45	35	_	40	30	_						
	32	35	30	_	30	25	_						
	33	30	20	_	25	20	_						
S	34	25	20	_	20	20	_						
	35	25	20	_	20	20	_						
	36	70	60	_	65	55	_						
	37	70	60	_	65	55	_						
	38.1												
н	38.2												
	39.1												
	39.2												

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ае, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,02	0,05	0,1	0,2	0,4
коэффициент fz	3,5	3	2	1,5	1
коэффициент vc	1,6	1,5	1,4	1,3	1,1

WIN WITH WIDLATM

WIDIA

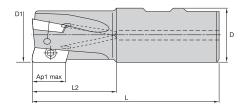
Серия фрез **WIDIA M6800**

M6800S | M6800M | M6800LX

Новая серия фрез M6800 специально сконструирована для повышения эффективности операций фрезерования стали, нержавеющей стали, чугуна, алюминия и труднообрабатываемых материалов. Они представляют собой значительный шаг вперед в повышении эффективности и производительности.

- Фрезерование с наклонным врезанием на высоких подачах, возможность работы с большой частотой вращения и превосходное качество обработанной поверхности.
- Улучшенная конструкция стружечной канавки и большие, осевой и радиальный, передние углы снижают усилия резания, обеспечивая увеличение производительности и стойкости инструмента.
- Благодаря новым эллиптическим углам, уступы получаются с требуемым, абсолютно точным углом 90°.

Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт **www.widia.com**.


Корпуса фрез M6800LX

- Уступы с углом 90°.
- Превосходное качество обработанной поверхности.

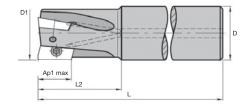
• Возможность наклонного врезания.

■ M6800LX

номер заказа	номер по каталогу	D1	D	L	L2	Ap1 max	z	тах угол врезания	тах частота вращ.	подвод СОЖ	КГ
3577882	12396475000	25	20	86	37	15,7	2	8.0°	35000	Да	0,3
3577883	12396475200	25	25	92	37	15,7	2	8.0°	35000	Да	0,4
3577884	12396475400	32	25	92	36	15,7	3	5.0°	30000	Да	0,4
3577885	12396475600	32	32	100	41	15,7	3	5.0°	30000	Да	0,6
3577886	12396475800	40	32	110	51	15,7	4	2.5°	25000	Да	0,7

■ M6800LX • Комплектующие

D1	винт пластины	Нм	ключ Torx
25	12146121000	3,5	12148082400
32	12146121000	3,5	12148082400
40	12146121000	3.5	12148082400



- Уступы с углом 90°.
- Превосходное качество обработанной поверхности.

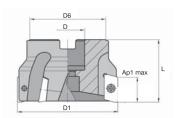
• Возможность наклонного врезания.

■ M6800LX

HOMOD 22V222	номер по каталогу	D1	D	L	L2	Ap1 max	z	тах угол наклона	тах частота вращ.	подвод СОЖ	ΚΓ
номер заказа	<u> </u>						_				
3577887	12396480000	25	20	120	37	15,7	2	8.0°	35000	Да	0,4
3577888	12396480200	25	25	120	37	15,7	2	8.0°	35000	Да	0,6
3577889	12396480400	25	25	160	61	15,7	2	8.0°	35000	Да	0,7
3577890	12396480600	25	25	210	61	15,7	2	8.0°	35000	Да	0,8
3577891	12396480800	28	25	210	37	15,7	2	5.0°	32500	Да	0,7
3577892	12396481000	32	25	130	41	15,7	3	5.0°	30000	Да	0,6
3577893	12396481200	32	32	130	41	15,7	3	5.0°	30000	Да	0,9
3577894	12396481400	32	32	200	66	15,7	2	5.0°	30000	Да	1,3
3577895	12396481600	32	32	250	66	15,7	2	5.0°	30000	Да	1,5
3577896	12396481800	40	32	150	51	15,7	4	2.5°	25000	Да	1,1
3577897	12396482000	40	32	240	65	15,7	2	2.5°	25000	Да	1,8
3577898	12396482200	50	32	150	51	15,7	4	_	17000	Да	1,7

■ M6800LX • Комплектующие

D1	винт пластины	Нм	ключ Torx
25	12146121000	3,5	12148082400
28	12146121000	3,5	12148082400
32	12146121000	3,5	12148082400
40	12146121000	3,5	12148082400
50	12146121000	3,5	12148082400



Корпуса фрез M6800LX

- Уступы с углом 90°.
- Превосходное качество обработанной поверхности.

■ M6800LX

		1						max		
номер заказа	номер по каталогу	D1	D	D6	L	Ap1 max	Z	частота вращ.	подвод СОЖ	КГ
3577879	12396470400	40	16	34	40	15,7	4	25000	Да	0,3
3577880	12396471000	50	22	40	40	15,7	4	17000	Да	0,4
3577881	12396471600	63	22	40	40	15,7	5	14500	Да	1,0
3868874	12396472200	80	27	53	50	15,7	6	12000	Да	1,5
3868875	12396472800	100	32	65	55	15,7	7	10500	Да	1,3
3868876	12396473200	125	40	80	63	15,7	9	8900	Да	3,4

■ M6800LX • Комплектующие

D1	винт пластины	Нм	ключ Тогх
40	12146121000	3,5	12148082400
50	12146121000	3,5	12148082400
63	12146121000	3,5	12148082400
80	12146121000	3,5	12148082400
100	12146121000	3,5	12148082400
125	12146121000	3,5	12148082400

ПРИМЕЧАНИЕ: для стандартных фрез допускается использование пластин с радиусом при вершине до 2 мм, без модификации корпуса. Информация о модификации корпусов фрез на стр. E15.

■ M6800LX JIS

									max		
_	номер заказа	номер по каталогу	D1	D	D6	L	Ap1 max	Z	частота вращ.	подвод СОЖ	КГ
	3577360	16396471600	63	25,40	50	50	15,7	5	14500	Да	1,0
	3577361	16396472200	80	25,40	53	50	15,7	6	12000	Да	1,5
_	3577362	16396472800	100	31,75	65	63	15,7	7	10500	Да	1,5
	3577363	16396473200	125	38,10	80	63	15,7	9	8900	Да	3,8
	3577364	16396473600	160	50,80	100	63	15,7	12	7400	Да	3,8

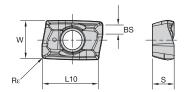
■ M6800LX • Комплектующие

D1	винт пластины	Нм	ключ Torx
63	12146121000	3,5	12148082400
80	12146121000	3,5	12148082400
100	12146121000	3,5	12148082400
125	12146121000	3,5	12148082400
160	12146121000	3,5	12148082400

L10

17,00

17,00


17,00

17,00

9,69

■ BDGT-AL

номер по каталогу

BDGT170404FRAL

BDGT170408FRAL

BDGT170420FRAL

BDGT170431FRAL

• лучший выбор

○ альтернативный выбор

_						
=	i i	hm	Rε	BS	s	w
•		0,08	0,4	2,30	5,10	9,60
)		0,08	0,8	1,90	5,10	9,63
,	-	0,08	2,1	0,60	5,10	9,66
•		0,08	3,2	_	5,10	9,69

■ BDMT-MS

• лучший выбор

○ альтернативный выбор

рысор		\sim \sim
	Н	
Rε	hm	TN6425 TN6430
0,4	0,08	
0,8	0,08	

K N S H

номер по каталогу	число режущих кромок	L10	W	s	BS	Rε	hm	NP.	JU6
BDMT170404ERMS	2	17,00	9,59	4,90	2,28	0,4	0,08	•	•
BDMT170408ERMS	2	17,00	9,60	4,90	1,88	0,8	0,08	•	•

число режущих кромок

2

2

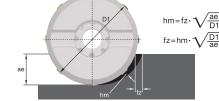
2

■ BDMT-ML

- лучший выбор
- альтернативный выбор

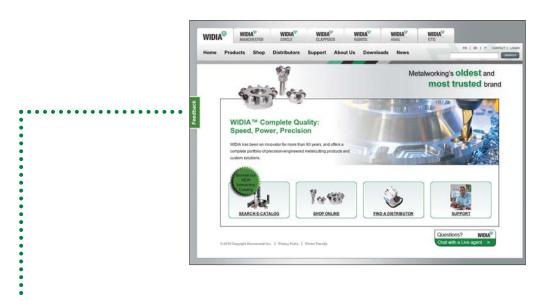
						ъ.		TN6405	N6430
номер по каталогу	число режущих кромок	L10	W	S	BS	Rε	hm		
BDMT170404ERML	2	17,00	9,59	4,90	2,28	0,4	0,10		
BDMT170408ERML	2	17,00	9,60	4,90	1,88	0,8	0,10		•
BDMT170412ERML	2	17,00	9,61	4,90	1,49	1,2	0,10	•	•
BDMT170416ERML	2	17,00	9,61	4,90	1,05	1,7	0,10	•	•
BDMT170420ERML	2	17,00	9,62	4,90	0,64	2,1	0,10		
BDMT170431ERML	2	17,00	9,66	4,90	_	3,2	0,10		•

Фрезы для обработки уступов с углом 90° • Серия М6800


Режимы резания для фрез M6800LX

ТN6405 Геометрия режущей кромки AL				TN6425			TN6430			THR-S			
Геом	етрия й кромки						Подача на	зуб fz (мм)					
											0,05	0,15	0,30
N					0,08	0,10	0,15	0,08	0,10	0,15			
Л	/IL	0,08	0,12	0,20				0,08	0,12	0,20			
Гру	ппа					Cv	ODOCTL DOSS	⊔ ния vc (м/ми	n)				
матер	иала 1				220	180	140	280	230	180			
	2				200	160	125	250	205	160			
	3				185	150	120	235	195	155			
	4				165	135	105	210	170	135			
	5				120	100	75	155	125	100			
	6				155	125	100	200	160	125			
	7				100	85	65	130	105	85			
P	8				135	110	85	170	140	110			
	9				100	80	65	125	100	80			
	10				85	70	55	110	90	70			
	11				55	45	35	70	55	45			
	12				160	130	100	200	165	130			
	13.1				125	100	80	160	130	105			
	13.2				90	75	60	115	100	80			
	14.1				200	140	90						
	14.2				155	110	80						
M	14.3				110	85	55						
	14.4				100	70	45						
	15	250	180	120				180	140	100			
	16	190	140	100				135	110	85			
K	17	210	150	100				150	115	85			
, K	18	160	90	50				115	70	40			
	19	210	130	80				150	100	65			
	20	170	100	60				125	80	50			
	21										800	400	200
	22										400	200	100
	23										800	400	200
	24										440	220	100
N	25										320	170	80
	26										_	_	_
	27										_	_	_
	28										_	_	_
	29 30										_	_	_
	31	45	35	_	40	30							
	32	35	30		30	25	_						
	33	30	20	_	25	20	_						
S	34	25	20	_	20	20	_						
	35	25	20	_	20	20	_						
	36	70	60	_	65	55	_						
	37	70	60	_	65	55	_						
	38.1												
	38.2												
Н	39.1												
	39.2												

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.


При меньших значениях ае, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,02	0,05	0,1	0,2	0,4
коэффициент fz	3,5	3	2	1,5	1
коэффициент vc	1,6	1,5	1,4	1,3	1,1

Интернет

Быстрота и простота регистрации

Вы можете легко зарегистрироваться на www.widia.com для получения полного доступа ко всем разделам сайта.

Выберите ближайшего к Вам регионального официального дистрибьютора WIDIA

WIDIA Products Group предлагает изделия мирового класса и глобальное сервисное обслуживание. Наши дистрибьюторы хорошо знакомы с нашей продукцией, но еще лучше они знают Ваши потребности. Они лучше кого-либо другого в этой индустрии могут предложить грамотное применение глобальным ресурсам компании WIDIA в Ваших конкретных условиях — на Вашем производстве, в Вашем регионе, способствуя развитию Вашего бизнеса.

Свяжитесь с нами

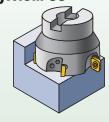
Наши клиенты - наша главная ценность. Поэтому мы стремимся предложить Вам сервис и техническую поддержку самого высокого уровня. Мы открыты для диалога и готовы ответить на все Ваши вопросы и замечания в течение 24 часов.

Продукция WIDIA

Чем бы вы ни занимались, точением, фрезерованием или сверлением, компания WIDIA предоставит Вам высокопроизводительный инструмент, отвечающий Вашим конкретным условиям. Наш ассортимент объединяет широкую программу стандартного инструмента и возможности изготовления специальной продукции для большинства производственных областей.

Великолепный выбор для обработки пазов и профильного фрезерования • Серия М690

Фрезы серии М690 разработаны для быстрого решения самых сложных задач. Они обеспечивают оптимальное удаление стружки, превосходные результаты чистовой обработки уступов, легкое резание, а цельная конструкция


- M690
 - Прочная конструкция пластины и корпуса фрезы обеспечивают максимальную производительность.
 - Четыре режущие кромки повышают экономическую эффективность обработки.
 - Новые пластины SDMX имеют винтовую режущую кромку, что способствует плавному резанию.

Геометрия

Фрезы для обработки уступов с углом 90°

M690 SD1204...

Мах глубина резания: 10,0 мм

Угол в плане: 90° Число кромок на пластине: 4 Диаметр: 50 мм – 160 мм

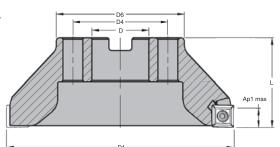
Стр.: А76-А79

M690 SD1506..

Мах глубина резания: 12,0 мм

Угол в плане: 90° Число кромок на пластине: 4 Диаметр: 50 мм - 125 мм

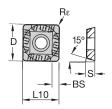
Стр.: А80-А82



Корпуса фрез M690 • SD1204..

- Четыре режущие кромки.
- Уступы с углом 90°.
- Отлично подходят для обработки пазов и профильной обработки.

■ M690


									max		
номер заказа	номер по каталогу	D1	D	D4	D6	L	Ap1 max	Z	частота вращ.	подвод СОЖ	ΚГ
2003556	12396953800	50	22	_	47	40	10,0	4	22400	Да	0,3
2003557	12396954000	50	22	_	47	40	10,0	5	22400	Да	0,3
2003573	12396954200	63	22	_	50	40	10,0	5	20000	Да	0,5
2003574	12396954400	63	22	_	50	40	10,0	6	20000	Да	0,5
2003580	12396954600	80	27	_	60	50	10,0	6	17700	Да	1,0
2003581	12396954800	80	27	_	60	50	10,0	8	17700	Да	1,1
2003596	12396955000	100	32	_	78	50	10,0	8	15800	Нет	1,5
2003597	12396955200	100	32	_	78	50	10,0	10	15800	Нет	1,6
2003693	12396955400	125	40	_	89	63	10,0	9	14200	Нет	3,0
2003694	12396955600	125	40	_	89	63	10,0	12	14200	Нет	3,0
2003793	12396955800	160	40	66,7	90	63	10,0	12	12500	Нет	3,6
2003794	12396956000	160	40	66,7	90	63	10,0	15	12500	Нет	3,6

■ M690 • Комплектующие

D1	винт пластины	Нм	ключ Torx
50	12148037700	4,0	12148000600
63	12148037700	4,0	12148000600
80	12148037700	4,0	12148000600
100	12148037700	4,0	12148000600
125	12148037700	4,0	12148000600
160	12148037700	4,0	12148000600

■ SDMT-ML

лучший выборальтернативный выбор

n	n ns	2											
ı	hm		TN2510	TN5515	TN6510	TN6520	TN6525	TN6540	TN7525	TN7535	TT125	MHT	WLL
	Н		•										
Ī	S							•				0	
	N												
	K		•	•	•	•	0	0		0		0	0
	M						0	•	0	0	0		0
	Р		0								•		•

								N25	25	9	1 65	N65	9		22	25	FI25	1	Ξ	Σ	
номер по каталогу	Число режущих кромок	D	L10	S	BS	Rε	hm	=	F	F	F	ΙF	ŀ	= i	ΞL	F	⊢	F	=	\vdash	
SDMT1204PDRML	4	12,70	12,70	4,77	_	1,2	0,08		•	•	•						•			•	

■ SDMX-MM

• лучший выбор

○ альтернативный выбор

١		N5515	6525	N6540	7525	N7535
	Н					
	S			•		
	N					
	K	•	0	0		0
	M		0	•	0	0
	Р		•	•	•	•

номер г	10 каталогу	Число режущих кромок	D	L10	s	BS	Rε	hm	TN5	TN6	TN6	TN7	: 2	Ž
SDMX1	20408RMM	4	12,70	12,70	4,76	1,93	0,8	0,10					•)
SDMX1	20412RMM	4	12,70	12,70	4,76	1,54	1,2	0,10			•	•	•	,

■ SDMX-MH

• лучший выбор

○ альтернативный выбор

	N5515	N6520	N6525	N6540	N7525	N7535
Н						
S				•		
N						
K	•	•	0	0		0
М			0	•	0	0
Р			•	•	•	•

номер по каталогу	Число режущих кромок	D	L10	s	BS	Rε	hm	Ž		ž	Ž	Ě
SDMX120408RMH	4	12,70	12,70	4,76	1,93	0,8	0,14				• (
SDMX120412RMH	4	12,70	12,70	4,76	1,54	1,2	0,14				•	
SDMX120416RMH	4	12,70	12,70	4,76	1,50	1,6	0,14	•	\Box	•	•	•

■ SDMT-MH

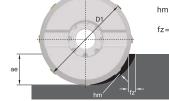
• лучший выбор

○ альтернативный выбор

(1 14	1											
	hm	ı	TN2510	TN5515	TN6510	TN6520	TN6525	TN6540	TN7525	TN7535	TT125	THM	MTT
	Н		•										
	S							•				0	
	N												
	K		•	•	•	•	0	0		0		0	0
	M						0	•	0	0	0		0
	Р		0				•	•	•	•	•		•

номер по каталогу	Число режущих кромок	D	L10	s	BS	Rε	hm	TN2	의	9	TN6		Ž	TN7	112	ΞĮ	Σ
SDMT1204PDRMH	4	12,70	12,70	4,81	_	1,2	0,14	•		•	•	•		•		•	•

Фрезы для обработки уступов с углом 90° • Серия М690

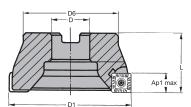

Режимы резания для фрез M690 • SD1204..

			TN2510)		TN5515			TN6510			TN6520			TN6525			TN6540	
	ометрия щей кромки								По	дача на	зуб fz (м	ім)		ı					
рему	ML	0.06	0,11	0,16	0,08	0,14	0,20	0,07	0,11	0,13		-							
	MM	,	•	,	0,10	0,17	0,25	,	•	,				0,08	0,14	0,21	0,11	0,19	0,28
	MH	0,11	0,19	0,27	0,14	0,24	0,34				0,16	0,28	0,39	0,12	0,20	0,28	0,15	0,26	0,37
	⁻ руппа териала								Скоро	сть реза	ния vc (і	и/мин)							
	1	360	280	230										300	230	190	250	200	170
	2	280	220	190										230	180	150	170	140	120
	3	230	180	160										190	140	130	140	110	100
	4	240	190	170										200	150	140	150	120	100
	5	210	140	130										170	120	110	130	90	80
	6	260	210	170										220	170	140	170	130	100
Р	7	210	170	130										170	140	110	130	100	80
	8	180	130	120										140	110	100	110	80	70
	9	170	120	100										140	100	80	100	70	60
	10	210	170	140										170	140	120	130	100	90
	11	130	110	80										110	90	60	80	60	50
	12	260	200	170										220	160	140	160	120	100
	13.1	230	170	130										190	140	110	140	100	80
	13.2 14.1	120	80	70										100 190	70 120	50 80	70 140	50 90	40 60
	14.1													150	100	60	120	70	50
M	14.2													120	80	50	90	50	45
	14.3													100	60	45	80	45	35
	15	370	270	220	330	240	200	310	230	190	290	210	170	_	_	_	_	_	_
	16	300	210	180	255	190	165	240	180	160	220	160	140	_	_	_	_	_	_
	17	290	220	170	275	210	165	260	200	160	240	180	150	230	180	150	170	140	120
K	18	260	150	110	210	120	90	200	120	90	180	110	80	190	140	130	140	110	100
	19	310	190	100	275	165	145	260	160	130	240	140	120	_	_	_	_	_	_
	20	240	160	110	220	140	100	210	140	100	190	120	90	_	_	_	_	_	_
	21																		
	22																		
	23																		
	24																		
N	25																		
	26																		
	27																		
	28																		
	29																		
	30																		
	31																50	40	35
	32																40	30	25
S	33 34																25 20	15 15	10 5
	35																35	25	5 15
	36																70	40	30
	36																60	30	25
	38.1	100	80	60													30	00	20
	38.2	100	80	60															
Н	39.1	90	70	50															
	39.2	90	70	50															

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ае, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,02	0,05	0,1	0,2	0,4
коэффициент fz	3,5	3	2	1,5	1
коэффициент vc	1,6	1,5	1,4	1,3	1,1


Режимы резания для фрез M690 • SD1204..

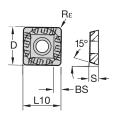
			TTM			THM			TTI25			TN7535		j	TN7525	
иетрия ей кромі	Геом режущей							fz (MM)	а на зуб	Подача						
.ML		0,20	0,14	0,08	0,20	0,14	0,08	0,20	0,14	0,08	0,20	0,14	0,08	0,16	0,11	0,06
.MM .MH	_	0,34	0,24	0,14	0,34	0,24	0,14	0,25	0,17	0,10	0,25	0,17 0,24	0,10 0,14	0,20	0,14 0,19	0,08
		0,04	0,24	0,14	0,04	0,24	0,14	0,20	0,17	0,10	0,04	0,24	0,14	0,21	0,13	0,11
уппа ериала				ı			ин)	I VC (M/M	резания	корость р	Ск		ı			
,	1	140	150	170				250	300	360	190	220	280	210	250	330
	2	90	100	120				210	240	280	130	150	190	170	200	250
	3	70	80	100				170	190	250	110	120	160	150	160	210
	4	80	85	110				180	210	260	110	130	165	150	170	220
	5	60	70	85				_	_	_	85	100	140	120	130	190
	6	90	100	120				180	220	290	115	140	185	150	190	240
	7	70	80	90				150	180	220	90	110	140	120	150	190
Р	8	55	60	80				_	_	_	80	90	120	110	120	160
	9	40	50	70				_	_	_	70	80	110	90	110	150
	10	80	85	110				150	180	220	100	110	140	130	150	190
	11	40	50	70				_	_	-	60	70	90	70	95	120
	12	85	90	115				180	210	280	115	135	180	150	180	240
	13.1	70	80	100				150	180	250	90	110	155	120	150	210
	13.2	35	40	50				75	90	120	45	55	80	60	75	110
	14.1	40	60	100				180	260	400	70	100	160	90	130	210
M	14.2	35	50	80				150	220	330	60	80	130	70	110	170
IVI	14.3	25	35	60				120	170	270	50	60	100	60	85	130
	14.4	20	30	50				90	130	20	40	50	90	50	65	110
	15	_	_	_	80	100	140				_	_	_			
	16	_	_	_	70	80	100				_	_	_			
K	17	90	100	120	75	90	120				130	150	190			
	18	70	80	100	60	85	110				110	120	160			
	19	_	_	_	80	120	150				_	_	_			
	20			_	60	95	130						_			
	21															
	22															
	23															
	24															
N	25															
	26															
	27															
	28															
	29															
	30					95	20									
	31				_	25	38									
	32				_	20	30									
	33				_	16	24									
S	34				_	13	20									
	35				_	21	32									
	36				_	32	50									
	37 38.1				_	_	_									
	38.1															
Н	39.1															
	39.1															
	39.2															

Корпуса фрез M690 • SD1506..

- Четыре режущие кромки.
- Уступы с углом 90°.
- Отлично подходят для обработки пазов и профильной обработки.

■ M690

		1						max		
номер заказа	номер по каталогу	D1	D	D6	L	Ap1 max	Z	частота вращ.	подвод СОЖ	ΚГ
2003555	12396943800	50	22	47	40	12,0	4	18500	Да	0,3
2003562	12396944200	63	22	50	40	12,0	5	16100	Да	0,4
2003579	12396944600	80	27	60	50	12,0	6	14000	Да	0,9
2003595	12396945000	100	32	78	50	12,0	8	12300	Нет	1,3
2003682	12396945400	125	40	89	63	12,0	9	10800	Нет	2,7


■ М690 • Комплектующие

D1	винт пластины	Нм	ключ Torx
50	12148007300	6,0	12148007500
63	12148007300	6,0	12148007500
80	12148007300	6,0	12148007500
100	12148007300	6,0	12148007500
125	12148007300	6,0	12148007500

• лучший выбор

○ альтернативный выбор

ŀ	m	TN2510	TN5515	TN6540	TN7525	2827NT
	S	_		•		
	N					
	K	•	•	0		0
	M			•	0	0
	Р	0		•	•	•

								125	155	165	175	175
номер по каталогу	Число режущих кромок	D	L10	S	BS	Rε	hm	F	F		F	ΙF
SDMT1506PDRML	4	15,88	15,88	6,32	_	1,2	0,08					•

■ SDMX-MM

• лучший выбор

○ альтернативный выбор

	Ī				ľ	Ī
	Н	S	N	K		М
N5515				•		
N6540		•		0	•	
N7525					0	
N7535				0	0	

номер по каталогу	Число режущих кромок	D	L10	s	BS	Rε	hm	TN55	TNG	
SDMX150612RMM	4	15,88	15,88	6,35	1,45	1,2	0,14		•	•

■ SDMX-MH

• лучший выбор

○ альтернативный выбор

Н	5515	6540	525	7535
N S				
K	•	0		0
M		•	0	0
Р		•	•	•

номер по каталогу	Число режущих кромок	D	L10	s	BS	Rε	hm	TN5	NE L	TNZ	TNZ
SDMX150612RMH	4	15,88	15,88	6,35	1,45	1,2	0,20				
SDMX150616RMH	4	15,88	15,88	6,35	1,51	1,6	0,20	•			•

■ SDMT-MH

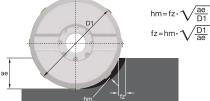
• лучший выбор

о альтернативный выбор

M K N S	•	•	•	0	0	0	0 0
hm	TN2510	TN5515	TN6540	TN7525	TN7535	TT125	MTT

номер по каталогу	Число режущих кромок	D	L10	s	BS	Rε	hm	TN2	TN5	TN6	Ž į	Ž	E	Σ
SDMT1506PDRMH	4	15,88	15,88	6,35	_	1,2	0,20		•				•	•

Фрезы для обработки уступов с углом 90° • Серия М690


Режимы резания для фрез M690 • SD1506..

		TN2510 TN5515 TN6540)	1	TN7525	j		TN7535	5		TTI25			TTM		
	етрия й кромки										Подача	на зуб	б fz (мм)								
	ML	0,06	0,11	0,16	0,08	0,14	0,20				0,06	0,11	0,16	0,08	0,14	0,20	0,08	0,14	0,20	0,08	0,14	0,20
_	MM				0,10	0,17	0,25	0,11	0,19	0,28	0,08	0,14	0,20	0,10	0,17	0,25						
1	ИН	0,11	0,19	0,27	0,14	0,24	0,34	0,15	0,26	0,37	0,11	0,19	0,27	0,14	0,24	0,34	0,10	0,17	0,25	0,14	0,24	0,34
Fnv	ппа																					
	материала										рость р		A VC (M/	мин)								
	1	360	280	230				250	200	170	330	250	210	280	220	190	360	300	250	170	150	140
	2	280	220	190				170	140	120	250	200	170	190	150	130	280	240	210	120	100	90
	3	230	180	160				140	110	100	210	160	150	160	120	110	250	190	170	100	80	70
	4	240	190	170				150	120	100	220	170	150	165	130	110	260	210	180	110	85	80
	5	210	140	130				130	90	80	190	130	120	140	100	85	_	_	_	85	70	60
	6	260	210	170				170	130	100	240	190	150	185	140	115	290	220	180	120	100	90
P	7	210	170	130				130	100	80	190	150	120	140	110	90	220	180	150	90	80	70
	8	180	130	120				110	80	70	160	120	110	120	90	80	_	_	_	80	60	55
	9	170	120	100				100	70	60	150	110	90	110	80	70	-			70	50	40
	10 11	210 130	170 110	140				130 80	100 60	90 50	190 120	150 95	130 70	140 90	110 70	100	220	180	150	110 70	85 50	80 40
	12	260	200	80 170				160	120	100	240	180	150	180	135	60 115	280	— 210	— 180	115	90	85
	13.1	230	170	130				140	100	80	210	150	120	155	110	90	250	180	150	100	80	70
	13.2	120	80	70				70	50	40	110	75	60	80	55	45	120	90	75	50	40	35
	14.1	120						140	90	60	210	130	90	160	100	70	400	260	180	100	60	40
	14.2							120	70	50	170	110	70	130	80	60	330	220	150	80	50	35
M	14.3							90	50	45	130	85	60	100	60	50	270	170	120	60	35	25
	14.4							80	45	35	110	65	50	90	50	40	20	130	90	50	30	20
	15	370	270	220	330	240	200	_	_	_				_	_	_				_	_	_
	16	300	210	180	255	190	165	_	_	_				_	_	_				_	_	_
К	17	290	220	170	275	210	165	170	140	120				190	150	130				120	100	90
	18	260	150	110	210	120	90	140	110	100				160	120	110				100	80	70
	19	310	190	100	275	165	145	_	_	_				_	_	_				_	_	_
	20	240	160	110	220	140	100	_	_					_	_					_	_	_
	21																					
	22 23																					
	23 24																					
	25																					
N	26																					
	27																					
	28																					
	29																					
	30																					
	31							50	40	35												
	32							40	30	25												
	33							25	15	10												
S	34							20	15	5												
	35							35	25	15												
	36							70	40	30												
	37							60	30	25												
	38.1		80	60																		
н	38.2		80	60																		
	39.1 39.2	90	70 70	50 50																		
	34.7	90	/()	50																		

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ae, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,02	0,05	0,1	0,2	0,4
коэффициент fz	3,5	3	2	1,5	1
коэффициент vc	1,6	1,5	1,4	1,3	1,1

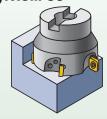
WIN WITH WIDIA **WIDIA**[▽] Фрезы **WIDIA серии M690** для обработки уступов с углом 90° M690 SD1204.. | M690 SD1506.. Прочные фрезы серии M690 для обработки уступов с углом 90° специально разработаны для быстрого выполнения большого числа операций. Они обеспечивают превосходные результаты чистовой обработки уступов, улучшенное удаление стружки и надежное удержание пластин. • Прочная конструкция корпуса фрезы обеспечивает максимальную стабильность и производительность. • Четыре режущие кромки обеспечивают экономичный и надежный процесс обработки. • Превосходные результаты чистовой обработки уступов и плавное резание.

Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт **www.widia.com**.

WIDIA[₩]

Универсальные помощники для обработки уступов • Серия М680

Благодаря широкому выбору геометрий и сплавов режущих пластин, Вам не нужно искать другие фрезы для выполнения разнообразных операций фрезерования, кроме фрез серии M680. Прочные пластины небольшого размера гарантируют высокую повторяемость результатов.


- Широкий выбор пластин для обработки всех видов материалов.
- Два типоразмера пластин оптимизируют операции фрезерования.
- Конструкция гнезд обеспечивает оптимальную точность обработки уступов с углом 90°.

Внутренний подвод СОЖ.

Фрезы для обработки уступов с углом 90°

M680+

Мах глубина резания: 9,5 мм

Угол в плане: 90° Число кромок на пластине: 2 Диаметр: 25 мм – 63 мм

Стр.: А86-А91

	Геометрия пластины	1	Рекомендуемое применение
		ML	Положительная геометрия обеспечивает плавность процесса резания. Низкие усилия резания и возможность использования на маломощном оборудовании.
J		ММ	Рекомендуется для обработки стали и чугуна. Лучший выбор для операций общего фрезерования.
		МН	Рекомендуется для выполнения операций черновой обработки или прерывистого резания, главным образом стали и чугуна.

M680

Мах глубина резания: 14,0 мм

Угол в плане: 90° Число кромок на пластине: 2 Диаметр: 25 мм - 160 мм

Стр.: А92-А97

Альтернативный выбор AL для обработки алюминия и цветных сплавов.

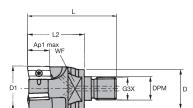
Геометрия

Рекомендуется для легких режимов и получистовой обработки стали, **ERGE** нержавеющей стали и чугуна.

Рекомендуется для XP..16.. обработки стали и чугуна.

Рекомендуется для тяжелых проходов и нестабильных условий резания (например, при затрудненном доступе к месту обработки).

Корпуса фрез М680+

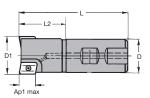

- Фрезы для обработки уступов общего назначения.
- Небольшие и прочные режущие пластины.

■ M680+

											max		
номер заказа	номер по каталогу	D1	D	DPM	G3X	L	L2	WF	Ap1 max	Z	частота вращ.	подвод СОЖ	КГ
2223036	12396931400	25	25	12,5	M12	52	30	19	9,5	3	9500	Да	0,2
2223037	12396931600	32	32	17,0	M16	63	40	22	9,5	5	8500	Да	0,3

■ М680+ • Комплектующие

D1	винт пластины	Нм	ключ Torx
25	12748609900	4,0	12148788900
32	12748609900	4,0	12148788900


ПРИМЕЧАНИЕ: для стандартных фрез допускается использование пластин с радиусом при вершине до 2 мм, без модификации корпуса. Информация о модификации корпусов фрез на стр. E15.

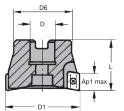
■ M680+

								max		
номер заказа	номер по каталогу	D1	D	L	L2	Ap1 max	Z	частота вращ.	подвод СОЖ	ΚГ
2223032	12396924600	20	20	82	32	9,5	2	20000	Да	0,3
2223033	12396924800	25	25	96	40	9,5	3	18000	Да	0,3
2223034	12396925000	32	32	100	40	9,5	5	16000	Да	0,5
2223035	12396925200	40	32	110	50	9,5	6	14000	Да	0,8

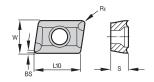
■ M680+ • Комплектующие

D1	винт пластины	Нм	ключ Torx
20	12748609900	4,0	12148788900
25	12748609900	4,0	12148788900
32	12748609900	4,0	12148788900
40	12748609900	4,0	12148788900

Корпуса фрез М680+


- Фрезы для обработки уступов общего назначения.
- Небольшие и прочные режущие пластины.

■ M680+


		i						max		
номер заказа	номер по каталогу	D1	D	D6	L	Ap1 max	Z	частота вращ.	подвод СОЖ	ΚГ
2223028	12396906400	40	22	38	40	9,5	6	14000	Да	0,2
2223029	12396906600	50	22	48	40	9,5	6	12000	Да	0,3
2223030	12396906800	63	22	50	40	9,5	7	11000	Да	0,5

■ M680+ • Комплектующие

D1	винт пластины	Нм	ключ Torx
40	12748609900	4,0	12148788900
50	12748609900	4,0	12148788900
63	12748609900	4.0	12148788900

■ AONT-ML

• лучший выбор

○ альтернативный выбор

0	Λο									
ŀ	ım	TN5515	TN6501	TN6510	TN6520	TN6525	TN6540	TN7525	TN7535	THM
	Н									
	N S						•			0
	N		•							•
	K	•		•	•	0	0		0	0
	M					0	•	0	0	
	Р					•	•	•		

номер по каталогу Число режущих кромок W L10 S BS Rε	hm	F	= i	FI	F	۱F	=	F	ΙF	: F	= i	티	F
AONT10T308ML 2 7,50 10,37 3,92 1,00 0,8	0,08			•	•			•			1	•	

AONT-MM

• лучший выбор

○ альтернативный выбор

	N	
S	N G	K • O O
	N O	

								55	175	75		2
номер по каталогу	Число режущих кромок	W	L10	S	BS	Rε	hm	F	F∣i	₽Į₽	- F	Ξ
AONT10T308MM	2	7,54	10,44	3,97	1,00	0,8	0,10		•			Þ

■ AONT-MH

• лучший выбор

○ альтернативный выбор

hm	TN5515	TN6525	TN6540	TN7525	TN7535	WL
Н						
S			•			
N						
K	•	0	0		0	0
M		0	•	0	0	0
Р		•	•	•	•	•

номер по каталогу	Число режущих кромок	W	L10	s	BS	Rε	hm	INS	TN	N L	ΣN	Ĭ	É	
AONT10T308MH	2	7,54	10,44	3,97	1,00	0,8	0,12		•	•	•	•		

Преимущества специальных решений WIDIA

- Разработка, проектирование и изготовление различных видов режущих инструментов для фрезерования, сверления, зенкования и других операций.
- Сервис предоставляется в пределах одного инженерного подразделения, которое взаимодействует со всеми специализированными заводами WIDIA.
- Возможность использования всех существующих инструментальных материалов, таких как быстрорежущая сталь (HSS-E), порошковый металл, твердый сплав, напайные твердосплавные пластины, кермет, поликристаллический алмаз и кубический нитрид бора, с обеспечением внутреннего подвода СОЖ или без него.
- Весь спектр выполняемых услуг в компетенции одного поставщика: от проектирования по условиям заказчика, разработки и изготовления вплоть до переточки инструмента.
- Постоянство качества и полное соответствие техническим условиям и характеристикам инструмента.

WWW.WIDIA.COM A89

Фрезы для обработки уступов с углом 90° • Серия М680

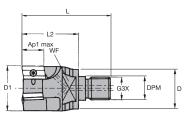
Режимы резания для фрез М680+

			TN5515	j		TN6501		1	N6502			TN6510			TN6520			TN6525	
Геом	етрия и кромки								Пода	іча на зу	б fz (ми	1)		1					
Л	•	0,06	0,10	0,12	0,06	0,12	0,20	0,07	0,18	0,28	0,07	0,11	0,13	0,07	0,12	0,14	0,05	0,08	0,10
N		0,08	0,12	0,18															
N	1H	0,10	0,16	0,25													0,08	0,13	0,21
Гру	ппа								·			/\							
матер	иала								корост	ь резани	IЯ VC (M/	'МИН)							
	1																300	230	190
	2																230	180	153
	3																190	150	135
	4 5																200 170	150 120	140 110
	6																220	170	140
	7																170	140	110
P	8																140	110	100
	9																140	100	80
	10																170	140	120
	11																110	90	60
	12																220	160	140
	13.1																190	140	110
	13.2																100	70	50
	14.1																190	120	80
М	14.2																150	100	60
	14.3																120	80	50
	14.4																100	60	45
	15	330	240	200							300	220	180	270	200	160	_	_	_
	16	255	190	165							230	170	150	210	150	140	_		_
K	17	275	210	165							250	190	150	230	170	150	200	150	120
	18	210	120	90							190	110	80	170	100	70	150	90	60
	19 20	275 220	165 140	145 100							250 200	150 130	130 90	230 180	140 120	120 80	_	_	
	21	220	140	100	2000	1200	1000	1600	950	800	200	130	30	100	120	00			
	22				1000	600	500	800	500	400									
	23				2000	1200	1000	1600	950	800									
	24				1100	650	500	900	550	450									
N	25				800	500	400	650	400	300									
N	26				_	_	_	_	_	_									
	27				_	_	_	_	_	_									
	28				_	_	_	_	_	_									
	29				_	-	_	_	_	_									
	30							_											
	31																		
	32																		
	33																		
S	34																		
	35 36																		
	36 37																		
	38.1																		
	38.2																		
Н	39.1																		
	39.2																		

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ае, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,02	0,05	0,1	0,2	0,4
коэффициент fz	3,5	3	2	1,5	1
коэффициент vc	1,6	1,5	1,4	1,3	1,1

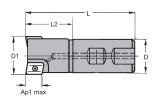

Режимы резания для фрез М680+

	TN6540	1		TN7525			TN7535			TTI25			ТНМ			TTM			
							По	дача на	зуб fz (м	ім)								Геом	етрия й кромки
0,07	0,11	0,13	0,08	0,08	0,10	0,06	0,10	0,12	0,06	0,10	0,12	0,06	0,10	0,12					ИL
			0,06	0,10	0,14	0,08	0,12	0,18	0,08	0,12	0,18	0,08	0,12	0,18	0,08	0,12	0,18		ИM
0,11	0,18	0,28	0,08	0,13	0,20	0,10	0,16	0,25	0,10	0,16	0,25				0,10	0,16	0,25		ИН
							Скоро	сть реза	 ния vc (м/мин)								Гру матеј	
220	180	150	330	250	210	280	220	190	360	300	250				170	150	140	1	унала
150	120	100	250	200	170	190	150	130	280	240	210				120	100	90	2	
130	100	90	210	160	150	160	120	110	250	190	170				100	80	70	3	
130	100	90	220	170	150	165	130	110	260	210	180				110	85	80	4	
110	80	70	190	130	120	140	100	90	_	_	_				85	70	60	5	
150	110	90	240	190	150	190	140	120	290	220	180				120	100	90	6	
110	90	70	190	150	120	140	110	90	220	180	150				90	80	70	7	
100	70	60	160	120	110	120	90	80	_	_	_				80	60	55	8	P
90	60	60	150	110	90	110	80	70	_	_	_				70	50	40	9	
110	90	80	190	150	130	140	110	100	220	180	150				110	85	80	10	
70	60	50	120	100	70	90	70	60	_	_	_				70	50	40	11	
140	110	90	240	180	150	180	140	120	280	210	180				115	90	85	12	
120	90	70	210	150	120	155	110	90	250	180	150				100	80	70	13.1	
60	40	40	110	80	60	80	60	50	120	90	75				50	40	35	13.2	
130	80	60	210	130	90	160	100	70	400	260	180				100	60	40	14.1	
100	64	50	170	110	70	130	80	60	330	220	150				80	50	35	14.2	
80	50	40	130	90	60	100	60	50	270	170	120				60	35	25	14.3	M
72	40	30	110	70	50	90	50	40	20	130	90				50	30	20	14.4	
_	_	_				_	_	_				140	100	80	_	_	_	15	
_	_	_				_	_	_				100	80	70	_	_	_	16	
180	140	120				220	170	150				120	90	75	160	120	100	17	v
140	80	60				170	100	70				110	85	60	120	70	50	18	K
_	_	_				_	_	_				150	120	80	_	_	_	19	
_	_	_				_	_	_				130	95	60	_	_	_	20	
												900	600	500				21	
												450	300	250				22	
												900	600	500				23	
												700	500	400				24	
												450	280	200				25	N
												400	250	200				26	"
												340	210	160				27	
												250	160	120				28	
												500	350	200				29	
												500	350	200				30	
50	40	35										38	29	25				31	
40	30	25										30	23	20				32	
25	15	10										24	19	16				33	
20	15	5										20	15	13				34	S
35	25	15										32	23	21				35	
70	40	30										50	40	32				36	
60	30	25										_	_					37	
																		38.1	
																		38.2	н
																		39.1	
																		39.2	

Корпуса фрез М680

- Фрезы для обработки уступов общего назначения.
- Отличный выбор сплавов и геометрий.
- Прочная пластина обеспечивает высокую надежность.

■ M680


											max		
номер заказа	номер по каталогу	D1	D	DPM	G3X	L	L2	WF	Ap1 max	Z	частота вращ.	подвод СОЖ	КГ
2003477	12396932600	25	24	12,5	M12	52	30	19	14,0	2	8800	Да	0,2
2003517	12396933000	32	28	17,0	M16	63	40	22	14,0	3	7800	Да	0,3
2003521	12396933200	35	28	17,0	M16	63	40	22	14,0	3	7200	Да	0,3
2003540	12396933400	40	28	17,0	M16	63	40	22	14,0	4	7000	Да	0,3

■ M680 • Комплектующие

D1	винт пластины	Нм	ключ Torx
25	12148038800	4,0	12148000600
32	12148038800	4,0	12148000600
35	12148038800	4,0	12148000600
40	12148038800	4.0	12148000600

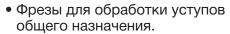
ПРИМЕЧАНИЕ: для стандартных фрез допускается использование пластин с радиусом при вершине до 2 мм, без модификации корпуса. Информация о модификации корпусов фрез на стр. E15.

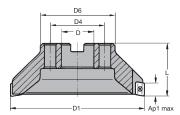
■ M680

								max		
номер заказа	номер по каталогу	D1	D	L	L2	Ap1 max	Z	частота вращ.	подвод СОЖ	ΚГ
2003475	12396922600	25	25	96	40	14,0	2	17500	Да	0,3
2003515	12396923000	32	32	100	40	14,0	3	15500	Да	0,5
2003539	12396923400	40	32	110	50	14,0	4	14000	Да	0,8

■ M680 • Комплектующие

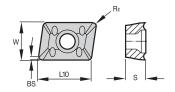
D1	винт пластины	Нм	ключ Torx
25	12148038800	4,0	12148000600
32	12148038800	4,0	12148000600
40	12148038800	4.0	12148000600





Корпуса фрез М680

- Отличный выбор сплавов и геометрий.
- Прочная пластина обеспечивает высокую надежность.



■ M680

									max		
номер заказа	номер по каталогу	D1	D	D4	D6	L	Ap1 max	Z	частота вращ.	подвод СОЖ	ΚГ
2003535	12396903600	40	22	_	39	45	14,0	4	14000	Да	0,2
2003553	12396903800	50	22	_	42	40	14,0	4	12500	Да	0,3
2003554	12396904000	50	22	_	42	40	14,0	5	12500	Да	0,3
2003561	12396904200	63	22	_	50	40	14,0	5	11000	Да	0,5
2003578	12396904600	80	27	_	60	50	14,0	6	9500	Да	1,0
2003594	12396905000	100	32	_	78	50	14,0	8	8500	Нет	1,4
2003681	12396905400	125	40	_	89	63	14,0	9	7500	Нет	2,6
2003782	12396905800	160	40	66,7	90	63	14,0	12	7000	Нет	3,4

■ M680 • Комплектующие

D1	винт пластины	Нм	ключ Torx
40	12148038800	4,0	12148000600
50	12148038800	4,0	12148000600
50	12148038800	4,0	12148000600
63	12148038800	4,0	12148000600
80	12148038800	4,0	12148000600
100	12148038800	4,0	12148000600
125	12148038800	4,0	12148000600
160	12148038800	4.0	12148000600

■ XPHT-ALP

• лучший выбор

○ альтернативный выбор

			_
	M		
	K		
	N	•	•
	S		Г
	Н		П
1	m	TN6501	THM-11
,	80		

номер по каталогу	Число режущих кромок	l w	L10	s	BS	Rε	hm	Ne.	Ĭ
XPHT160404ALP	2	9,80	15,67	4,66	1,70	0,4	0,08	İ	•
XPHT160408ALP	2	9,80	15,67	4,66	1,70	0,8	0,08	•	
XPHT160412ALP	2	9,80	15,67	4,66	1,40	1,2	0,08	Т	•

■ XPHT-AL

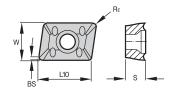
• лучший выбор

○ альтернативный выбор

		16502	¥
I	Н		
l	S		0
ĺ	N	•	•
l	K		0
	M		
ı	r		

номер по каталогу	Число режущих кромок	W	L10	S	BS	Rε	hm		픋
XPHT160408AL	2	9,80	15,67	4,66	1,70	0,8	0,08		•
XPHT160412AL	2	9,80	15,67	4,66	1,40	1,2	0,08		•
XPHT160416AL	2	9,80	15,67	4,66	0,90	1,6	0,08	П	•
XPHT160420AL	2	9,80	15,67	4,66	1,20	2,0	0,08		•
XPHT160425AL	2	9,80	15,67	4,66	1,20	2,5	0,08		•
XPHT160432AL	2	9,80	15,67	4,66	1,20	3,2	0,08		•
XPHT160440AL	2	9,80	15,67	4,66	1,20	4,0	0,08		•

■ XPHT-ERGE


- лучший выбор
- альтернативный выбор

Н	N5515	16510	16520	N6525	N6540	N7525	N7535	125
					•			
N S								
K	•	•	•	0	0		0	
M				0	•	0	0	0
Р				•	•	•	•	•

номер по каталогу	Число режущих кромок	W	L10	s	BS	Rε	hm	ZNT5	TNG	1N6	TN6	TN 6	ŽNT	TN7	Ë
XPHT160408ERGE	2	9,44	15,67	4,76	1,80	0,8	0,12						•		
XPHT160412ERGE	2	9,44	15,67	4,76	1,50	1,2	0,12	•	•	•		•	•		

XPHT

- лучший выбор
- альтернативный выбор

S H	N2510 •	2	0	0	6525	•	7525	7535		0	0	
N					0	0		0		•	0	
M			•	•	0	•	0	0	0	0		0
Р	0				•	•	•	•	•			•

				_		_		ΙŻ	Ž	Ž١	ž	žI:	Ž١	žΙ	ŻΙ	Εli	티리	디슨	
номер по каталогу	Число режущих кромок	W	L10	S	BS	Rε	hm	F	F	F	F	Fli	F	F	F	ΗU	<u>⊢ ⊦</u>	- -	1
XPHT160408	2	9,53	15,67	4,76	1,80	0,8	0,16	•		•	•	1	•		•				I
XPHT160412	2	9,53	15,67	4,76	1,50	1,2	0,16	•		•	•	•	•	•	•		•	•	l
XPHT160416	2	9,53	15,67	4,76	0,80	1,6	0,16	•	•		П	-	•	•	•	T			1
XPHT160420	2	9,53	15,67	4,76	0,50	2,0	0,16		•				-	•	•				
XPHT160425	2	9,53	15,67	4,76	1,20	2,5	0,16							•	•				1
XPHT160432	2	9,53	15,67	4,76	1,20	3,2	0,16							•	•				ı
XPHT160440	2	9,53	15,67	4,76	1,20	4,0	0,16		•				1	•	•	\top			1

XPNT

- лучший выбор
- альтернативный выбор

	2510	2	6525	6540	525	535
Н	•					
S				•		
N S						
K	•	•	0	0		0
M			0	•	0	0
Р	0		•	•	•	•

номер по каталогу	Число режущих кромок	W	L10	s	BS	Rε	hm	TNZ	Ñ.	Ž	TN7	Š
XPNT160412	2	9,53	15,88	4,79	1,20	1,2	0,16					

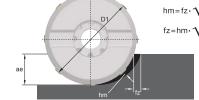
■ XPHT-MR

- лучший выбор
- альтернативный выбор

	TN2510	N5515	N6525	N6540	N7525	N7535
Н	•					
S				•		
N S						
K	•	•	0	0		0
М			0	•	0	0
Р	0		•	•	•	•

номер по каталогу	Число режущих кромок	w	L10	s	BS	Rε	hm	TNE	ž
XPHT160412MR	2	9,53	15,67	4,76	1,70	1,2	0,18	0000	

Фрезы для обработки уступов с углом 90° • Серия М680

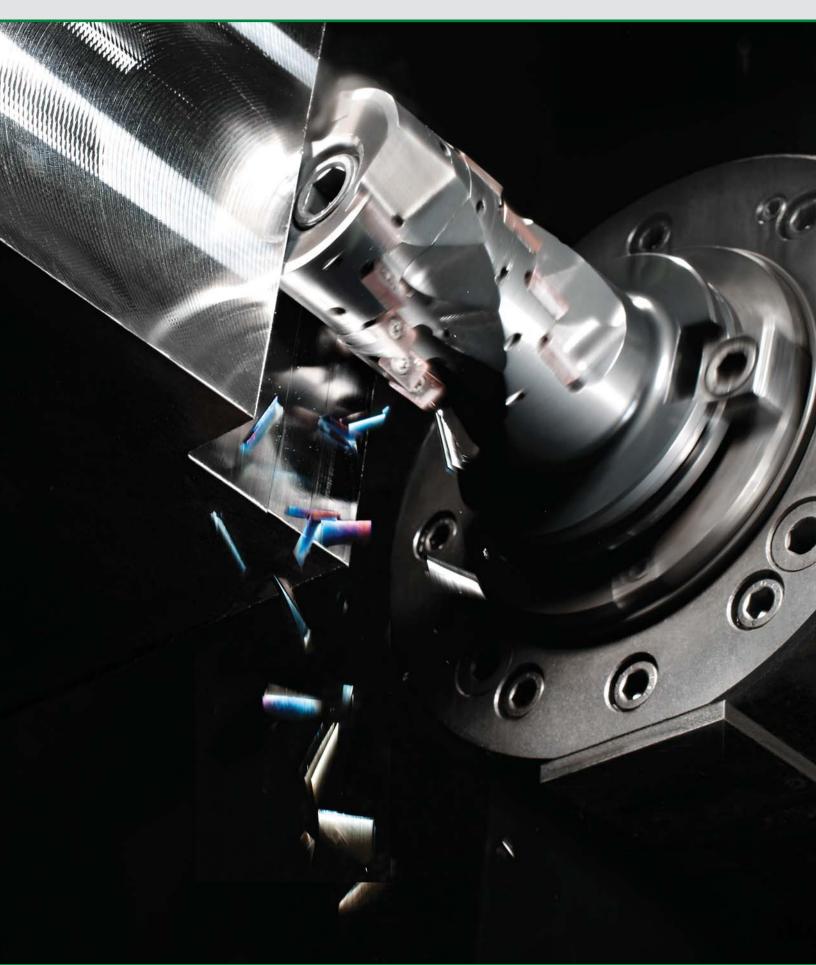

Режимы резания для фрез М680

		I	N251	0	Т	N551	5	1	N6501		Т	N6502	2	Т	N6510)	Т	N652	0	Т	N652	5	Т	N6540)
	ометрия цей кромки										ı	Подач	а на з	уб fz (г	им)										
_	LP/-AL							0,10	0,20	0,30	0,10	0,20	0,30												
	.ERGE				_		0,16							_	0,14		_	0,15		_	0,11		_	0,14	
Х	P 16			0,20	_		0,25							0,11	0,22	0,28	0,12	0,23	0,29	-	0,17			0,22	
-	MR руппа	0,10	0,18	0,24	0,12	0,22	0,30				_									0,10	0,18	0,25	0,13	0,24	0,33
	гериала										Ској	рость	резан	ия VC (м/ми	н)									
	1		280																	300	230			180	
	2		220	190																	180			120	100
	3		180	160																190	150			100	90
	4		190	170																200	150			100	90
	5		140																	170	120		110	80	70
	6		210																	220	170		150		90
P	7		170																	170	140	110	110	90	70
	8		130																	140	110	100	100	70	60
	9		120	100																140	100	80	90	60	60
	10		170																	170	140	120	110	90	80
	11		110	80																110	90	60	70	60	50
	12		200																	220	160	140		110	90
	13.1 13.2	120	170	130 70																190	140 70	110 50	120 60	90 40	70 40
	14.1	120	00	70																190	120	80	130	80	60
	14.2																			150	100	60	100	64	50
M	14.3																			120	80	50	80	50	40
	14.4																			100	60	45	72	40	30
	15	370	270	220	330	240	200							300	220	180	270	200	160	_	_	_	_	_	_
	16	300	210	180	255	190	165							230	170	150	210	150	140	_	_	_	_	_	_
	17	290	220	170	275	210	165							250	190	150	230	170	150	200	150	120	180	140	120
K	18	260	150	110	210	120	90							190	110	80	170	100	70	150	90	60	140	80	60
	19	310	190	100	275	165	145							250	150	130	230	140	120	_	_	_	_	_	_
	20	240	160	110	220	140	100							200	130	90	180	120	80	_	_	_	_	_	
	21							2000	1200	1000	1600	950	800												
	22							1000	600	500	800	500	400												
	23							2000	1200	1000	1600	950	800												
	24							1100	650	500	900	550	450												
N	25							800	500	400	650	400	300												
	26							_	_	_	_	_	_												
	27							_	_	_	_	_	_												
	28							_	_	_	_	_	_												
	29							_	_	_	_	_	_												
	30 31								_			_	_										50	40	35
	32																						40		25
	33																							15	10
S	34																							15	5
	35																							25	15
	36																						70		30
	37																							30	25
	38.1	100	80	60																			30		
	38.2	100		60																					
Н	39.1		70	50																					
	39.2		70	50																					

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ae, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,02	0,05	0,1	0,2	0,4
коэффициент fz	3,5	3	2	1,5	1
коэффициент vc	1,6	1,5	1,4	1,3	1,1



Режимы резания для фрез М680

	TN752	5	1	TN753	5		TTI25			THM			THM-U			TTM			TTR			
									Подач	а на зу	/б fz (м	м)									Геомо режущей	
									0,10	0,20	0,30	0,10	0,20	0,30								P/-AL
0,06	0,10	0,13	0,08	0,13		0,08	0,13	0,16	0.40						0.40			0.40				RGE
0,08	0,16	0,20	0,10	0,20	0,25	0,10	0,20	0,25	0,10	0,20	0,25				0,10	0,20	0,25	0,10	0,20	0,25	XP	
0,10	0,18	0,24	0,12	0,22	0,30			0				. ()			0,12	0,22	0,30				Груі	ЛR ппа
									орость	резани	ИЯ VC (N	I/МИН)									матер	
330	250	210	280	220	190	360	300	250							170	150	140	170	150	140	1	
250	200	170	190	150	130	280	240	210							120	100	90	120	100	90	2	
210	160	150	160	120	110	250	190	170							100	80	70	100	80	70	3	
220	170	150	165	130	110	260	210	180							110	85	80	110	85	80	4	
190	130	120	140	100	90	_	_	_							85	70	60	85	70	60	5	
240	190	150	190	140	120	290	220	180							120	100	90	120	100	90	6	
190	150	120	140	110	90	220	180	150							90	80	70	90	80	70	7	P
160	120	110	120	90	80	_	_	_							80	60	55	80	60	55	8	
150	110	90	110	80	70	-	_	_							70	50	40	70	50	40	9	
190	150	130	140	110	100	220	180	150							110	85	80	110	85	80	10	
120	100	70	90	70	60	_	_	_							70	50	40	70	50	40	11	
240	180	150	180	140	120	280	210	180							115	90	85	115	90	85	12	
210	150	120	155	110	90	250	180	150							100	80	70	100	80	70	13.1	
110	80	60	80	60	50 70	120	90	80 180							50	40	35	50	40	35	13.2	
210	130	90	160	100		400	260								100	60	40	100	60	40	14.1	
170	110	70	130	80	60	330	220	150							80	50	35 25	80	50	35 25	14.2 14.3	M
130 110	90 70	60 50	100 90	60 50	50 40	270	170 130	120 90							60 50	35 30	20	60 50	35 30	20	14.3	
110	70	30	90		40	20	130	90	140	100	80				- 50	- JU		- 50			15	
									100	80	70									_	16	
			220	170	150				120	90	75				160	120	100	140	110	100	17	
			170	100	70				110	85	60				120	70	50	110	60	50	18	K
				_	_				150	120	80				120	_	_	_	_	_	19	
			_	_	_				130	95	60					_	_	_	_	_	20	
									900	600	500	2000	1200	1000							21	
									450	300	250	1000	600	500							22	
									900	600	500	2000	1200	1000							23	
									700	500	400	1100	650	500							24	
									450	280	200	800	500	400							25	
									_	_	_	_	_	_							26	N
									_	_	_	_	_	_							27	
									_	_	_	_	_	_							28	
									_	_	_	_	_	_							29	
									_	_	_	_	_	_							30	
									38	25	_										31	
									30	20	_										32	
									25	15	_										33	
									20	15	_										34	S
									30	20	_										35	
									50	30	_										36	
									_	_	_										37	
																					38.1	
																					38.2	н
																					39.1	
																					39.2	

Фрезы со сменными режущими пластинами • Фрезы с винтовым расположением зубьев

Серия М390	 	 	A100–A105
Серия М300	 	 	A106–A117
M300+ .	 	 	A108–A111
M300			A112-A117

WWW.WIDIA.COM

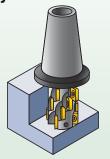
Лучший выбор среди фрез с винтовым расположением зубьев • **Серия М390**

Особенностью фрез серии М390 является сменная торцевая головка, с установленными в ней режущими пластинами, основным назначением которой является повышение экономичности обработки. Данные фрезы также отличает высокая производительность и хороший стружкоотвод.

M390

- Прочная конструкция пластины и корпуса фрезы обеспечивают максимальную производительность.
- Новые пластины SDMX имеют винтовую режущую кромку, что способствует плавному резанию.
- Большая опорная поверхность пластины гарантирует ее надежное крепление в корпусе.

Сменная торцевая головка — обеспечивает снижение эксплуатационных расходов.


Прочная конструкция фрезы обеспечивает оптимальное удержание режущих пластин.

Геометрия

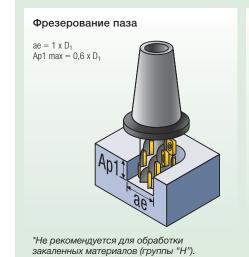
пластины

Фрезы с **ВИНТОВЫМ** расположением зубьев

M390 SD1204...

Мах глубина резания: 117,0 мм

Угол в плане: 90° Число кромок на пластине: 4 Диаметр: 50 мм – 80 мм Стр.: А102-А105



ML	Положительная геометрия для фрезерования с легкими режимами резания или обработки уступов с непродолжительным временем контакта.
ММ	Новая геометрия разработана для обеспечения стойкости инструмента и плавного резания. Рекомендуется для фрезерования любых материалов.
SDMX MH	Новая геометрия разработана для обеспечения наивысшей стойкости инструмента и плавного резания. Рекомендуется для нагруженных проходов при обработке стали и чугуна.
SDMT MH	Высокоизносостойкая геометрия обеспечивает возможность обработки при тяжелых режимах.

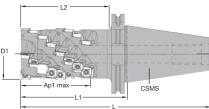
Рекомендуемое применение

Соотношение глубины резания (Ар1) и ширины контакта (ае) в зависимости от типа операции

Фрезерование уступа

$ae = 0.25-0.4 \times D_1$ Ap1 max = 1 x D₁ $ae = >0,4 \times D_1$ Ap1 max = 0,6 x D_1


*Не рекомендуется для обработки закаленных материалов (группы "Н").

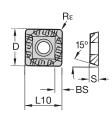

Фрезы с винтовым расположением зубьев • Серия М390

WIDIA

Корпуса фрез M390 • SD1204..

- Четыре режущие кромки.
- Сменная торцевая головка.
- Положительный угол подъема винтовой линии обеспечивает высокую производительность.

■ M390 Integral


										max		
номер заказа	номер по каталогу	D1	L	L1	L2	Ap1 max	Z	ΖU	CSMS	частота вращ.	подвод СОЖ	КГ
2021422	12393041200	50	207	105	82	64,0	18	3	DV50	14000	Да	3,4
2021423	12393041400	63	232	130	107	85,0	32	4	DV50	12000	Да	4,3
2021424	12393041800	80	262	160	137	117,0	55	5	DV50	10500	Да	6,3

■ M390 Integral • Комплектующие

D1	винт пластины	Нм	ключ Тогх	сменная головка	винт головки
50	12148037700	4,0	12148000600	12393051200	12147625400
63	12148037700	4,0	12148000600	12393051400	12148783700
80	12148037700	4.0	12148000600	12393051800	12148783700

лучший выборальтернативный выбор

C	30.0	3								•			•
ı	hm		TN2510	TN5515	TN6510	TN6520	TN6525	TN6540	TN7525	TN7535	TT125	THM	ML
	Н		•										
	S							•				0	
	N												
	K		•	•	•	•	0	0		0		0	0
	М						0	•	0	0	0		0
	Р		0							•	lacksquare		•

номер по каталогу	Число режущих кромок	D	L10	s	BS	Rε	hm	TN2	SNT	1N6	TN6	TN6	TN6	TN7	TN7		₽ H	Σ
SDMT1204PDRML	4	12,70	12,70	4,77	_	1,2	0,08	•	•		•	•	•			•		

■ SDMX-MM

• лучший выбор

○ альтернативный выбор

N S H	15515	2	l6540 •	55	232
M	•	0	•	0	0 0

номер по каталогу	Число режущих кромок	D	L10	s	BS	Rε	hm	TN5	TN6	9 L	Ž	Ž
SDMX120408RMM	4	12,70	12,70	4,76	1,93	0,8	0,10				•	•
SDMX120412RMM	4	12,70	12,70	4,76	1,54	1,2	0,10		•	•	•	•

■ SDMX-MH

• лучший выбор

○ альтернативный выбор

	Н	S	N S	K		M
N5515				•		
N6520				•		
N6525				0)	0
N6540		•		0	•	
N7525					0	
N7535				0)	

номер по каталогу	Число режущих кромок	D	L10	s	BS	Rε	hm	TN5	NE L		
SDMX120408RMH	4	12,70	12,70	4,76	1,93	0,8	0,14			•	l
SDMX120412RMH	4	12,70	12,70	4,76	1,54	1,2	0,14			•	l
SDMX120416RMH	4	12,70	12,70	4,76	1,50	1,6	0,14	•	•	•	l

■ SDMT-MH

• лучший выбор

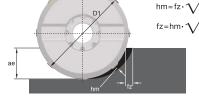
○ альтернативный выбор

0 1	1.4										П	
hr	n	TN2510	TN5515	TN6510	TN6520	TN6525	TN6540	TN7525	TN7535	TT125	THM	M
Н		•										
S							•				0	
N												
K		•	•	•	•	0	0		0		0	0
M						0	•	0	0	0		0
Р		0				•	•	•	•	•		•

номер по каталогу	Число режущих кромок	D	L10	s	BS	Rε	hm	TN2	TN5	JAN 1	:19	ž	TNZ	≧lÈ	티토	16
SDMT1204PDRMH	4	12,70	12,70	4,81	_	1,2	0,14			•			•		•	

Фрезы с винтовым расположением зубьев • Серия М390

Режимы резания для фрез М390


			TN2510)		TN5515			TN6510			TN6520			TN6525			TN6540	
	етрия й кромки								По	дача на	зуб fz (м	ім)							
۸		0,06	0,11	0,16	0,08	0,14	0,20	0,07	0,11	0,13									
N		0.11	0.40	0.07	0,10	0,17	0,25				0.40	0.00	0.00	0,08	0,14	0,21	0,11	0,19	0,28
N	ИН	0,11	0,19	0,27	0,14	0,24	0,34				0,16	0,28	0,39	0,12	0,20	0,28	0,15	0,26	0,37
Гру матер									Скоро	сть реза	ния vc (і	и/мин)							
water	лиала 1	360	280	230										300	230	190	250	200	170
	2	280	220	190										230	180	150	170	140	120
	3	230	180	160										190	140	130	140	110	100
	4	240	190	170										200	150	140	150	120	100
	5	210	140	130										170	120	110	130	90	80
	6	260	210	170										220	170	140	170	130	100
	7	210	170	130										170	140	110	130	100	80
Р	8	180	130	120										140	110	100	110	80	70
	9	170	120	100										140	100	80	100	70	60
	10	210	170	140										170	140	120	130	100	90
	11	130	110	80										110	90	60	80	60	50
	12	260	200	170										220	160	140	160	120	100
	13.1	230	170	130										190	140	110	140	100	80
	13.1	120	80	70										100	70	50	70	50	40
	14.1	120	00	70										190	120	80	140	90	60
	14.2													150	100	60	120	70	50
M																			
	14.3 14.4													120 100	80 60	50 45	90 80	50 45	45 35
	15	370	270	220	330	240	200	310	230	190	290	210	170	-	_	40		40 —	
	16	300	210	180	255	190	165	240	180	160	220	160	140						
	17	290	220	170	275	210	165	260	200	160	240	180	150	230	180	150	170	140	120
K	18	260	150	110	210	120	90	200	120	90	180	110	80	190			140		
															140	130		110	100
	19 20	310 240	190	100	275	165	145	260	160	130	240	140	120	_	_	_	_	_	_
	21	240	160	110	220	140	100	210	140	100	190	120	90		_		_	_	_
	22																		
	23																		
	23 24																		
N	25																		
	26																		
	27																		
	28																		
	29																		
	30																=0		0.5
	31																50	40	35
	32																40	30	25
	33																25	15	10
S	34																20	15	5
	35																35	25	15
	36																70	40	30
	37																60	30	25
	38.1	100	80	60															
н	38.2	100	80	60															
	39.1	90	70	50															
	39.2	90	70	50															

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ае, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,02	0,05	0,1	0,2	0,4
коэффициент fz	3,5	3	2	1,5	1
коэффициент vc	1,6	1,5	1,4	1,3	1,1

На стр. А101 представлены дополнительные рекомендации по применению.

			TTM			THM			TTI25			TN7535		1	TN7525	
етрия								fz (MM)		Подача		1117000			1117020	
и кромки ИL		0,20	0,14	0,08	0,20	0,14	0,08	0,20	0,14	0,08	0,20	0,14	0,08	0,16	0,11	0,06
/M		0,20	-,	0,00	0,20	•,	0,00	0,20	-,	0,00	0,25	0,17	0,10	0,20	0,14	0,08
ИΗ	۸	0,34	0,24	0,14	0,34	0,24	0,14	0,25	0,17	0,10	0,34	0,24	0,14	0,27	0,19	0,11
лпа)иала	Груі матер						ин)	vc (м/м	резания	корость і	CH					
	1	140	150	170				250	300	360	190	220	280	210	250	330
	2	90	100	120				210	240	280	130	150	190	170	200	250
	3	70	80	100				170	190	250	110	120	160	150	160	210
	4	80	85	110				180	210	260	110	130	165	150	170	220
	5	60	70	85				_	_	_	85	100	140	120	130	190
	6	90	100	120				180	220	290	115	140	185	150	190	240
P	7	70	80	90				150	180	220	90	110	140	120	150	190
	8	55	60	80				_	_	_	80	90	120	110	120	160
	9	40	50	70				_	_	_	70	80	110	90	110	150
	10	80	85	110				150	180	220	100	110	140	130	150	190
	11	40	50	70				_	_	_	60	70	90	70	95	120
	12	85	90	115				180	210	280	115	135	180	150	180	240
	13.1	70	80	100				150	180	250	90	110	155	120	150	210
	13.2	35	40	50				75	90	120	45	55	80	60	75	110
	14.1	40	60	100				180	260	400	70	100	160	90	130	210
М	14.2	35	50	80				150	220	330	60	80	130	70	110	170
	14.3	25	35	60				120	170	270	50	60	100	60	85	130
	14.4	20	30	50	00	100	1.10	90	130	20	40	50	90	50	65	110
	15	_	_	_	80	100	140				_	_	_			
	16	_	_	_	70	80	100				_		_			
K	17	90	100	120	75	90	120				130	150	190			
	18 19	70	80	100	60	85	110				110	120	160			
	20	_	_	_	80 60	120 95	150 130				_	_	_			
	21				00	90	130									
	22															
	23															
	24															
	25															
N	26															
	27															
	28															
	29															
	30															
	31				_	25	38									
	32				_	20	30									
	33				_	16	24									
S	34				_	13	20									
	35				_	21	32									
	36				_	32	50									
	37				_	_	_									
	38.1															
н	38.2															
	39.1															
	39.2															

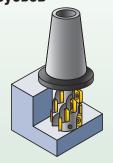
Надежные фрезы с винтовым расположением зубьев •

Серия М300

Надежные фрезы общего назначения серии M300 представлены в широком диапазоне геометрий и сплавов режущих пластин. Они обеспечивают большой удельный съем металла и высокую производительность.

M300

- Широкий выбор пластин для обработки всех видов материалов.
- Положительный угол наклона винтовой линии обеспечивает плавность фрезерования.
- Эффективная конструкция зубьев обеспечивает высокую производительность.


Сменная вершина режущей - части и ограничительное кольцо обеспечивают эксплуатационную гибкость фрез серии M300.

Прочная конструкция фрезы обеспечивает оптимальное удержание пластин в корпусе.

Фрезы с **ВИНТОВЫМ** расположением зубьев

M300+

Мах глубина резания: 46,0 MM

Угол в плане: 90° Число кромок на пластине: 2 Диаметр: 25 мм – 40 мм

Стр.: А108-А111

Р	
M	
K	
N	The state of
S	333
	3

Рекомендуются для выполнения операций черновой обработки или прерывистого резания, главным

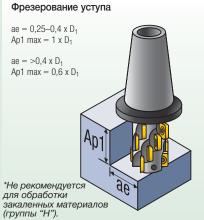
общего фрезерования.

образом стали и чугуна.

Мах глубина резания: 112,0 мм

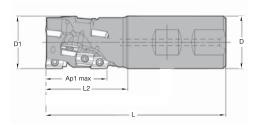
Угол в плане: 90° Число кромок на пластине: 2 Диаметр: 50 мм – 80 мм

Стр.: А112-А117



Геометрия пластины	Рекомендуемое применение
ALP	Рекомендуются для обработки алюминия и цветных сплавов. Полированная передняя поверхность обеспечивает отличный сход стружки и минимальную адгезию.
AL	Рекомендуются для обработки алюминия и цветных сплавов. Полированная передняя поверхность обеспечивает отличный сход стружки и минимальную адгезию.
ERGE	Рекомендуется для легких режимов и получистовой обработки стали, нержавеющей стали и чугуна.
XP16	Рекомендуется для обработки стали и чугуна.
MR MR	Рекомендуется для тяжелых проходов и нестабильных условий резания (например, при затрудненном доступе к месту обработки).

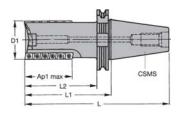
Соотношение глубины резания (Ар1) и ширины контакта (ае) в зависимости от типа операции



Корпуса фрез М300+

- Фрезы с винтовым расположением зубьев общего назначения.
- Рекомендуются для небольших диаметров.
- Обработка пазов и профильное фрезерование.

■ M300+


									max		
номер заказа	номер по каталогу	D1	D	L	L2	Ap1 max	Z	ΖU	частота вращ.	подвод СОЖ	ΚГ
2021407	12393001200	25	25	96	40	28,0	6	2	26100	Да	0,3
2021408	12393001400	32	32	110	50	37,0	12	3	23000	Да	0,6
2021409	12393001600	40	32	120	60	46,0	15	3	20600	Да	0,8

■ M300+ • Комплектующие

D1	винт пластины	Нм	ключ Torx
25	12748610000	4,0	12148788900
32	12748610000	4,0	12148788900
40	12748610000	4.0	12148788900

ПРИМЕЧАНИЕ: для стандартных фрез допускается использование пластин с радиусом при вершине до 2 мм, без модификации корпуса. Информация о модификации корпусов фрез на стр. E15.

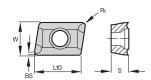
■ M300+ • Integral

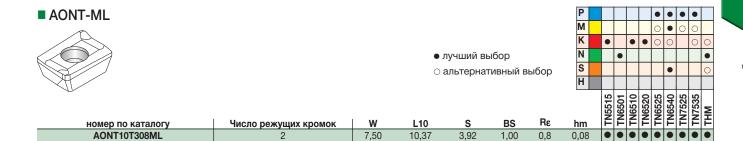
										max		
номер заказа	номер по каталогу	D1	L	L1	L2	Ap1 max	Z	ΖU	CSMS	частота вращ.	подвод СОЖ	ΚГ
2021412	12393021000	40	153	85	2	46,0	15	3	DV40	20600	Да	1,3

■ M300+ Integral • Комплектующие

D1	винт пластины	Нм	ключ Torx
40	12748610000	4,0	12148788900

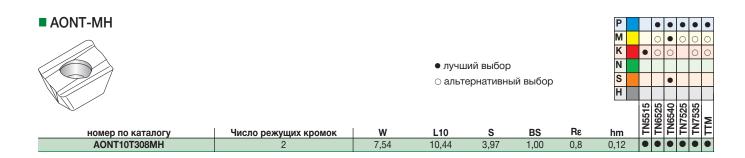
ПРИМЕЧАНИЕ: для стандартных фрез допускается использование пластин с радиусом при вершине до 2 мм, без модификации корпуса. Информация о модификации корпусов фрез на стр. E15.




0,8

0,08

1,00



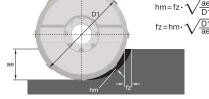
7,50

10,37

3,92

Фрезы с винтовым расположением зубьев • Серия М300

Режимы резания для фрез М300+

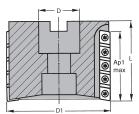

			TN5515	j		TN6501		•	ΓN6502			TN6510			TN6520			TN6525	
Геом	етрия й кромки								Пода	ча на зу	о́ fz (мм	1)							
	ИL	0,06	0,10	0,12	0,06	0,12	0,20	0,07	0,18	0,28	0,07	0,11	0,13	0,07	0,12	0,14	0,05	0,08	0,10
N		0,08	0,12	0,18															
۸	ЛΗ	0,10	0,16	0,25													0,08	0,13	0,21
Гру	ппо																		
матер	риала							(корост	ь резани	IЯ VC (M/	мин)							
	1																300	230	190
	2																230	180	153
	3																190	150	135
	4																200	150	140
	5 6																170	120	110
	7																220 170	170 140	140 110
P	8																140	110	100
	9																140	100	80
	10																170	140	120
	11																110	90	60
	12																220	160	140
	13.1																190	140	110
	13.2																100	70	50
	14.1																190	120	80
M	14.2																150	100	60
""	14.3																120	80	50
	14.4																100	60	45
	15	330	240	200							300	220	180	270	200	160	_	_	_
	16	255	190	165							230	170	150	210	150	140	_	_	
K	17	275	210	165							250	190	150	230	170	150	200	150	120
	18	210	120	90							190	110	80	170	100	70	150	90	60
	19 20	275	165	145							250 200	150 130	130	230	140	120	_	_	_
	21	220	140	100	2000	1200	1000	1600	950	800	200	130	90	180	120	80	_	_	_
	22				1000	600	500	800	500	400									
	23				2000	1200	1000	1600	950	800									
	24				1100	650	500	900	550	450									
N	25				800	500	400	650	400	300									
N	26				_	_	_	_	_	_									
	27				_	_	_	_	_	_									
	28				_	_	_	_	_	_									
	29				_	_	_	_	_	_									
	30								_	_									
	31																		
	32																		
S	33																		
•	34																		
	35																		
	36 37																		
	38.1																		
	38.2																		
Н	39.1																		
	39.2																		

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ае, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,02	0,05	0,1	0,2	0,4
коэффициент fz	3,5	3	2	1,5	1
коэффициент vc	1,6	1,5	1,4	1,3	1,1

На стр. А107 представлены дополнительные рекомендации по применению.


Режимы резания для фрез М300+

	TN6540)		TN7525			TN7535			TTI25			THM			TTM			
						•	По	одача на	зуб fz (м	им)					•			Геом режуще	етрия й кромкі
0,07	0,11	0,13	0,05	0,08	0,10	0,06	0,10	0,12	0,06	0,10	0,12	0,06	0,10	0,12				+	ML
			0,06	0,10	0,14	0,08	0,12	0,18	0,08	0,12	0,18	0,08	0,12	0,18	0,08	0,12	0,18		/IM
0,11	0,18	0,28	0,08	0,13	0,20	0,10	0,16	0,25	0,10	0,16	0,25				0,10	0,16	0,25		ИН
							0		(/								Гру	ппа
									ания vc (мате	
220	180	150	330	250	210	280	220	190	360	300	250				170	150	140	1	
150	120	100	250	200	170	190	150	130	280	240	210				120	100	90	2	
30	100	90	210	160	150	160	120	110	250	190	170				100	80	70	3	
30	100	90	220	170	150	165	130	110	260	210	180				110	85	80	4	
110	80	70	190	130	120	140	100	90	_	_	_				85	70	60	5	
150	110	90	240	190	150	190	140	120	290	220	180				120	100	90	6	
110	90	70	190	150	120	140	110	90	220	180	150				90	80	70	7	P
100	70	60	160	120	110	120	90	80	_		_				80	60	55	8	
90	60	60	150	110	90	110	80	70	_	_	_				70	50	40	9	
110	90	80	190	150	130	140	110	100	220	180	150				110	85	80	10	
70	60	50	120	100	70	90	70	60	_	_	_				70	50	40	11	
40	110	90	240	180	150	180	140	120	280	210	180				115	90	85	12	
20	90	70	210	150	120 60	155 80	110	90 50	250 120	180	150 75				100 50	80	70	13.1 13.2	
30 30	40 80	40 60	110 210	80 130	90	160	60 100	70	400	90 260	180				100	40 60	35 40	14.1	
00	64		170	110	70	130	80	60	330	220	150				80	50	35	14.1	
80	50	50 40	130	90	60	100	60	50	270	170	120				60	35	25	14.2	M
72	40	30	110	70	50	90	50	40	20	130	90				50	30	20	14.3	
_	_	_	110	70	30	_	_	_	20	100	30	140	100	80	_	_	_	15	
	_	_				_	_	_				100	80	70	_	_	_	16	
80	140	120				220	170	150				120	90	75	160	120	100	17	
40	80	60				170	100	70				110	85	60	120	70	50	18	K
_	_	_				_	_	_				150	120	80	_	_	_	19	
_	_	_				_	_	_				130	95	60	_	_	_	20	
												900	600	500				21	
												450	300	250				22	
												900	600	500				23	
												700	500	400				24	
												450	280	200				25	N
												400	250	200				26	
												340	210	160				27	
												250	160	120				28	
												500	350	200				29	
												500	350	200				30	
50	40	35										38	29	25				31	
40	30	25										30	23	20				32	
25	15	10										24	19	16				33	
20	15	5										20	15	13				34	S
35	25	15										32	23	21				35	
70	40	30										50	40	32				36	
60	30	25										_	_	_				37	
																		38.1 38.2	
																			Н
																		39.1	

Корпуса фрез М300

- Фрезы с винтовым расположением зубьев общего назначения.
- Отличный выбор сплавов и геометрий.
- Прочная пластина обеспечивает высокую надежность.

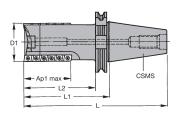
■ M300

								max		
номер заказа	номер по каталогу	D1	D	L	Ap1 max	Z	ΖU	частота вращ.	подвод СОЖ	ΚГ
2021434	12393080200	50	22	50	28,0	6	3	13090	Нет	0,4
2021437	12393083200	50	22	65	42,0	12	4	13090	Нет	0,5
2021435	12393080400	63	27	61	42,0	9	3	11690	Нет	0,8
2021438	12393083400	63	27	75	56,0	20	5	11690	Нет	1,0
2021436	12393080600	80	32	70	56,0	16	4	10360	Нет	1,5
2021439	12393083600	80	32	85	70,0	30	6	10360	Нет	2,0

■ М300 • Комплектующие

D1	винт пластины	Нм	ключ Torx
50	12148055800	4,0	12148000600
63	12148055800	4,0	12148000600
80	12148055800	4.0	12148000600

ПРИМЕЧАНИЕ: для стандартных фрез допускается использование пластин с радиусом при вершине до 2 мм, без модификации корпуса. Информация о модификации корпусов фрез на стр. E15.



Корпуса фрез М300

- Отличный выбор сплавов и геометрий.
- Прочная пластина обеспечивает высокую надежность.

■ M300 Integral

										max	
номер заказа	номер по каталогу	D1	L	L1	L2	Ap1 max	Z	ΖU	CSMS	частота вращ.	КГ
2021419	12393040200	50	217	115	96	70,0	15	3	DV50	13090	3,7
2021420	12393040400	63	232	130	111	84,0	18	3	DV50	11690	4,3
2021421	12393040800	80	257	155	136	112,0	32	4	DV50	10360	6,0

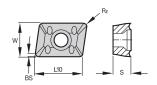
■ M300 Integral • Комплектующие

D1	винт пластины	Нм	ключ Torx	сменная головка	винт головки
50	12148055800	4,0	12148000600	12393060200	12146021100
63	12148055800	4,0	12148000600	12393060400	12147517100
80	12148055800	4.0	12148000600	12393060800	12147517100

ПРИМЕЧАНИЕ: для стандартных фрез допускается использование пластин с радиусом при вершине до 2 мм, без модификации корпуса. Информация о модификации корпусов фрез на стр. E15.

Комплектующая деталь для фрез М300

■ Торцевая фрезерная насадка


номер заказа	номер по каталогу	D1	L1	ΖU	Z	ΚΓ
2021425	12393050200	50	28	3	6	0,3
2021426	12393050400	63	28	3	6	0,3
2021427	12393050800	80	28	4	8	0,6

ПРИМЕЧАНИЕ: К корпусу любой фрезы серии М300 может быть добавлена одна торцевая насадка, соответствующего диаметра D1. В этом случае стандартный винт должен быть заменен:

50 мм — использование удлиненного винта с головкой под ключ №12146030700 (М12х70).

63 мм и 80 мм — использование удлиненного винта с головкой под ключ №12146030800 (М12х70).

■ XPHT-ALP

• лучший выбор

○ альтернативный выбор

								N650	₹
номер по каталогу	Число режущих кромок	W	L10	S	BS	Rε	hm	F	Ė
XPHT160404ALP	2	9,80	15,67	4,66	1,70	0,4	0,08		
XPHT160408ALP	2	9,80	15,67	4,66	1,70	0,8	0,08		•
XPHT160412ALP	2	9,80	15,67	4,66	1,40	1,2	0,08		•

XPHT-AL

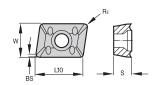
• лучший выбор

○ альтернативный выбор

								<u>છ</u>	ΣI
номер по каталогу	Число режущих кромок	W	L10	S	BS	Rε	hm	J9NL	Ė
XPHT160408AL	2	9,80	15,67	4,66	1,70	0,8	0,08		D
XPHT160412AL	2	9,80	15,67	4,66	1,40	1,2	0,08	1	D
XPHT160416AL	2	9,80	15,67	4,66	0,90	1,6	0,08	7	
XPHT160420AL	2	9,80	15,67	4,66	1,20	2,0	0,08	- •	•
XPHT160425AL	2	9,80	15,67	4,66	1,20	2,5	0,08	-	D
XPHT160432AL	2	9,80	15,67	4,66	1,20	3,2	0,08	1	D
XPHT160440AL	2	9,80	15,67	4,66	1,20	4,0	0,08	-	

■ XPHT-ERGE

• лучший выбор


○ альтернативный выбор

0,12)								
0,12)	•	•	•	•	•	•	•	•
hm		TN5515	TN6510	TN6520	TN6525	TN6540	TN7525	TN7535	TT125
Н									
						•			
N S									
K		•	•	•	0	0		0	
M					0	•	0	0	0
P					•	•	•	•	•

								155	165	165	165	18	175	175	1 2	ž
номер по каталогу	Число режущих кромок	W	L10	S	BS	Rε	hm	F	É	F	F	F	É	F		=
XPHT160408ERGE	2	9,44	15,67	4,76	1,80	0,8	0,12	•	•							
XPHT160412ERGE	2	9,44	15,67	4,76	1,50	1,2	0,12		•		•			•		Þ

- лучший выбор
- альтернативный выбор

	12510	15515	16510	16520	16525	16540	7525	7535	ri25	M	半	_
Н	•											
S						•				0	0	
N										•	0	
K	•	•	•	•	0	0		0		0	•	
М					0	•	0	0	0			C
Р	0				•	•	•	•	•			

номер по каталогу	Число режущих кромок	W	L10	S	BS	Rε	hm	Z	Z	L	Z	Z	Z	F	Z	티	티라	티브	-
XPHT160408	2	9,53	15,67	4,76	1,80	0,8	0,16		•	•						Т	Т	Т	I
XPHT160412	2	9,53	15,67	4,76	1,50	1,2	0,16	•	•	•								•	١
XPHT160416	2	9,53	15,67	4,76	0,80	1,6	0,16	•	•				•	•	•	Т	Т	Т	1
XPHT160420	2	9,53	15,67	4,76	0,50	2,0	0,16		•					•	•				
XPHT160425	2	9,53	15,67	4,76	1,20	2,5	0,16		•										1
XPHT160432	2	9,53	15,67	4,76	1,20	3,2	0,16		•										
XPHT160440	2	9,53	15,67	4,76	1,20	4,0	0,16		•					•	•				1

XPNT

- лучший выбор
- альтернативный выбор

N S H	•	2	16525	•	2	7535
K	•	•	0	0		0
P M	0		•	•	0	•

								N25 N55 N65 N75 N75
номер по каталогу	Число режущих кромок	W	L10	S	BS	Rε	hm	
XPNT160412	2	9,53	15,88	4,79	1,20	1,2	0,16	

■ XPHT-MR

- лучший выбор
- альтернативный выбор

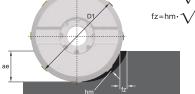
h	ım	TN2510	TN5515	TN6525	TN6540	TN7525	TN7535
	Н	•					
	S				•		
	N						
	K	•	•	0	0		0
	M			0	•	0	0
	۲	0		•	•	•	•

номер по каталогу	Число режущих кромок	l w	L10	s	BS	Rε	hm	TN25 TN55 TN65 TN65 TN75
XPHT160412MR	2	9,53	15,67	4,76	1,70	1,2	0,18	

Фрезы с винтовым расположением зубьев • Серия М300

WIDIA[™]

Режимы резания для фрез М300


		Т	N251	0	Т	N551	5	1	N6501	l	Т	N6502	2	Т	N6510)	Т	N652	0	Т	N652	5	Т	N6540)
	етрия й кромки										ı	Подач	а на з	уб fz (n	им)										
АЦР								0,10	0,20	0,30	0.10	0,20	0.30												
EF					0,08	0,13	0,16	-,	-,	-,	-,	-,	-,	0,09	0,14	0,18	0,09	0,15	0,18	0,07	0,11	0,13	0,09	0,14	0,18
XP		0,08	0,16	0,20			0,25							0,11	0,22	0,28	0,12	0,23	0,29	0,08	0,17	0,21	0,11	0,22	0,28
	/IR	0,10	0,18	0,24	0,12	0,22	0,30													0,10	0,18	0,25	0,13	0,24	0,33
Гру матер											Ској	ость	резані	ия vc (м/ми	н)									
	1	360	280	230																300	230	190	220	180	150
	2	280	220	190																230	180	153	150	120	100
	3	230	180	160																190	150	135	130	100	90
	4	240	190	170																200	150	140	130	100	90
	5	210	140	130																170	120	110	110	80	70
	6	260	210	170																220	170	140	150	110	90
Р	7	210	170	130																170	140	110	110	90	70
P	8	180	130	120																140	110	100	100	70	60
	9	170	120	100																140	100	80	90	60	60
	10	210	170	140																170	140	120	110	90	80
	11	130	110	80																110	90	60	70	60	50
	12	260	200	170																220	160	140	140	110	90
	13.1	231	170	130																190	140	110	120	90	70
	13.2	120	80	70																100	70	50	60	40	40
	14.1																			190	120	80	130	80	60
M	14.2																			150	100	60	100	64	50
	14.3																			120	80	50	80	50	40
	14.4	070	070	000	000	040	000							000	222	400	070	200	100	100	60	45	72	40	30
	15		270		330		200							300	220	180	270	200	160		_	_	_	_	_
	16		210				165								170	150		150	140		150	100	100	140	100
K	17 18		220 150			120	165 90								190 110	150 80		170 100	150 70		150 90	120 60	180 140	140 80	120 60
	19		190	100	275	165								250	150	130	230	140	120	150	90	00	140	ou	00
	20		160				100								130	90		120	80						
	21	240	100	110	220	140	100	2000	1200	1000	1600	950	800	200	130	30	100	120	- 00						
	22							1000	600	500	800	500	400												
	23								1200		1600		800												
	24							1100	650	500	900	550	450												
	25							800	500	400	650	400	300												
N	26							_	_	_	_	_	_												
	27							_	_	_	_	_	_												
	28							_	_	_	_	_	_												
	29							_	_	_	_	_	_												
	30							_	_	_	_	_	_												
	31																						50	40	35
	32																						40	30	25
	33																						25	15	10
S	34																						20		5
	35																						35		15
	36																						70		30
	37	400	00	00																			60	30	25
	38.1	100		60																					
Н	38.2		80																						
	39.1		70																						
	39.2	90	70	50																					

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ае, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,02	0,05	0,1	0,2	0,4
коэффициент fz	3,5	3	2	1,5	1
коэффициент vc	1,6	1,5	1,4	1,3	1,1

На стр. А107 представлены дополнительные рекомендации по применению.

Режимы резания для фрез М300

	TN752	5	1	TN7535	j		TTI25			THM			THM-U			TTM			TTR			
									Подач	а на зу	уб fz (м	м)									Геом	етрия и кромки
									0,10	0,20	0,30	0,10	0,20	0,30								P/-AL
0,06	0,10	0,13	0,08	0,13	0,16	0,08	0,13	0,16														RGE
0,08	0,16	0,20	0,10	0,20	0,25	0,10	0,20	0,25	0,10	0,20	0,25				0,10	0,20	0,25	0,10	0,20	0,25	XP	
0,10	0,18	0,24	0,12	0,22	0,30							, ,			0,12	0,22	0,30				Гру	/IR
									орость	резані	NS AC (N	і/мин)									матер	
330	250	210	280	220	190	360	300	250							170	150	140	170	150	140	1	
250	200	170	190	150	130	280	240	210							120	100	90	120	100	90	2	
210	160	150	160	120	110	250	190	170							100	80	70	100	80	70	3	
220	170	150	165	130	110	260	210	180							110	85	80	110	85	80	4	
190	130	120	140	100	90	_	_	_							85	70	60	85	70	60	5	
240	190	150	190	140	120	290	220	180							120	100	90	120	100	90	6	
190	150	120	140	110	90	220	180	150							90	80	70	90	80	70	7	P
160	120	110	120	90	80	_	_	_							80	60	55	80	60	55	8	
150 190	110 150	90 130	110 140	80 110	70 100	220	180	— 150							70 110	50 85	40 80	70 110	50 85	40 80	9	
120	100	70	90	70	60		100	150							70	50	40	70	50	40	11	
240	180	150	180	140	120	280	210	180							115	90	85	115	90	85	12	
210	150	120	155	110	90	250	180	150							100	80	70	100	80	70	13.1	
110	80	60	80	60	50	120	90	80							50	40	35	50	40	35	13.2	
210	130	90	160	100	70	400	260	180							100	60	40	100	60	40	14.1	
170	110	70	130	80	60	330	220	150							80	50	35	80	50	35	14.2	
130	90	60	100	60	50	270	170	120							60	35	25	60	35	25	14.3	M
110	70	50	90	50	40	20	130	90							50	30	20	50	30	20	14.4	
			_	_	_				140	100	80				_	_	_	_	_	_	15	
			_	_	_				100	80	70				—	_	_	_	_	_	16	
			220	170	150				120	90	75				160	120	100	140	110	100	17	К
			170	100	70				110	85	60				120	70	50	110	60	50	18	.,
			_	_	_				150	120	80				_	_	_	_	_	_	19	
			_						130	95	60				_			_			20	
									900	600	500	2000	1200	1000							21	
									450	300	250	1000	600	500							22	
									900	600	500	2000	1200	1000							23	
									700	500	400	1100	650	500							24 25	
									450	280	200	800	500	400							25	N
										_	_	_	_	_							27	
										_											28	
									_	_	_	_	_	_							29	
									_	_	_	_	_	_							30	
									38	25	_										31	
									30	20	_										32	
									25	15	_										33	
									20	15	_										34	S
									30	20	_										35	
									50	30	_										36	
									_	_	_										37	
																					38.1	
																					38.2	н
																					39.1	
																					39.2	

Фрезы со сменными режущими пластинами • Пазовые фрезы

Серия М16	 	 A120–A124
Серия М94	 	 A126–A130

WWW.WIDIA.COM A119

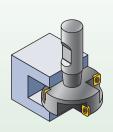
Серия М16

Надежные, мощные и долговечные фрезы для обработки Т-образных пазов • **Серия М16**

Фрезы серии М16, обеспечивающие эффективное удаление стружки и высокую стабильность обработки, являются великолепным выбором для обработки Т-образных пазов на деталях из стали и чугуна.

M16

- Прочная и жесткая конструкция корпуса гарантирует стабильно надежную обработку стали и чугуна.
- Превосходный стружкоотвод способствует быстрому выполнению различных операций фрезерования.


Прочная конструкция фрезы обеспечивает высокую стабильность обработки.

Разработана для оптимального удаления стружки.

фрезы фрезы

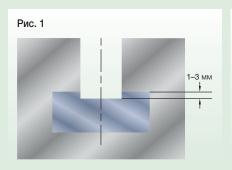
M16

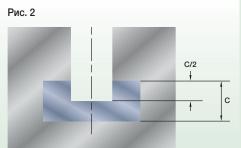
Мах глубина резания: 11,0 мм – 21,9 мм

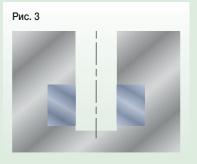
Число кромок на пластине: 2 Диаметр: 25 мм – 50 мм

Стр.: А122-А124

Геометрия пластины	ı	Рекомендуемое применение
	CPNT	Геометрия с позитивным стружколомом обеспечивает низкие усилия резания.


Обработка Т-образных пазов

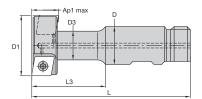

Сталь


- Величина перекрытия предварительно обработанного вертикального паза и будущего горизонтального не должна превышать 1–3 мм, см. рис. 1.
- В случае превышения указанной величины могут возникнуть проблемы с выводом стружки.
- С увеличением диаметра Т-образной фрезы возрастает риск появления вибраций.
- При возникновении вибраций необходимо изменить величину перекрытия, см. рис. 2.

Чугун

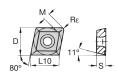
 Уменьшить проблемы с удалением стружки и снизить усилия резания позволяет увеличение глубины вертикальных пазов, как показано на рис. 2 и 3.

ПРИМЕЧАНИЕ: Для удаления стружки рекомендуется выполнить обдув сжатым воздухом.

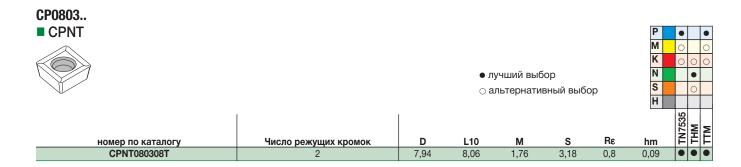


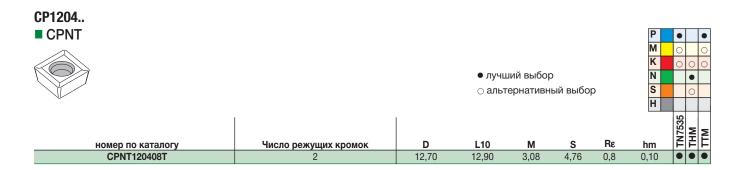
- Т-образная фреза.
- Идеально подходит для обработки стали и чугуна.

■ M16


номер заказа	номер по каталогу	D1	D	D3	L	L3	Ap1 max	Z	ΖU	пластина 1	подвод СОЖ	ΚΓ
2021380	12391602600	25	16	13	80	32	11,0	4	2	CPNT060204T	Да	0,1
2021381	12391603000	32	16	15	90	42	13,9	4	2	CPNT080308T	Да	0,2
2021382	12391603400	40	25	19	105	49	17,9	4	2	CPNT09T308T	Да	0,4
2021383	12391603800	50	32	25	120	60	21,9	4	2	CPNT120408T	Да	0,7

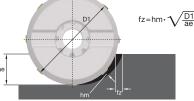
■ M16 • Комплектующие


D1	винт пластины	Нм	ключ Torx
25	12148068700	1,0	12148086600
32	12148067200	2,0	12148086600
40	12148038800	3,0	12148000600
50	12148007200	4.0	12148007500



Пазовые фрезы • Серия М16

Режимы резания для фрез М16



			TN7535			THM			TTM			
	етрия й кромки				Пода	ıча на зуб fz	z (мм)					
CP.		0,08	0,12	0,14	0,08	0,12	0,14	0,08	0,12	0,14		
CP.		0,08	0,12	0,14	0,08	0,12	0,14	0,08	0,12	0,14		
CP.		0,08	0,14	0,18	0,08	0,14	0,18	0,08	0,14	0,18		
СР. Гру		0,08	0,14	0,18	0,08	0,14	0,18	0,08	0,14	0,18		
матер	оиала			405	Скорост	ь резания у	с (м/мин)	470	1-0			
	1	280	215	185				170	150	140		
	2	190	150	130				120	100	90		
	3	160	120	110				100	80	70		
	4	165	130	110				110	85	80		
	5	140	100	85				85	70	60		
	6	185	140	115				120	100	90		
P	7	140	110	90				90	80	70		
	8	120	90	80				80	60	55		
	9	110	80	70				70	50	40		
	10	140	110	100				110	85	80		
	11	90	70	60				70	50	40		
	12	180	135	115				115	90	85		
	13.1	155	110	90				100	80	70		
	13.2	80	55	45				50	40	35		
	14.1	220	180	160				120	80	70		
	14.2	180	150	135				90	60	55		
M	14.3	130	110	100				65	50	40		
	14.4	110	90	80				60	40	35		
	15	_	_	_	135	100	85	_	_	_		
	16	_	_	_	100	80	70	_	_	_		
	17	190	150	130	120	90	75	150	120	100		
K	18	160	120	110	85	60	40	130	100	90		
	19	_	_	_	120	75	50	_	_	_		
	20	_	_	_	95	60	40	_	_	_		
	21				600	450	340					
	22				300	220	180					
	23				600	450	350					
	24				500	360	280					
	25				300	210	160					
N	26				300							
	27											
	28				_	_	_					
					_	_	_					
	29 30				_	_						
	31				20	20	25					
	32				38	29 23	20					
	33				24	19	16					
S												
3	34				20	15	13					
	35				32	23	21					
	36				50	40	32					
	37				55	35	30					
	38.1											
н	38.2											
	39.1											
	39.2			<u></u>	WIADHEIM III	, ,	1000 пь зуйта					

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ae, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1	0,02	0,05	0,1	0,2
коэффициент fz	3,5	3	2	1,5
коэффициент vc	1,6	1,5	1,4	1,3

WIN WITH WIDIA **WIDIA**[₩]

Пластины Victory™ серий TN5100 и TN7100

Наши новые марки сплавов WIDIA Victory TN для то<mark>карно</mark>й обработки гарантируют Вам значительное повышение производительности — вне зависимости от степени сложности выполняемой операции.

TN5100

- Радикальное сокращение цикла обработки и возможность повышения скорости и подачи до 50%.
- Получите инструмент с исключительно длительным сроком службы и повышенной до 50% износостойкостью.
- Специально разработан для чистовой и черновой обработки чугуна.

TN7100

- Уникальное многослойное покрытие обеспечивает превосходные высокоскоростные характеристики.
- Идеально подходит для обработки всех марок сталей в диапазоне от чистового точения до нагруженных черновых проходов!

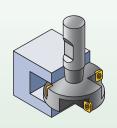
Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт **www.widia.com**.

Для прорезания высокоточных пазов и канавок •

Серия М94

Пазовые фрезы серии М94 комплектуются пластинами с тремя режущими кромками. Они обладают возможностью целенаправленного подвода СОЖ к режущим кромкам, что позволяет обрабатывать пазы и канавки минимальной ширины.

M94


- Каналы для подвода СОЖ гарантируют эффективное охлаждение режущих кромок в процессе резания.
- Прекрасный выбор для прорезания неглубоких канавок и пазов.
- Тангенциальное закрепление пластин гарантирует максимальную прочность и стабильность.

Целенаправленная подача СОЖ.

Пазовые фрезы

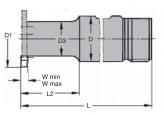
M94

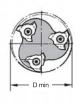
Мах глубина резания: 2,73 мм – 5,23 мм

Число кромок на пластине: 3 Диаметр: 25 мм – 80 мм

Стр.: А128-А130

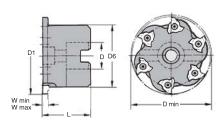
Геометрия пластины	Рекомендуемое применение
T.A.	Геометрия обеспечивает низкие усилия резания.





- Три режущих кромки.
- Тангенциальное крепление пластин.
- Прорезание неглубоких канавок и пазов.

■ M94


номер заказа	номер по каталогу	D1	D	D3	D min	L	L2	W min	W max	z	пластина 1	подвод СОЖ	ΚΓ
2022619	12290900800	25	25	21	34	100	44	2,10	2,73	3	TCAX1103ZZ	Нет	0,4
2022620	12290901200	40	32	32	65	110	50	2,73	4,26	3	TNAX1604ZZ	Нет	0,7

ПРИМЕЧАНИЕ: D min = минимальный внутренний диаметр отверстия для обеспечения требуемого зазора.

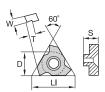
■ М94 • Комплектующие

D1	винт пластины	Нм	ключ Torx
25	12148080000	1,0	12148086600
40	12148067200	3,5	12148086600

■ M94

номер заказа	номер по каталогу	D1	D	D min	D6	L	W min	W max	z	пластина 1	подвод СОЖ	ΚΓ
2022621	12290911600	63	22	85	55	40	2,73	4,26	6	TNAX1604ZZ	Нет	0,7
2022622	12290911800	80	27	102	68	50	4,26	5,23	6	TNAX2206ZZ	Нет	1,3

ПРИМЕЧАНИЕ: D min = минимальный внутренний диаметр отверстия для обеспечения требуемого зазора.


■ М94 • Комплектующие

D1	винт пластины	Нм	ключ Torx
63	12148095100	3,5	12148086600
80	12148007200	6,0	12148007500

■ TCAX • 1103...

• лучший выбор

○ альтернативный выбор

	N	•		L
	S	0		`
	Н			
		₹	Σ	
S	hm	 ⊨	F	
3,20	0,07			
3.20	0.07		•	

номер по каталогу	Число режущих кромок	D	LI	W	Т	s	hm	E I
TCAX1103ZZ18	3	6,35	11,00	1,93	2,10	3,20	0,07	
TCAX1103ZZ21	3	6,35	11,00	2,23	2,25	3,20	0,07	
TCAX1103ZZ26	3	6,35	11,00	2,73	2,35	3,20	0,07	•

■ TNAX • 1604...

• лучший выбор

○ альтернативный выбор

K N S	0 • 0	0
P M		•

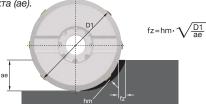
									I≥	Σ
номер	по каталогу	Число режущих кромок	D	LI	W	T	S	hm	F	H
TNA	X1604ZZ26	3	9,52	16,49	2,73	3,08	4,76	0,07		
TNA	X1604ZZ31	3	9,52	16,49	3,26	3,04	4,76	0,07		
TNA	X1604ZZ41	3	9,52	16,49	4,26	3,32	4,76	0,07		•

■ TNAX • 2206...

• лучший выбор

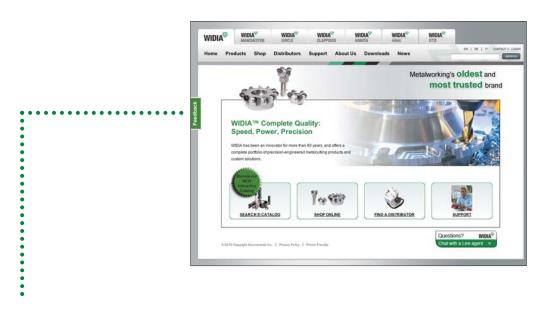
○ альтернативный выбор

	Р	•
	М	0
	K	0
[N	
	N S	
Ī	Н	
		TM
hr	n	_


 номер по каталогу	Число режущих кромок	D	LI	W	т	s	hm	É
TNAX2206ZZ41	3	12,70	22,00	4,26	4,02	6,40	0,07	
TNAX2206ZZ51	3	12,70	22,00	5,23	4,43	6,40	0,07	

			THM			TTM	
Leon	етрия й кромки		Значен	ие hm для выполн	ения вычислений	' (мм)	
	AX	0,05	0,07	0,09	0,05	0,07	0,09
		•	-				
Гру	иппа риала			Скорость резан	ния vc (м/мин)		
	1				170	150	140
	2				120	100	90
	3				100	80	70
	4				110	85	80
	5				85	70	60
	6				120	100	90
Р	7				90	80	70
	8				80	60	55
	9 10				70 110	50	40 80
	11				70	85 50	40
	12				115	90	85
	13.1				100	80	70
	13.2				50	40	35
	14.1				120	80	70
	14.2				90	60	55
M	14.3				65	50	40
	14.4				60	40	35
	15	135	100	85	_	_	_
	16	100	80	70	_	.	_
K	17	120	90	75	140	110	90
	18	85	60	40	100	70	50
	19 20	120 95	75 60	50 40	_		
	21	1000	750	600	_		
	22	500	360	300			
	23	1000	750	600			
	24	800	600	500			
N	25	500	350	250			
N	26	_	_	_			
	27	400	250	180			
	28	300	180	120			
	29	_	_	_			
	30		_				
	31	36	28	24			
	32	30 24	23	20			
	33	24	19	16			

*fz вычисляется с использованием указанного значения hm. Используйте приведенную формулу или указанный в таблице ниже коэффициент для обеспечения минимально возможного радиуса контакта (ае). Рекомендуемые первоначальные значения hm и скорости (vc) указаны жирным шрифтом. Для выполнения внутренней и наружной обработки по круговой интерполяции, используйте приведенную на стр. E14 поправочную формулу, учитывающую линию центров станка.


отношение ae/D1	0,02	0,05	0,1
коэффициент fz	3,5	3	2
коэффициент vc	1,6	1,5	1,4

38.1 38.2 39.1

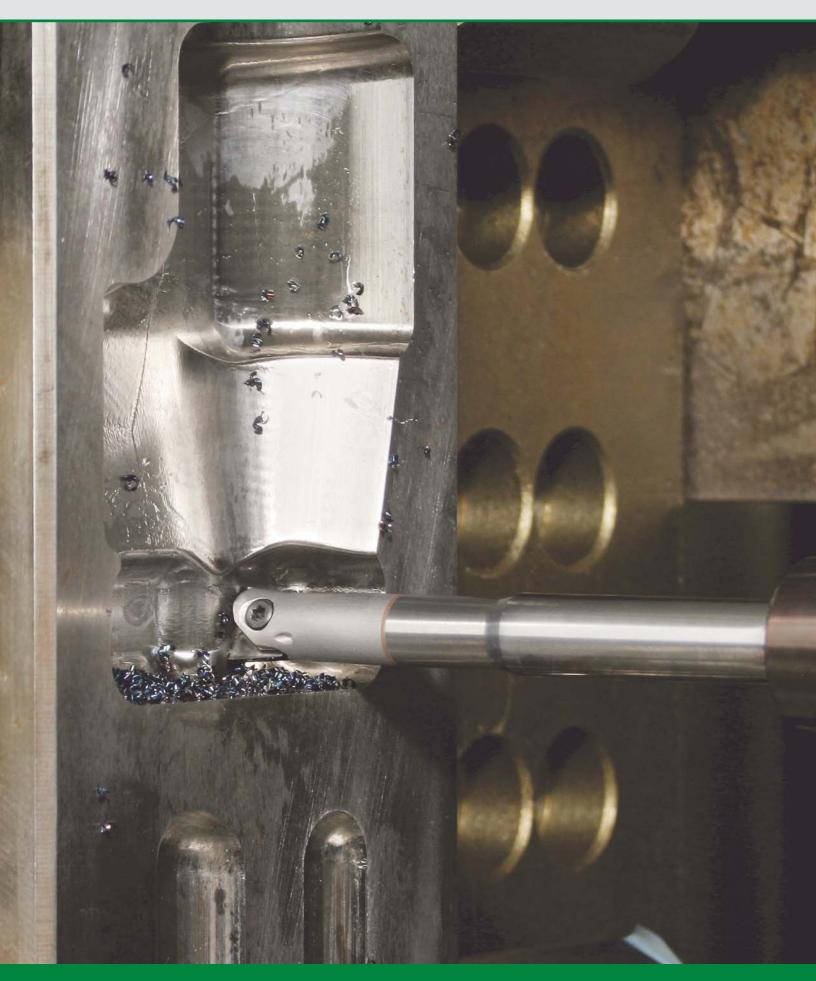
Интернет

Быстрота и простота регистрации

Вы можете легко зарегистрироваться на www.widia.com для получения полного доступа ко всем разделам сайта.

Выберите ближайшего к Вам регионального официального дистрибьютора WIDIA

WIDIA Products Group предлагает изделия мирового класса и глобальное сервисное обслуживание. Наши дистрибьюторы хорошо знакомы с нашей продукцией, но еще лучше они знают Ваши потребности. Они в состоянии найти грамотное применение глобальным ресурсам компании WIDIA в Ваших конкретных условиях - на Вашем производстве, в Вашем регионе, способствуя развитию Вашего бизнеса.


Свяжитесь с нами

Наши клиенты - наша главная ценность. Поэтому мы стремимся предложить Вам сервис и техническую поддержку самого высокого уровня. Мы открыты для диалога и готовы ответить на все Ваши вопросы и замечания в течение 24 часов.

Продукция WIDIA

Чем бы вы ни занимались, точением, фрезерованием или сверлением компания WIDIA предоставит Вам высокопроизводительный инструмент, отвечающий Вашим конкретным условиям. Наш ассортимент объединяет широкую программу стандартного инструмента и возможности изготовления специальной продукции для большинства производственных областей.

Фрезы со сменными режущими пластинами • Фрезы для профильной обработки

Серия М170	
M170 RD07	
M170 RD07	
M170 RD12T3	
M170 RD1604	
Серия М270	
Сферические фрезы М270	
Тороидальные фрезы М270	
Фрезы для работы с большими подачами М270	
Серия М1о0	
M100 RD0802	
M100 RD1003	
M100 RD1204	
M100 RD1605	
M100 BC1606	

WWW.WIDIA.COM A133

Идеально подходят для изготовления штампов и пресс-форм •

Серия М170

Фрезы серии М170 демонстрируют высочайшую производительность и экономическую эффективность. Режущие пластины данных фрез разработаны в соответствии с общепринятыми стандартами. Фрезы отличаются прочной конструкцией корпуса и подходят для обработки высокопрочных сталей в тяжелых условиях.

M170

- Никелевое покрытие корпуса фрезы гарантирует высокую стойкость и улучшенный сход стружки.
- Крепление фрез на оправке и резьбовое крепление.
- Большое количество зубьев оптимально для высокоскоростной обработки (HSM).
- Высокоточные пластины PSTS идеально вписываются в технологию изготовления штампов и пресс-форм.

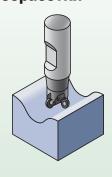
Закаленный корпус с никелевым покрытием.

Превосходные возможности врезания под углом и винтовой интерполяции.

Оптимальное для

обработки число

зубьев.


высокоскоростной

Внутренний подвод СОЖ.

Дополнительное крепление пластины (в комплекте с корпусом инструмента).

Фрезы для профильной обработки

M170 RD07...

Мах глубина резания: 3,5 мм

Диаметр: 12 мм - 35 мм Стр.: А136-А143

Геометрия пластины	Рекомендуемое применение
мн	Рекомендуется для решения любых задач.

M170 RD1003..

Мах глубина резания: 5,0 мм

Диаметр: 20 мм - 52 мм Стр.: А144-А149

Р	
М	
K	
	KON
S	6
Н	

ı	пластины		Рекомендуемое применение
		ММ	Лучший выбор для операций общего фрезерования любых материалов. Рекомендуется при необходимости снижения усилий резания.
			Рекомендуется для обработки

Геометрия

	Рекомендуется для обработки на тяжелых режимах.
MH	Подходит для обработки
	высокопрочной стали и
	чугуна в тяжелых условиях.

M170 RD12T3...

Мах глубина резания: 6,0 mm

Диаметр: 24 мм - 100 мм Стр.: А150-А155


пластины	Рекомендуемое применение
MM	Лучший выбор для операций общего фрезерования любых материалов. Рекомендуется при необходимости снижения усилий резания.
	Рекомендуется для обработки

	МН	

Геометрия

Геометрия

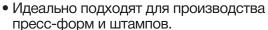
Подходит для обработки высокопрочной стали и чугуна в тяжелых условиях.

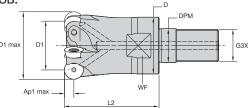
M170 RD1604...

Мах глубина резания: 8,0 мм

Диаметр: 32 мм - 125 мм Стр.: А156-А159

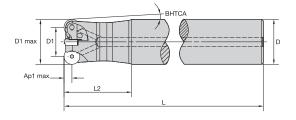
пластины		Рекомендуемое применение
	ММ	Лучший выбор для операций общего фрезерования любых материалов. Рекомендуется при необходимости снижения усилий резания.
		Рекомендуется для обработки на тяжелых режимах.




Корпуса фрез М170 • RD07Т1..

- Высококачественные корпуса с никелевым покрытием.
- Разработаны для обеспечения максимальной производительности.



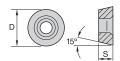

■ M170

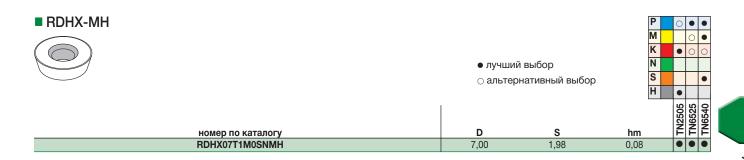
												тах угол	max		
н	омер заказа	номер по каталогу	D1 max	D1	D	DPM	G3X	L2	WF	Ap1 max	Z	врезания	частота вращ.	подвод СОЖ	ΚГ
	3935336	M170D012Z02M06RD07T	12	5	10	6,5	M6	18	7	3,5	2	22.0°	26200	Да	0,02
	3935337	M170D012Z02M08RD07T	12	5	13	8,5	M8	23	10	3,5	2	22.0°	26200	Да	0,02
	3935338	M170D015Z03M08RD07T	15	8	13	8,5	M8	18	10	3,5	3	11.0°	21200	Да	0,02

■ М170 • Комплектующие

D1 max	винт пластины	Нм	ключ Torx
12	193.364	1,0	12147549000
15	193.364	1,0	12147549000

■ M170

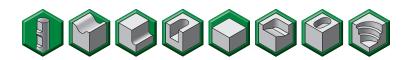

										тах угол	max		
номер заказа	номер по каталогу	D1 max	D1	D	L	L2	BHTCA	Ap1 max	Z	врезания	частота вращ.	подвод СОЖ	ΚГ
3935339	M170D012Z02A12RD07TL100	12	5	12	100	20	_	3,5	2	22.0°	26200	Да	0,1
3935340	M170D012Z02A16RD07TL120	12	5	16	120	60	2.0°	3,5	2	22.0°	26200	Да	0,1
3935341	M170D012Z02A16RD07TL140	12	5	16	140	80	1.5°	3,5	2	22.0°	26200	Да	0,2
3935342	M170D015Z03A16RD07TL130	15	8	16	130	60	0.5°	3,5	3	11.0°	21200	Да	0,1

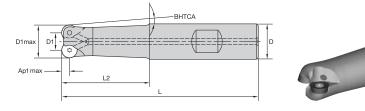

 D1 max	винт пластины	Нм	ключ Torx
12	193.364	1,0	12147549000
15	193.364	1,0	12147549000



Корпуса фрез М170 • RD0702..

- Высококачественные корпуса с никелевым покрытием.
- Разработаны для обеспечения максимальной производительности.
- Идеально подходят для производства пресс-форм и штампов.

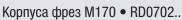



■ M170

									тах угол	max		
номер заказа	номер по каталогу	D1 max	D1 D	DPM	G3X L	2 WF	Ap1 max	Z	врезания	частота вращ.	подвод СОЖ	КГ
3926607	M170D015Z02M08RD07	15	8 13	8,5	M8 2	3 10	3,5	2	18.0°	21200	Да	0,03
3926608	M170D016Z03M08RD07	16	9 13	8,5	M8 2	3 10	3,5	3	9.0°	21200	Да	0,03
3926609	M170D020Z04M10RD07	20	13 18	10,5	M10 3	14	3,5	4	12.5°	19600	Да	0,06
3926610	M170D025Z05M12RD07	25	18 21	12,5	M12 3	5 19	3,5	5	8.5°	12700	Да	0,10
3926611	M170D030Z05M16RD07	30	23 29	17,0	M16 4	3 22	3,5	5	6.5°	10600	Да	0,20
3926612	M170D035Z06M16RD07	35	28 29	17,0	M16 4	3 22	3,5	6	4.8°	9900	Да	0,23

■ М170 • Комплектующие

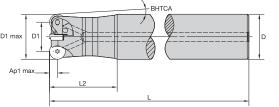
D1 max	винт пластины	Нм	ключ Torx
15	193.341	1,0	12147549000
16	193.341	1,0	12147549000
20	193.341	1,0	12147549000
25	193.341	1,0	12147549000
30	193.341	1,0	12147549000
35	193.341	1,0	12147549000



■ M170

		D4		_		DUTOA	A 4	_	тах угол	max		
номер заказа	номер по каталогу	D1 max	וט	υ	L L2	BHTCA	Ap1 max		врезания	частота вращ.	подвод СОЖ	ΚГ
3929403	M170D015Z02B16RD07	15	8	16	90 40	1.0°	3,5	2	18.0°	21200	Да	0,1

 D1 max	винт пластины	Нм	ключ Torx
15	193.341	1,0	12147549000



- Высококачественные корпуса с никелевым покрытием.
- Разработаны для обеспечения максимальной производительности.
- Идеально подходят для производства пресс-форм и штампов.

■ M170

номер заказа	номер по каталогу	D1 max	D1 D	1 12	ВНТСА	Ap1 max	7	тах угол врезания	тах частота враш.	подвод СОЖ	ΚΓ
3929404	M170D015Z02A16RD07L110	15		110 60		3,5	2	18.0°	21200	Да	0,1
3929405	M170D015Z02A16RD07L150	15	8 16	150 60	0.5°	3,5	2	18.0°	21200	Да	0,2
3929406	M170D016Z03A16RD07L110	16	9 16	110 20	_	3,5	3	9.0°	21200	Да	0,2
3929407	M170D016Z02A16RD07L150	16	9 16	150 30	_	3,5	2	9.0°	21200	Да	0,2
3929408	M170D020Z04A20RD07L115	20	13 20	115 30	_	3,5	4	12.0°	10600	Да	0,3
3929409	M170D020Z03A20RD07L140	20	13 20	140 40	_	3,5	3	12.0°	10600	Да	0,3

■ М170 • Комплектующие

D1 max	винт пластины	Нм	ключ Torx
15	193.341	1,0	12147549000
16	193.341	1,0	12147549000
20	193.341	1.0	12147549000

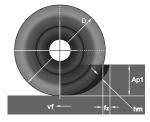
Фрезы со сменными режущими пластинами • Фрезы для профильной обработки

МОЩНОСТЬ СПЕЦИАЛЬНОГО ИНСТРУМЕНТА

- Возможность работы с большими подачами благодаря мелкому шагу зубьев.
- Отвод тепла от режущих кромок во избежание их преждевременного износа.
- Пластины со вставками из поликристаллического алмаза обеспечивают увеличенный удельный съем металла.
- Жесткая система крепления пластины посредством клина исключает ее смещение в гнезде корпуса.
- Увеличенный срок службы инструмента.

инструментов для металлообработки.

Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт **www.widia.com**.



Фрезы для профильной обработки • Серия М170

Режимы резания для фрез M170 • RD07..

			TN2505			TN6525			TN6540	
	етрия й кромки				Пода	ача на зуб f	z (мм)			
	МН	0,07	0,08	0,11	0,07	0,10	0,12	0,07	0,10	0,15
	иппа риала				Скорост	ь резания v	с (м/мин)			
	1	_	_	_	345	270	230	290	225	190
	2	_	_	_	240	185	160	200	150	130
	3	_	_	_	200	155	135	170	130	110
	4	_	_	_	210	160	135	170	130	110
	5	_	_	_	175	125	105	145	105	90
	6	_	_	_	230	175	145	190	145	120
	7	_	_	_	175	135	115	145	110	95
Р	8	_	_	_	155	115	95	130	95	80
	9	_	_	_	135	95	80	110	80	65
	10	190	150	130	175	140	125	145	115	105
	11	130	90	80	115	90	70	95	70	55
	12	240	220	150	220	170	145	185	140	120
	13.1	210	150	130	190	140	115	160	115	95
	13.2	110	80	70	95	70	60	80	60	50
	14.1				190	115	90	160	95	70
	14.2				155	90	70	130	75	55
M	14.3				115	70	55	95	55	45
	14.4				95	60	45	80	50	35
	15	380	280	235	_		_	_	_	_
	16	290	215	185		_	_	_	_	_
	17	325	235	195	240	180	160	200	150	130
K	18	235	145	120	200	150	130	170	130	110
	19	325	195	160	200	130	130	170	_	110
	20	260	160	130	_	_	_	_	_	_
	21	200	100	130			_			
	22									
	23									
	24									
N	25									
	26									
	27									
	28									
	29									
	30									
	31							60	50	45
	32							50	40	35
	33							35	25	20
S	34							30	20	15
	35							30	20	15
	36							80	50	40
	37							70	45	35
	38.1	130	105	80						
Н	38.2	130	105	80						
"	39.1	110	85	65						
	00.0	440								

Рекомендуемая начальная подача (fz) указана жирным шрифтом. Используйте соответствующую скорость (vc).

Рекомендованные значения fz действительны для торцевого фрезерования с шириной резания (ae) \geq 0,4 D1 и Ap1 max.

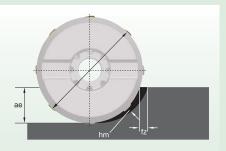
При меньших значениях ае и ар, используйте данные корректирующие коэффициенты (D = диаметр пластины, D1 = диаметр фрезы).

Tä	таблица значений коэффициента fz										
		ae/D1									
Ap1/D	0,05	0,05 0,1 0,2 0,4									
0,05	9	6,3	4,3	3,2							
0,1	6,3	4,3	3,2	2,2							
0,2	4,3	3,2	2,2	1,6							
0,4	3,2	2,2	1,6	1,1							

85

110

	соответствие коэффициентов vc и fz									
Коэффициент fz	9	6,3	4,3	3,2	2,2	1,6	1,1			
Коэффициент vc	1,6	1,5	1,4	1,3	1,2	1,1	1			
Например: ae/D1	Например: $ae/D1 = 0,1$; $Ap1/D = 0,2$									
fz ном. = 0,22 fz	fz ном. = 0,22 fz эфф. = 0,22 x 3,2 = 0,7 мм									
vc ном. = 160 v	с эфф. = 1	160 x 1,3 =	= 208 м/ми	1H						



Дополнительные рекомендации по применению фрез M170 • RD07...

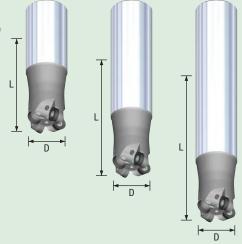
Выбор режимов резания

1. Значение fz находится в зависимости от значений Ap1 и ае

Кроме диаметра по пластинам, на значение $h_{\rm m}$ оказывают влияние еще два фактора: Ар1 и ае. Следовательно, fz вычисляется с учетом данного обстоятельства.

Рекомендуемые начальные значения подачи (fz) находятся в зависимости от значений Ар1 и ае.

контакт ае	10%	20%	30%	40%	50%	100%
Ap1 = 0,5	0,59	0,42	0,34	0,30	0,26	0,19
Ap1 = 0,75	0,50	0,36	0,29	0,25	0,22	0,16
Ap1 = 1	0,42	0,30	0,24	0,21	0,19	0,13
Ap1 = 1,5	0,34	0,24	0,20	0,17	0,15	0,11
Ap1 = 3,5	0,22	0,16	0,13	0,11	0,10	0,08


Пример режимов резания для RD..07... Пластина закреплена в гнезде, отношение L/D = 2 x D:

		TN2505		TN6525			TN6540	TN6540				
				подача на	а зуб fz (ми	л)/ae>50%						
пл	min	ср.	max	min	ср.	max	min	ср.	max			
ae>50%	Рекомендуемое начальное значение Ар1 = 0,5 мм	0,19	0,22	0,3	0,19	0,3	0,35	0,19	0,35	0,4		

2. Значения Ap1 и vc изменяются в зависимости от отношения L/D

С увеличением отношения L/D или вылета вследствие снижения жесткости, могут возникнуть вибрации. Для обеспечения нормальных условий обработки рекомендуется выполнить корректировку значений Ар1 и vc в соответствии с данными, приведенными в следующей таблице:

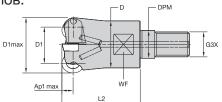
отношение L/D	% снижения Ар1 тах	% снижения vc
<2	0%	0%
2 <l d<4<="" td=""><td>65–75%</td><td>10–15%</td></l>	65–75%	10–15%
>4	80–95%	20–40%

Рекомендуемые режимы резания

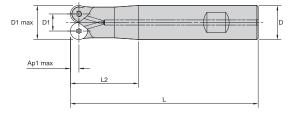
Винтовая интерполяция в сплошном материале

диаметр фрезы	min диаметр отверстия	тах диаметр отверстия	Значение Ар1 тах на один оборот	тах угол врезания	Значение Ар1 тах при врезании
12	17 мм	17 мм	3,5 мм	22°	1 мм
15	18 мм	23 мм	2,8 мм	18°	2,2 мм
16	20 мм	25 мм	1,9 мм	9°	1,4 мм
20	28 мм	33 мм	3,5 мм	12°	1,5 мм
25	36,5 мм	43 мм	3,5 мм	8.5°	2,5 мм
30	46,4 мм	53 мм	3,5 мм	6.5°	2,5 мм

Более подробные сведения приведены в разделе «Техническая информация» на стр. Е14.


Корпуса фрез M170 • RD1003..

- Высококачественные корпуса с никелевым покрытием.
- Разработаны для обеспечения максимальной производительности.

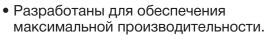

■ M170

									тах угол	max		
номер заказа	номер по каталогу	D1 max	D1 D	DPM	G3X L2	WF	Ap1 max	Z	врезания	частота вращ.	подвод СОЖ	КГ
3934647	M170D020Z02M10RD10	20	10 18	10,5	M10 30	15	5,0	2	20.0°	15900	Да	0,1
3934648	M170D025Z02M12RD10	25	15 21	12,5	M12 35	19	5,0	2	8.0°	12800	Да	0,1
3934649	M170D025Z03M12RD10	25	15 21	12,5	M12 35	19	5,0	3	8.0°	12800	Да	0,1
3934650	M170D030Z04M16RD10	30	20 29	17,0	M16 43	22	5,0	4	10.0°	10600	Да	0,2
3934651	M170D035Z05M16RD10	35	25 29	17,0	M16 45	22	5,0	5	8.5°	9100	Да	0,2
3934652	M170D042Z06M16RD10	42	32 29	17,0	M16 45	22	5,0	6	6.0°	7800	Да	0,3

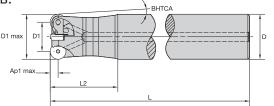
■ M170 • Комплектующие

D1 max	винт пластины	Нм	ключ Torx
20	193.342	3,5	12148082400
25	193.342	3,5	12148082400
30	193.342	3,5	12148082400
35	193.342	3,5	12148082400
42	193.342	3,5	12148082400

■ M170


номер заказа	номер по каталогу	D1 max	D1	D	L	L2	Ap1 max	z	тах угол врезания	тах частота вращ.	подвод СОЖ	КГ
3940703	M170D020Z02B20RD10	20	10	20	110	40	5,0	2	20.0°	15900	Да	0,2
3940708	M170D025Z03B25RD10	25	15	25	110	40	5,0	3	9.0°	12900	Да	0,4

D1 max	винт пластины	Нм	ключ Torx
20	193.342	3,5	12148082400
25	193.342	3,5	12148082400



• Высококачественные корпуса с никелевым покрытием.

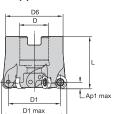
Корпуса фрез M170 • RD1003..

■ M170

									тах угол	max		
номер заказа	номер по каталогу	D1 max	D1 D	L	L2	BHTCA	Ap1 max	Z	врезания	частота вращ.	подвод СОЖ	КГ
3940704	M170D020Z02A20RD10L140	20	10 20	140	60	_	5,0	2	20.0°	15900	Да	0,3
3940705	M170D020Z02A25RD10L160	20	10 25	160	80	2.0°	5,0	2	20.0°	15900	Да	0,5
3940706	M170D020Z02A25RD10L180	20	10 25	180	100	1.5°	5,0	2	20.0°	15900	Да	0,5
3940707	M170D022Z02A20RD10L160	22	12 20	160	40	_	5,0	2	12.0°	14400	Да	0,4
3940709	M170D025Z02A25RD10L180	25	15 25	180	70	_	5,0	2	9.0°	12800	Да	0,6
3940710	M170D025Z02A25RD10L220	25	15 25	220	100	_	5,0	2	9.0°	12800	Да	0,7
3940711	M170D028Z02A25RD10L200	28	18 25	200	40	_	5,0	2	15.0°	11300	Да	0,7

D1 max	винт пластины	Нм	ключ Torx
20	193.342	3,5	12148082400
22	193.342	3,5	12148082400
25	193.342	3,5	12148082400
28	193.342	3,5	12148082400

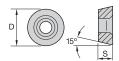
Корпуса фрез M170 • RD1003..



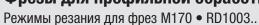
- Высококачественные корпуса с никелевым покрытием.
- Разработаны для обеспечения максимальной производительности.

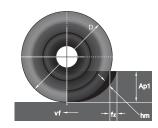
• Идеально подходят для производства пресс-форм и штампов.

■ M170


номер заказа	номер по каталогу	D1 max	D1	D	D6	L	Ap1 max	z	тах угол врезания	тах частота вращ.	подвод СОЖ	КГ
3940712	M170D040Z05RD10	40	30	16	37	40	5,0	5	7.2°	9950	Да	0,3
3940723	M170D042Z05RD10	42	32	16	37	40	5,0	5	5.8°	9500	Да	0,3
3940724	M170D050Z06RD10	50	40	22	44	40	5,0	6	5.2°	7950	Да	0,4
3940725	M170D052Z06RD10	52	42	22	44	50	5,0	6	3.0°	7650	Да	0,5

D1 max	винт пластины	Нм	ключ Torx	SHCS с канавкой для СОЖ
40	193.342	3,5	12148082400	MS1294CG
42	193.342	3,5	12148082400	MS1294CG
50	193.342	3,5	12148082400	MS2072CG
52	193.342	3.5	12148082400	MS2072CG





Фрезы для профильной обработки • Серия М170

			TN2505			TN6525			TN6540			
	етрия й кромки		Подача на зуб fz (мм)									
-	MM				0,10	0,13	0,16	0,10	0,13	0,20		
l	МН	0,13	0,15	0,17	0,13	0,18	0,20	0,13	0,18	0,25		
Γnv	ппа				_							
	риала					ь резания v						
	1	_	_	_	345	270	230	290	225	190		
	2	_	_		240	185	160	200	150	130		
	3	_	_	_	200	155	135	170	130	110		
	4	_	_	_	210	160	135	170	130	110		
	5	_	_	_	175	125	105	145	105	90		
	6		_	_	230	175	145	190	145	120		
Р	7	_	_	_	175	135	115	145	110	95		
	8	_	_	_	155	115	95	130	95	80		
	9	_	_	_	135	95	80	110	80	65		
	10	190	150	130	175	140	125	145	115	105		
	11	130	90	80	115	90	70	95	70	55		
	12	240	220	150	220	170	145	185	140	120		
	13.1	210	150	130	190	140	115	160	115	95		
	13.2	110	80	70	95	70	60	80	60	50		
	14.1				190	115	90	160	95	70		
М	14.2				155	90	70	130	75	55		
	14.3				115	70	55	95	55	45		
	14.4				95	60	45	80	50	35		
	15	380	280	235	_	_	_	_	_	_		
	16	290	215	185	_	_	_	_	_	_		
K	17	325	235	195	240	180	160	200	150	130		
	18	235	145	120	200	150	130	170	130	110		
	19	325	195	160	_	_	_	_	_	_		
	20	260	160	130	_			_				
	21											
	22											
	23											
	24											
N	25											
	26											
	27											
	28											
	29											
	30											
	31							60	50	45		
	32							50	40	35		
	33							35	25	20		
S	34							30	20	15		
	35							30	20	15		
	36							80	50	40		
	37							70	45	35		
	38.1	130	105	80								
н	38.2	130	105	80								
	39.1	110	85	65								
	000	110										

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc).

Рекомендованные значения fz действительны для торцевого фрезерования с шириной резания (ae) \geq 0,4 D1 и Ap1 max.

При меньших значениях ае и ар, используйте данные корректирующие коэффициенты (D = диаметр пластины, D1 = диаметр фрезы).

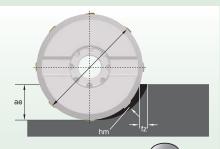
Т	аблица значе	ний коэффи	циента fz								
		ae/D1									
Ap1/D	0,05	0,05 0,1 0,2 0,4									
0,05	9	9 6,3 4,3 3,2									
0,1	6,3	4,3	3,2	2,2							
0,2	4,3	3,2	2,2	1,6							
0,4	3,2	2,2	1,6	1,1							

85

110

	соответствие коэффициентов vc и fz										
Коэффициент fz	Коэффициент fz 9 6,3 4,3 3,2 2,2 1,6 1,1										
Коэффициент vc	1,6	1,5	1,4	1,3	1,2	1,1	1				
Например: ae/D1	= 0,1; Ap	I/D = 0,2									
fz ном. = 0,22 fz	z эфф. = (),22 x 3,2 =	= 0,7 мм								
vc ном. = 160 v	с эфф. = 1	160 x 1,3 =	208 м/ми	Н							

Выбор режимов резания

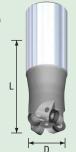

1. Значение fz находится в зависимости от значений Ap1 и ае

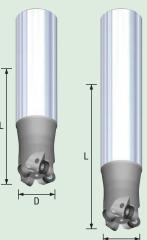
Кроме диаметра по пластинам, на значение $h_{\rm m}$ оказывают влияние еще два фактора: Ар1 и ае. Следовательно, fz вычисляется с учетом данного обстоятельства.

Рекомендуемые начальные значения подачи (fz) находятся в зависимости от значений Ap1 и ае.

контакт ае	10%	20%	30%	40%	50%	100%
Ap1 = 0,5	1,18	0,70	0,63	0,56	0,50	0,35
Ap1 = 0,75	0,95	0,62	0,56	0,50	0,45	0,30
Ap1 = 1	0,80	0,57	0,46	0,40	0,36	0,25
Ap1 = 2	0,57	0,40	0,33	0,28	0,25	0,18
Ap1 = 3	0,46	0,33	0,27	0,23	0,21	0,15
Ap1 = 5	0,36	0,25	0,21	0,18	0,16	0,11

Пример режимов резания для RD..10... Пластина закреплена в гнезде, отношение L/D = 2 x D:




кромки ММ			TN2505			TN6525		TN6540			
					по	дача на	зуб fz (м	м)/ае>50)%		
Геометрия режущей		min	ср.	max	min	ср.	max	min	ср.	max	
		-	-	-	0,25	0,30	0,40	0,25	0,32	0,45	
	ae>50%	Рекомендуемое начальное значение Ap1 = 1 мм	0,25	0,32	0,40	0,25	0,35	0,55	0,25	0,45	0,65

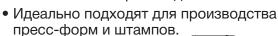
2. Значения Ар1 и vc изменяются в зависимости от отношения L/D

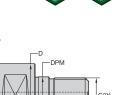
С увеличением отношения L/D или вылета вследствие снижения жесткости, могут возникнуть вибрации. Для обеспечения нормальных условий обработки рекомендуется выполнить корректировку значений Ap1 и vc в соответствии с данными, приведенными в следующей таблице:

отношение L/D	% снижения Ар1 тах	% снижения vc
<2	0%	0%
2 <l d<4<="" td=""><td>65–75%</td><td>10–15%</td></l>	65–75%	10–15%
>4	80–95%	20–40%

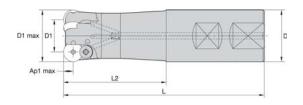
Рекомендуемые режимы резания

Винтовая интерполяция в сплошном материале


диаметр фрезы	min диаметр отверстия	тах диаметр отверстия	Значение Ар1 тах на один оборот	тах угол врезания	Значение Ар1 тах при врезании
20	22 мм	30 мм	2,1 мм	20°	4 MM
22	24 мм	34 мм	2,1 мм	20°	2,4 мм
25	33 мм	40 мм	3,2 мм	8°	1,7 мм
28	36 мм	46 мм	5 мм	15°	3,8 мм
30	40,6 мм	50 мм	5 мм	10°	3,4 мм
35	50,7 мм	60 мм	5 мм	8,5°	3,4 мм
40	60,5 мм	70 мм	5 мм	7,2°	3,6 мм
42	64,5 мм	74 мм	5 мм	5,8°	3,6 мм
50	80,3 мм	90 мм	5 мм	5,2°	4 мм
52	85,8 мм	94 мм	5 мм	3°	2,2 мм


Более подробные сведения приведены в разделе «Техническая информация» на стр. Е14.

- Высококачественные корпуса с никелевым покрытием.
- Разработаны для обеспечения максимальной производительности.


■ M170

номер заказа	номер по каталогу	D1 may	D1 D	DDM	G3X L2 WF	Ap1 max	7	тах угол врезания	тах частота вращ.	подвод СОЖ	ΚΓ
помер заказа	помер по каталогу	DIIIIax	טוט	DEIM	GOX LZ WI	Арт шах		врезапия	частота вращ.	подвод сож	NI.
3930950	M170D024Z02M12RD12	24	12 21	12,5	M12 35 19	6,0	2	15.0°	13200	Да	0,1
3930954	M170D035Z03M16RD12	35	23 29	17,0	M16 43 22	6,0	3	11.0°	9900	Да	0,2
3930956	M170D035Z04M16RD12	35	23 29	17,0	M16 43 22	6,0	4	10.5°	9900	Да	0,2
3930958	M170D042Z05M16RD12	42	30 29	17,0	M16 43 22	6,0	5	7.2°	7500	Да	0,3

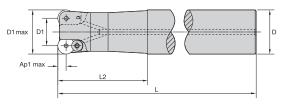
■ М170 • Комплектующие

D1 max	винт пластины	Нм	ключ Torx	крепежный винт
24	193.342	3,5	12148082400	193.338
35	193.342	3,5	12148082400	193.338
35	193.342	3,5	12148082400	193.338
42	193,342	3.5	12148082400	193,338

■ M170

Фрезы со сменными режущими пластинами • Фрезы для профильной обработки

									тах угол	max		
номер заказа	номер по каталогу	D1 max	D1 [) [L	L2	Ap1 max	Z	врезания	частота вращ.	подвод СОЖ	ΚГ
3930960	M170D032Z03B32RD12	32	20 3	2 12	25	64	6,0	3	12.0°	9500	Да	0,6


D1 max	винт пластины	Нм	ключ Тогх	крепежный винт
32	193.342	3,5	12148082400	193.338

- Высококачественные корпуса с никелевым покрытием.
- Разработаны для обеспечения максимальной производительности.
- Идеально подходят для производства пресс-форм и штампов.

Корпуса фрез M170 • RD12T3..

■ M170

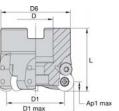
номер заказа	номер по каталогу	D1 max	D1	D	L	L2	Ap1 max	z	тах угол врезания	тах частота вращ.	подвод СОЖ	КГ
3930962	M170D032Z02A32RD12L200	32	20	32	200	65	6,0	2	12.0°	9500	Да	1,1
3930964	M170D032Z02A32RD12L300	32	20	32	300	65	6,0	2	12.0°	9500	Да	1,7
3930966	M170D035Z02A32RD12L300	35	23	32	300	40	6,0	2	11.0°	9100	Да	1,8

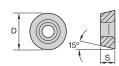
D1 max	винт пластины	Нм	ключ Тогх	крепежный винт
32	193.342	3,5	12148082400	193.338
35	193.342	3,5	12148082400	193.338

Корпуса фрез M170 • RD12T3..

- Высококачественные корпуса с никелевым покрытием.
- Разработаны для обеспечения максимальной производительности.

• Идеально подходят для производства пресс-форм и штампов.

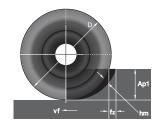





■ M170

		D1 may	D4	_	D6		And may	,	тах угол	max	COV	
номер заказа	номер по каталогу	D1 max	D1	D	סט		Ap1 max	Z	врезания	частота вращ.	подвод СОЖ	КГ
3930968	M170D040Z04RD12	40	28	16	37	40	6,0	4	9.3°	7000	Да	0,2
3930970	M170D050Z05RD12	50	38	22	44	40	6,0	5	6.1°	7950	Да	0,3
3930972	M170D052Z05RD12	52	40	22	44	50	6,0	5	4.5°	7600	Да	0,4
3930975	M170D063Z06RD12	63	51	22	44	40	6,0	6	4.5°	6300	Да	0,5
3930976	M170D066Z06RD12	66	54	27	60	50	6,0	6	4.5°	6030	Да	0,8
3930979	M170D080Z07RD12	80	68	27	60	50	6,0	7	3.5°	4900	Да	1,0
3930981	M170D100Z08RD12	100	88	32	80	55	6,0	8	2.2°	3900	Да	2,0

D1 max	винт пластины	Нм	ключ Torx	крепежный винт	SHCS с канавкой для СОЖ
40	193.342	3,5	12148082400	193.338	MS1294CG
50	193.342	3,5	12148082400	193.338	MS2072CG
52	193.342	3,5	12148082400	193.338	MS2072CG
63	193.342	3,5	12148082400	193.338	MS2072CG
66	193.342	3,5	12148082400	193.338	MS2038CG
80	193.342	3,5	12148082400	193.338	MS2038CG
100	193.342	3.5	12148082400	193.338	MS1254CG



Фрезы для профильной обработки • Серия М170

Режимы резания для фрез M170 • RD12T3..

			TN2505			TN6525			TN6540				
	етрия й кромки				Пода	ача на зуб f	z (мм)						
\$-	_				0,15	0,18	0,20	0,15	0,20	0,25			
S	-МН	0,18	0,20	0,25	0,18	0,20	0,25	0,18	0,23	0,30			
	ппа				Скорость резания vc (м/мин)								
waro	1	_	_	_	345	270	230	290	225	190			
	2	_	_	_	240	185	160	200	150	130			
	3	_	_	_	200	155	135	170	130	110			
	4	_	_	_	210	160	135	170	130	110			
	5	_	_	_	175	125	105	145	105	90			
	6	_	_	_	230	175	145	190	145	120			
	7	_	_	_	175	135	115	145	110	95			
Р	8	_	_	_	155	115	95	130	95	80			
	9	_	_	_	135	95	80	110	80	65			
	10	190	150	130	175	140	125	145	115	105			
	11	130	90	80	115	90	70	95	70	55			
	12	240	220	150	220	170	145	185	140	120			
	13.1	210	150	130	190	140	115	160	115	95			
	13.2	110	80	70	95	70	60	80	60	50			
	14.1	110		- 10	190	115	90	160	95	70			
	14.2				155	90	70	130	75	55			
M	14.3				115	70	55	95	55	45			
	14.4				95	60	45	80	50	35			
	15	380	280	235	_	_	_	_	_	_			
	16	290	215	185		_	_	_	_	_			
	17	325	235	195	240	180	160	200	150	130			
K	18	235	145	120	200	150	130	170	130	110			
	19	325	195	160	_	_	_	_	_	_			
	20	260	160	130	_		_	_		_			
	21	200	100	100									
	22												
	23												
	24												
	25												
N	26												
	27												
	28												
	29												
	30												
	31							60	50	45			
	32							50	40	35			
	33							35	25	20			
s	34							30	20	15			
3													
	35							30	20	15			
	36							80	50	40			
	37	120	105	90				70	45	35			
	38.1	130	105	80									
Н	38.2	130	105	80									
	39.1	110	85	65									

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc).

Рекомендованные значения fz действительны для торцевого фрезерования с шириной резания (ae) \geq 0,4 D1 и Ap1 max.

При меньших значениях ае и ар, используйте данные корректирующие коэффициенты (D = диаметр пластины, D1 = диаметр фрезы).

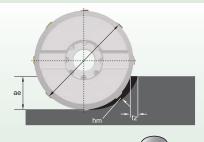
T	аблица значе	ний коэффи	циента fz										
		ae/D1											
Ap1/D	0,05	0,05 0,1 0,2 0,4											
0,05	9	9 6,3 4,3 3,2											
0,1	6,3	4,3	3,2	2,2									
0,2	4,3	3,2	2,2	1,6									
0,4	3,2	2,2	1,6	1,1									

85

110

	соответствие коэффициентов vc и fz										
Коэффициент fz	9	6,3	4,3	3,2	2,2	1,6	1,1				
Коэффициент vc	1,6	1,5	1,4	1,3	1,2	1,1	1				
Например: ae/D1	= 0,1; Ap	1/D = 0,2									
fz ном. = 0,22 fz	z эфф. = (),22 x 3,2 =	= 0,7 мм								
vc ном. = 160 v	с эфф. =	160 x 1,3 =	208 м/ми	1H							

Выбор режимов резания

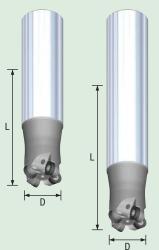

1. Значение fz находится в зависимости от значений Ap1 и ае

Кроме диаметра по пластинам, на значение h_{m} оказывают влияние еще два фактора: Ар1 и ае. Следовательно, fz вычисляется с учетом данного обстоятельства.

Рекомендуемые начальные значения подачи (fz) находятся в зависимости от значений Ap1 и ае.

контакт ае	10%	20%	30%	40%	50%	100%
Ap1 = 1	1,01	0,77	0,63	0,55	0,49	0,35
Ap1 = 2	0,77	0,55	0,45	0,39	0,35	0,24
Ap1 = 3	0,63	0,45	0,37	0,32	0,28	0,20
Ap1 = 4	0,55	0,39	0,32	0,27	0,24	0,17
Ap1 = 5	0,49	0,35	0,28	0,24	0,22	0,15
Ap1 = 6	0,45	0,32	0,26	0,22	0,20	0,14

Пример режимов резания для RD..12... Пластина закреплена в гнезде, отношение $L/D = 2 \ x \ D$:


		TN2505		TN6525			TN6540				
	подача на зуб fz (мм)/ае>50%										
пл	min	ср.	max	min	ср.	max	min	ср.	max		
Геометрия режущей кромки ММ	ae>50%	Рекомендуемое начальное значение Ар1 = 2 мм	-	_	-	0,24	0,30	0,50	0,24	0,40	0,60
Геометрия режущей кромки ММ	ae>50%	Рекомендуемое начальное значение Ар1 = 2 мм	0,24	0,30	0,50	0,24	0,40	0,65	0,24	0,50	0,70

2. Значения Ap1 и vc изменяются в зависимости от отношения L/D

С увеличением отношения L/D или вылета вследствие снижения жесткости, могут возникнуть вибрации. Для обеспечения нормальных условий обработки рекомендуется выполнить корректировку значений Ap1 и vc в соответствии с данными, приведенными в следующей таблице:

отношение L/D	% снижения Ар1 тах	% снижения vc
<2	0%	0%
2 <l d<4<="" td=""><td>65–75%</td><td>10–15%</td></l>	65–75%	10–15%
>4	80–95%	20–40%

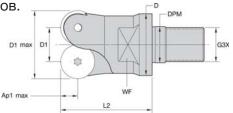


Рекомендуемые режимы резания

Винтовая интерполяция в сплошном материале

диаметр фрезы	min диаметр отверстия	тах диаметр отверстия	Значение Ар1 тах на один оборот	тах угол врезания	Значение Ар1 тах при врезании
24	25,6 мм	36 мм	1,3 мм	15°	3 мм
32	40,6 мм	52 мм	5,3 мм	12°	4,4 MM
35	46,9 мм	58 мм	6 мм	11°	3,9 мм
40	57,4 мм	68 мм	6 мм	9.3°	3,3 мм
42	61,2 мм	72 мм	6 мм	7.2°	3,5 мм
50	77,4 мм	88 MM	6 мм	6.1°	3,5 мм
52	81,3 мм	92 мм	6 мм	4.5°	3,2 мм
63	102,4 мм	114 мм	6 мм	4.5°	4,6 мм
66	108,5 мм	120 мм	6 мм	4.5°	4,4 мм
80	136,5 мм	148 мм	6 мм	3.5°	4,2 мм
100	176,5 мм	188 мм	6 мм	2.2°	4,2 мм

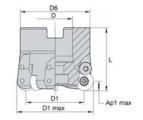
Более подробные сведения приведены в разделе «Техническая информация» на стр. E14.



WIDIA

- Высококачественные корпуса с никелевым покрытием.
- Разработаны для обеспечения максимальной производительности.

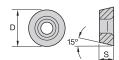
• Идеально подходят для производства пресс-форм и штампов.

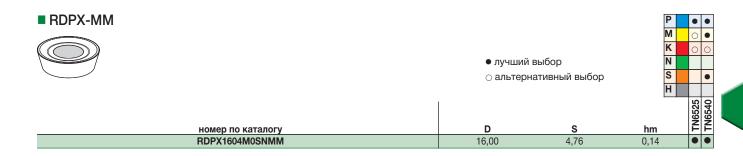

■ M170

		_	_				_	тах угол	max		
номер заказа	номер по каталогу	D1 max	D1 D	DPM	G3X L2 WF	Ap1 max	Z	врезания	частота вращ.	подвод СОЖ	KΓ
3926601	M170D032Z02M16RD16	32	16 29	17,0	M16 43 22	8,0	2	20.0°	9950	Да	0,2

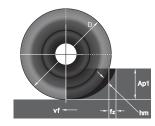
■ М170 • Комплектующие

D1 max	винт пластины	Нм	ключ Torx
32	193.343	6,0	12148099400


■ M170


									тах угол	max		
номер заказа	номер по каталогу	D1 max	D1	D	D6	L	Ap1 max	Z	врезания	частота вращ.	подвод СОЖ	ΚГ
3926602	M170D050Z04RD16	50	34	22	44	40	8,0	4	8.5°	7900	Да	0,3
3934623	M170D052Z04RD16	52	36	22	44	50	8,0	4	8.2°	7650	Да	0,4
3934624	M170D063Z05RD16	63	47	22	44	40	8,0	5	5.5°	5300	Да	0,4
3934625	M170D066Z05RD16	66	50	27	60	50	8,0	5	4.0°	6000	Да	0,7
3934626	M170D080Z06RD16	80	64	27	60	50	8,0	6	3.0°	4900	Да	1,1
3934628	M170D100Z07RD16	100	84	32	80	55	8,0	7	2.4°	3950	Да	1,9
3934629	M170D125Z08RD16	125	109	40	90	60	8,0	8	2.2°	3200	Да	2,9

D1 max	винт пластины	Нм	ключ Тогх	крепежный винт	наконечник для СОЖ	SHCS с канавкой для СОЖ
50	193.343	6,0	12148099400	193.383	_	MS2072CG
52	193.343	6,0	12148099400	193.383	_	MS2072CG
63	193.343	6,0	12148099400	193.383	_	MS2072CG
66	193.343	6,0	12148099400	193.383	_	MS2038CG
80	193.343	6,0	12148099400	193.383	_	MS2038CG
100	193.343	6,0	12148099400	193.383	-	MS1254CG
125	193.343	6,0	12148099400	193.383	470.232	_



Фрезы для профильной обработки • Серия М170

Режимы резания для фрез M170 • RD1604..

			TN2505			TN6525			TN6540	
	етрия й кромки				Пода	ача на зуб fz	z (мм)			
S-	-MM				0,16	0,25	0,30	0,16	0,27	0,35
S-	-МН	0,22	0,25	0,30	0,22	0,30	0,35	0,22	0,32	0,40
	ппа				Скорост	ь резания v	с (м/мин)			
Mare	риала 1	_	_		345	270	230	290	225	190
	2	_	_	_	240	185	160	200	150	130
	3	_	_	_	200	155	135	170	130	110
	4	_	_	_	210	160	135	170	130	110
	5	_	_	_	175	125	105	145	105	90
	6	_	_	_	230	175	145	190	145	120
	7	_	_	_	175	135	115	145	110	95
P	8	_	_	_	155	115	95	130	95	80
	9	_	_	_	135	95	80	110	80	65
	10	190	150	130	175	140	125	145	115	105
	11	130	90	80	115	90	70	95	70	55
	12	240	220	150	220	170	145	185	140	120
	13.1	210	150	130	190	140	115	160	115	95
	13.2	110	80	70	95	70	60	80	60	50
	14.1				190	115	90	160	95	70
	14.2				155	90	70	130	75	55
M	14.3				115	70	55	95	55	45
	14.4				95	60	45	80	50	35
	15	380	280	235	_	_	_	_	_	_
	16	290	215	185	_	_	_	_	_	_
	17	325	235	195	240	180	160	200	150	130
K	18	235	145	120	200	150	130	170	130	110
	19	325	195	160	_	_	_	_	_	_
	20	260	160	130	_	_	_	_	_	_
	21									
	22									
	23									
	24									
N	25									
IN	26									
	27									
	28									
	29									
	30									
	31							60	50	45
	32							50	40	35
	33							35	25	20
S	34							30	20	15
	35							30	20	15
	36							80	50	40
	37							70	45	35
	38.1	130	105	80						
н	38.2	130	105	80						
	39.1	110	85	65						
	20.2	110	05	CE						

Рекомендуемая начальная подача (fz) указана жирным шрифтом. Используйте соответствующую скорость (vc).

Рекомендованные значения fz действительны для торцевого фрезерования с шириной резания (ae) ≥ 0,4 D1 и Ap1 max.

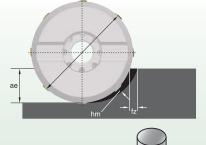
При меньших значениях ае и ар, используйте данные корректирующие коэффициенты (D = диаметр пластины, D1 = диаметр фрезы).

Т	аблица значе	ний коэффи	циента fz									
		ae/D1										
Ap1/D	0,05	0,05 0,1 0,2 0,4										
0,05	9	9 6,3 4,3 3,2										
0,1	6,3	4,3	3,2	2,2								
0,2	4,3	3,2	2,2	1,6								
0,4	3,2	2,2	1,6	1,1								

85

110

	соответствие коэффициентов vc и fz								
Коэффициент fz 9 6,3 4,3 3,2 2,2 1,6 1,1									
Коэффициент vc	Коэффициент vc 1,6 1,5 1,4 1,3 1,2 1,1 1								
Например: ae/D1	= 0,1; Ap	1/D = 0,2							
fz HOM. = 0,22 fz	fz ном. = 0,22 fz эфф. = 0,22 x 3,2 = 0,7 мм								
vc ном. = 160 v	с эфф. =	160 x 1,3 =	= 208 м/ми	IH .					

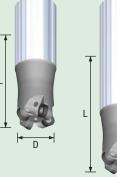

Выбор режимов резания

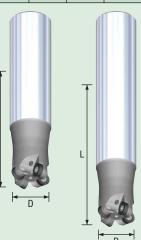
1. Значение fz находится в зависимости от значений Ap1 и ае

Кроме диаметра по пластинам, на значение h_{m} оказывают влияние еще два фактора: Ар1 и ае. Следовательно, fz вычисляется с учетом данного обстоятельства.

Рекомендуемые начальные значения подачи (fz) находятся в зависимости от значений Ap1 и ae.

контакт ае	10%	20%	30%	40%	50%	100%
Ap1 = 1	1,52	1,07	0,88	0,76	0,68	0,48
Ap1 = 2	1,07	0,76	0,62	0,54	0,48	0,34
Ap1 = 3	0,88	0,62	0,51	0,44	0,39	0,28
Ap1 = 4	0,76	0,54	0,44	0,38	0,34	0,24
Ap1 = 6	0,62	0,44	0,36	0,31	0,26	0,20
Ap1 = 8	0,54	0,38	0,31	0,27	0,24	0,17

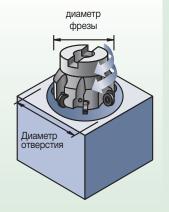

Пример режимов резания для IC16mm... Пластина закреплена в гнезде, отношение L/D достигает 3:


				TN2505			TN6525			TN6540	
							зуб fz (м	м)/ае>50	1%		
пластина = RDPX1604M0SN				ср.	max	min	ср.	max	min	ср.	max
Геометрия режущей кромки ММ	ae>50% Рекомендуемое начальное значение Ар1 = 3 мм		-	_	_	0,28	0,45	0,65	0,28	0,50	0,70
Геометрия режущей кромки МН	ae>50%	Рекомендуемое начальное значение Ар1 = 3 мм	0,28	0,35	0,50	0,28	0,50	0,75	0,28	0,60	0,80

2. Значения Ap1 и vc изменяются в зависимости от отношения L/D

С увеличением отношения L/D или вылета вследствие снижения жесткости, могут возникнуть вибрации. Для обеспечения нормальных условий обработки рекомендуется выполнить корректировку значений Ap1 и vc в соответствии с данными, приведенными в следующей таблице:

отношение L/D	% снижения Ар1 тах	% снижения vc
<2	0%	0%
2 <l d<4<="" th=""><th>65–75%</th><th>10–15%</th></l>	65–75%	10–15%
>4	80–95%	20–40%



Рекомендуемые режимы резания

Винтовая интерполяция в сплошном материале

диаметр фрезы	min диаметр отверстия	тах диаметр отверстия	Значение Ар1 тах на один оборот	тах угол врезания	Значение Ар1 тах при врезании
32	36 мм	48 мм	3 мм	20°	3 мм
50	69 мм	84 мм	8 мм	9,5°	4,8 мм
52	73 мм	88 мм	8 мм	8,2°	5 мм
63	95 мм	110 мм	8 мм	5,5°	4,7 мм
66	101 мм	120 мм	8 мм	4°	4,2 мм
80	129 мм	144 мм	8 мм	3°	4,1 мм
100	169 мм	184 мм	8 мм	2,4°	4,6 мм
125	219 мм	234 мм	8 мм	2,2°	4,4 мм

Более подробные сведения приведены в разделе «Техническая информация» на стр. Е14.

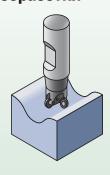
Жесткое и надежное крепление пластины • Серия М270

Серия фрез M270 включает высокоточные фрезы со сферическим и тороидальным концом, а также новые пластины для фрезерования с высокой подачей. Фрезы этой серии характеризуются точным и надежным креплением пластин, что гарантирует стабильность и высокую производительность обработки.

- Сферические и тороидальные фрезы для получистовой и чистовой обработки.
- Стандартное предложение включает HOBЫE пластины «High-Feed» (HF), обеспечивающие повышение производительности.
- V-образный контакт в торцевой плоскости гарантирует максимальную жесткость и точность.

M270

Для заказа доступны фрезы со стальным и твердосплавным хвостовиком.


Тороидальные пластины и пластины для высокоскоростной обработки устанавливаются в один и тот же корпус фрезы.

Контактирование по V-образной поверхности обеспечивает повышенную жесткость и точность крепления.

Фрезы для профильной обработки

Геометрия пластины	7	Рекомендуемое применение					
	BF	Рекомендуются для всех операций чистовой обработки и легких режимов резания.					
	BR	Рекомендуются для получистовой обработки и средних режимов резания.					

Тороидальные фрезы M270

Мах глубина резания: 0,3 мм – 4,0 мм

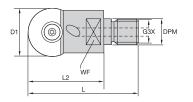
Диаметр: 10 мм - 20 мм Стр.: А170-А173

Геометрия пластины		Рекомендуемое применение					
	TF	Прецизионная пластина для чистовой и получистовой обработки. Обратный конус при вершине для минимизации вибраций.					

Фрезы для работы с большими подачами М270

Мах глубина резания: 0,6 MM - 1,1 MM

Диаметр: 10 мм - 20 мм


Геометрия пластины	1	Рекомендуемое применение
	HF	Черновая и получистовая обработка с максимальной подачей. Исключительная устойчивость, даже при работе с большим вылетом.

Корпуса сферических фрез М270

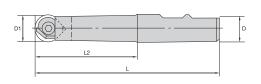
- Черновая, получистовая и чистовая обработка в одной системе.
- Внутренний подвод СОЖ.
- Надежное и жесткое закрепление пластины.

■ Сферические фрезы М270

											max		
номер заказа	номер по каталогу	D1	DPM	G3X	L	L2	WF	Z	ΖU	пластина	частота вращ.	подвод СОЖ	ΚГ
2243624	M270BD010M08	10	8,5	M8	42	25	10	1	2	M270B.10	57000	Да	0,1
2243625	M270BD012M08	12	8,5	M8	42	25	10	1	2	M270B.12	55000	Да	0,1
2243626	M270BD016M08	16	8,5	M8	47	30	10	1	2	M270B.16	53000	Да	0,1
2243627	M270BD020M10	20	10,5	M10	59	40	14	1	2	M270B.20	52000	Да	0,1
2243628	M270BD025M12	25	12,5	M12	72	50	19	1	2	M270B.25	50000	Да	0,1
2243629	M270BD032M16	32	17,0	M16	73	50	22	1	2	M270B.32	46000	Да	0,2

■ Сферические фрезы М270 • Комплектующие

D1	винт пластины	Нм	ключ Torx
10	12748610500	2,0	12148788900
12	12748610600	2,0	12148788900
16	12748610700	5,0	12148099300
20	12748610800	5,0	12148099300
25	12748610900	7,0	12148086800
32	12748611000	7,0	12146006300

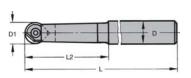


- Черновая, получистовая и чистовая обработка в одной системе.
- Надежное и жесткое закрепление пластины.

■ Сферические фрезы М270

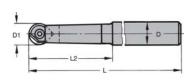
									max		
номер заказа	номер по каталогу	D1	D	L	L2	Z	ΖU	пластина	частота вращ.	подвод СОЖ	ΚГ
2243618	M270BD010B12L90	10	12	90	45	1	2	M270B.10	57000	Нет	0,1
2243619	M270BD012B12L95	12	12	95	50	1	2	M270B.12	55000	Нет	0,1
2243620	M270BD016B16L105	16	16	105	57	1	2	M270B.16	53000	Нет	0,1
2243621	M270BD020B20L120	20	20	120	70	1	2	M270B.20	52000	Нет	0,2
2243622	M270BD025B25L145	25	25	145	89	1	2	M270B.25	50000	Нет	0,4
2243623	M270BD032B32L155	32	32	155	95	1	2	M270B.32	46000	Нет	0,8

■ Сферические фрезы М270 • Комплектующие


D1	винт пластины	Нм	ключ Тогх
10	12748610500	2,0	12148788900
12	12748610600	2,0	12148788900
16	12748610700	5,0	12148099300
20	12748610800	5,0	12148099300
25	12748610900	7,0	12148086800
32	12748611000	7,0	12146006300

Корпуса сферических фрез М270

- Черновая, получистовая и чистовая обработка в одной системе.
- Надежное и жесткое закрепление пластины.


■ Сферические фрезы М270

		1							IIIax		
номер заказа	номер по каталогу	D1	D	L	L2	Z	ΖU	пластина	частота вращ.	подвод СОЖ	КГ
2243613	M270BD010A12L140	10	12	140	45	1	2	M270B.10	57000	Нет	0,1
2243614	M270BD012A12L145	12	12	145	50	1	2	M270B.12	55000	Нет	0,1
2067470	M270BD016A16L155	16	16	155	57	1	2	M270B.16	53000	Нет	0,2
2243615	M270BD020A20L170	20	20	170	70	1	2	M270B.20	52000	Нет	0,4
2243616	M270BD025A25L195	25	25	195	89	1	2	M270B.25	50000	Нет	0,6
2243617	M270BD032A32L205	32	32	205	95	1	2	M270B.32	46000	Нет	1,1

■ Сферические фрезы М270 • Комплектующие

D1	винт пластины	Нм	ключ Torx
10	12748610500	2,0	12148788900
12	12748610600	2,0	12148788900
16	12748610700	5,0	12148099300
20	12748610800	5,0	12148099300
25	12748610900	7,0	12148086800
32	12748611000	7,0	12146006300

- Черновая, получистовая и чистовая обработка в одной системе.
- Внутренний подвод СОЖ.
- Твердосплавный хвостовик.

■ Сферические фрезы М270

		i .				i			IIIQA		
номер заказа	номер по каталогу	D1	D	L	L2	Z	ΖU	пластина	частота вращ.	подвод СОЖ	ΚГ
2424550	M270BD010A12L140C	10	12	140	45	1	2	M270B.10	57000	Да	0,2
2424587	M270BD012A12L145C	12	12	145	50	1	2	M270B.12	55000	Да	0,2
2424634	M270BD016A16L155C	16	16	155	57	1	2	M270B.16	53000	Да	0,4
2639257	M270BD020A20L170C	20	20	170	70	1	2	M270B.20	52000	Да	0,7
	2424550 2424587 2424634	2424550 M270BD010A12L140C 2424587 M270BD012A12L145C 2424634 M270BD016A16L155C	2424550 M270BD010A12L140C 10 2424587 M270BD012A12L145C 12 2424634 M270BD016A16L155C 16	2424550 M270BD010A12L140C 10 12 2424587 M270BD012A12L145C 12 12 2424634 M270BD016A16L155C 16 16	2424550 M270BD010A12L140C 10 12 140 2424587 M270BD012A12L145C 12 12 145 2424634 M270BD016A16L155C 16 16 155	2424550 M270BD010A12L140C 10 12 140 45 2424587 M270BD012A12L145C 12 12 145 50 2424634 M270BD016A16L155C 16 16 155 57	2424550 M270BD010A12L140C 10 12 140 45 1 2424587 M270BD012A12L145C 12 12 145 50 1 2424634 M270BD016A16L155C 16 16 155 57 1	2424550 M270BD010A12L140C 10 12 140 45 1 2 2424587 M270BD012A12L145C 12 12 145 50 1 2 2424634 M270BD016A16L155C 16 16 155 57 1 2	2424550 M270BD010A12L140C 10 12 140 45 1 2 M270B.10 2424587 M270BD012A12L145C 12 12 145 50 1 2 M270B.12 2424634 M270BD016A16L155C 16 16 15 57 1 2 M270B.16	номер заказа номер по каталогу D1 D L L2 Z Z U пластина частота вращ. 2424550 M270BD010A12L140C 10 12 140 45 1 2 M270B.10 57000 2424587 M270BD012A12L145C 12 12 145 50 1 2 M270B.12 55000 2424634 M270BD016A16L155C 16 16 155 57 1 2 M270B.16 53000	номер заказа номер по каталогу D1 D L L2 Z Z U пластина частота вращ. подвод СОЖ 2424550 M270BD010A12L140C 10 12 140 45 1 2 M270B.10 57000 Да 2424587 M270BD012A12L145C 12 12 145 50 1 2 M270B.12 55000 Да 2424634 M270BD016A16L155C 16 16 155 57 1 2 M270B.16 53000 Да

■ Сферические фрезы M270 • Комплектующие

D1	винт пластины	Hm	ключ Torx
10	12748610500	2,0	12148788900
12	12748610600	2,0	12148788900
16	12748610700	5,0	12148099300
20	12748610800	5,0	12148099300

W

10

12

16

20

25

■ BF

номер по каталогу

M270BF10

M270BF12

M270BF16

M270BF20

M270BF25

M270BF32

• лучший выбор

s

2,38

3,18

4,76

4,76

4,76

4,76

○ альтернативный выбор

RC

5,0

6,0

8,0

10,0

12,5

16,0

						\sim	
	Н	•	•				
hm		TN2505	TN2510	TN6525	TT125	THM	TTM
0,08							
0,08							
0,08		•	•	•	•	•	•
0,10		•	•	•		•	•
0,10					•		

0,10

■ BR

• лучший выбор

○ альтернативный выбор

	Р	0	•	•	•		•
	M		•	0	0		0
	K	•	0		0	0	0
	N					•	
	S		•			0	
	Н	•					
		TN2510	TN6540	TN7525	FN7535	_	_
m		ZNI	JN T	Ţ	Ţ	Ŧ	É
80				•	•	•	
08							•

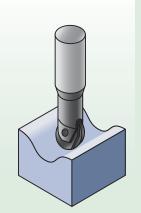
							٤١٤	₽	≥
номер по каталогу	W	S	RC	hm	F i		= F		H
M270BR10	10	2,38	5,0	0,08				•	
M270BR12	12	3,18	6,0	0,08				,	
M270BR16	16	4,76	8,0	0,08	•	•		•	•
M270BR20	20	4,76	10,0	0,10		•		•	•
M270BR25	25	4,76	12,5	0,10	•				
M270BR32	32	4,76	16,0	0,10				4	

Фрезы для профильной обработки • Серия М270

Режимы резания для сферических фрез М270

			TN2505			TN2510			TN6525			TN6540			TN7525	
	метр тины							Подач	а на зуб	fz (мм)						
10/		0,06	0,08	0,10	0,06	0,08	0,12	0,10	0,15	0,18	0,12	0,18	0,22	0,10	0,15	0,18
1		0,07	0,10	0,13	0,07	0,10	0,15	0,12	0,16	0,20	0,14	0,19	0,24	0,12	0,16	0,20
20/		0,08	0,12	0,15	0,08	0,12	0,18	0,15	0,20	0,25	0,18	0,24	0,30	0,15	0,20	0,25
З Гру		0,10	0,14	0,18	0,10	0,14	0,22							0,18	0,22	0,28
матер								Скорость	резания	vc (м/мин						
	1	_	_	_	_	_	_	350	270	228	290	220	190	410	320	280
	2	_	_	_	_	_	_	240	180	160	200	150	130	290	220	190
	3	_	_	_	_	_	_	200	150	130	170	130	110	240	184	160
	4	_	_	_	_	_	_	210	160	130	170	130	110	250	190	160
	5	_	_	_	_	_	_	170	130	110	140	100	90	210	150	130
	6	_	_	_	_	_	_	228	170	140	190	140	120	280	210	170
P	7	_	_	_	_	_	_	170	130	120	140	110	100	210	160	140
	8	_	_	_	_	_	_	150	120	100	130	100	80	180	140	120
	9	-	_	-	-		_	130	100	80	110	80	60	160	120	90
	10	230	180	170	190	150	140	170	140	130	140	120	100	210	170	150 80
	11 12	160 290	120 230	100 180	130 240	100 190	80 150	120 220	90 170	70 140	100 180	70 140	60 120	140 270	100 200	170
	13.1	250	180	160	210	150	130	190	140	120	160	120	100	230	170	140
	13.1	130	100	80	110	80	70	96	70	60	80	60	50	120	90	70
	14.1	100	100	- 00	110		10	190	120	90	160	100	70	230	140	100
	14.2							150	90	70	130	80	60	180	110	80
M	14.3							120	70	50	100	60	40	140	80	60
	14.4							100	60	40	80	50	40	120	70	50
	15	_	_	_	690	500	336	_	_	_	_	_	_			
	16	_	_	_	530	400	300	_	_	_	_	_	_			
K	17	730	480	360	610	400	300	240	180	160	200	150	130			
, K	18	470	350	260	390	290	220	200	150	130	170	130	110			
	19	_	_	_	444	370	290	_	_	_	_	_	_			
	20	_			400	300	216	_			_					
	21															
	22															
	23															
	24 25															
N	26															
	27															
	28															
	29															
	30															
	31										60	50	45			
	32										50	40	35			
	33										35	25	20			
S	34										30	20	15			
	35										30	20	15			
	36										80	50	40			
	37										70	45	35			
	38.1	160	120	80	130	105	80									
н	38.2	160	120	80	130	105	80									
	39.1	120	100	60	110	85	65									
	39.2	120	100	60	110	85	65									

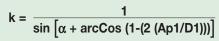
Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значение fz соответствует максимальному значению ае, равного 10% от диаметра фрезы. Важно выполнить расчет частоты вращения с учетом эффективного рабочего диаметра, как описано в дополнительных рекомендациях по применению.


Дополнительные рекомендации по применению фрез М270

Выбор пластин и режимов обработки

1. Выбор типа пластины


	Геомет	рия BR	Ге	ометрия	BF
Выбор пластины и марки сплава • Лучший вариант Альтернативный вариант				2	
Марка сплава	TN6540	TN2510	TN2525	TN2510	TN2505
Черновая обработка	•	•	0		
Чистовая обработка		0	•	•	•
Станок невысокой мощности	•	0	0		
Плоские поверхности и торцевое фрезерование (угол наклона ≤ 10°)	•		0		
Тяжелые условия обработки		0		0	•
Нестабильные условия и/или большой вылет	•		0		
Высокоскоростная обработка (HSM) или 5-координатная обработка (меньшие значения ар/ае)			•		•


2. Расчет эффективного диаметра и результирующей скорости резания

Чтобы правильно выполнить расчет значения частоты вращения для небольших глубин резания, необходимо учитывать эффективный диаметр (Deff). При обработке горизонтальных или наклонных поверхностей с углом менее 10 градусов, используйте ниже приведенную формулу для определения величины Deff. Полученное значение используйте вместо диаметра пластины (D1) при расчете частоты вращения.

D eff = $\sqrt{D1^2 - (D1 - 2Ap1)^2}$

При обработке наклонных поверхностей с углом наклона от 11 до 55 градусов, необходимо пересчитать значение vc. Для расчета vc (v_{C} eff) используйте коэффициент «k», полученный по данной формуле. Затем полученное значение используется для расчета частоты вращения для соответствующего инструмента.

 v_c eff = $v_c X k$

Для получистовой и чистовой обработки используйте только фрезы с твердосплавным хвостовиком.

Для предварительной черновой обработки используйте только фрезы со стальным хвостовиком.

Начальные значения для получистовой обработки основных групп материалов (отношение L/D <3 x D1)

Фрезы М270 обычно применяются для получистовой и чистовой обработки; отношение Ap1/ae зависит от вида операции. Основное правило: Ap1/ae ≤0,05D.

		Диаметр инструмента																
		Ø10			Ø12			Ø16			Ø20			Ø25			Ø32	
	max p	ek. (MM)	fz	max p	max рек. (мм) fz m		max p	ek. (MM)	fz	max p	ek. (MM)	fz	max рек. (мм)		fz	max p	ek. (MM)	fz
Материал	Ap1	ae	(мм/зуб)	Ap1	ae	(мм/зуб)	Ap1	ae	(мм/зуб)	Ap1	ae	(мм/зуб)	Ap1	ae	(мм/зуб)	Ap1	ae	(мм/зуб)
Мягкая сталь <250 НВ	0,7	0,7	0,2	0,8	0,8	0,2	1,1	1,1	0,27	1,3	1,3	0,27	1,7	1,7	0,3	2,1	2,1	0,3
Высокопрочная сталь 33–44 HRC	0,5	0,5	0,15	0,6	0,6	0,2	0,8	0,8	0,25	1	1	0,25	1,3	1,3	0,25	1,6	1,6	0,25
Закаленная сталь 44–55 HRC	0,3	0,3	0,15	0,4	0,4	0,2	0,5	0,5	0,22	0,7	0,7	0,22	0,8	0,8	0,25	1,1	1,1	0,25
Серый чугун GG25	1	1	0,2	1,2	1,2	0,25	1,6	1,6	0,25	2	2	0,25	2,5	2,5	0,3	3,2	3,2	0,3
Чугун с шаровидным графитом GGG60	0,7	0,7	0,2	0,8	0,8	0,25	1,1	1,1	0,25	1,3	1,3	0,25	1,7	1,7	0,3	2,1	2,1	0,3

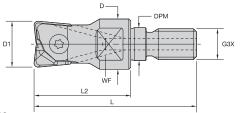
WIN WITH WIDLA

Сферические фрезы M270 | Тороидальные фрезы M270 | Фрезы для работы с большими подачами M270

Фрезы для профильной обработки серии M270 изготовляются как со стальными, так и с твердосплавными хвостовиками. Они гарантируют надежное и жесткое закрепление пластины и надежную работу в широком спектре применения.

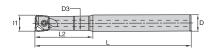
- Тороидальные пластины и пластины для работы с большими подачами устанавливаются в один и тот же корпус фрезы.
- Высокоточное и надежное позиционирование пластины.
- Для всех операций черновой, получистовой и чистовой обработки.

Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт **www.widia.com**.



Корпуса тороидальных фрез М270

- Получистовая и чистовая обработка.
- Внутренний подвод СОЖ.
- Надежное и жесткое закрепление пластины.


■ Тороидальные фрезы М270

												max		
номер заказа	номер по каталогу	D1	D	DPM	G3X	L	L2	WF	Z	ΖU	пластина	частота вращ.	подвод СОЖ	ΚГ
3926546	M270TD012M08	12	13	8,5	M8	42	25	10	1	2	M270TF12R	55000	Да	0,02
3926547	M270TD016M08	16	13	8,5	M8	47	30	10	1	2	M270TF16R	53000	Да	0,09
3926548	M270TD020M10	20	18	10,5	M10	59	40	14	1	2	M270TF20R	52000	Да	0,07

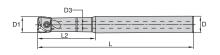
■ Тороидальные фрезы М270 • Комплектующие

D1	винт пластины	Нм	ключ Torx
12	12748610600	2,0	12148788900
16	12748610700	5,0	12148099300
20	12748610800	5.0	12148099300

■ Тороидальные фрезы М270

										max		
номер заказа	номер по каталогу	D1	D	D3	L	L2	Z	ΖU	пластина	частота вращ.	подвод СОЖ	КГ
3926514	M270TD010A10L120	10	10	9	120	45	1	2	M270TF10R	57000	Да	0,1
3926515	M270TD012A12L140	12	12	11	140	50	1	2	M270TF12R	55000	Да	0,1
3926516	M270TD016A16L160	16	16	14	160	57	1	2	M270TF16R	53000	Да	0,2
3926517	M270TD020A20L180	20	20	18	180	70	1	2	M270TF20R	52000	Да	0,4

■ Тороидальные фрезы М270 • Комплектующие


D1	винт пластины	Нм	ключ Torx
10	12748610500	2,0	12148788900
12	12748610600	2,0	12148788900
16	12748610700	5,0	12148099300
20	12748610800	5,0	12148099300

- Получистовая и чистовая обработка.
- Внутренний подвод СОЖ.
- Твердосплавный хвостовик.

■ Тороидальные фрезы М270

										max		
номер заказа	номер по каталогу	D1	D	D3	L	L2	Z	ΖU	пластина	частота вращ.	подвод СОЖ	ΚГ
3926518	M270TD010A10L120C	10	10	9	120	45	1	2	M270TF10R	57000	Да	0,1
3926519	M270TD010A10L150C	10	10	9	150	45	1	2	M270TF10R	57000	Да	0,1
3926520	M270TD012A12L120C	12	12	11	120	50	1	2	M270TF12R	55000	Да	0,2
3926521	M270TD012A12L160C	12	12	11	160	50	1	2	M270TF12R	55000	Да	0,2
3926522	M270TD016A16L140C	16	16	14	140	57	1	2	M270TF16R	53000	Да	0,3
3926543	M270TD016A16L180C	16	16	14	180	57	1	2	M270TF16R	53000	Да	0,4
3926544	M270TD020A20L150C	20	20	18	150	70	1	2	M270TF20R	52000	Да	0,5
3926545	M270TD020A20L200C	20	20	18	200	70	1	2	M270TF20R	52000	Да	0,7
	3926518 3926519 3926520 3926521 3926522 3926543 3926544	3926518 M270TD010A10L120C 3926519 M270TD010A10L150C 3926520 M270TD012A12L120C 3926521 M270TD012A12L160C 3926522 M270TD016A16L140C 3926543 M270TD016A16L180C 3926544 M270TD020A20L150C	3926518 M270TD010A10L120C 10 3926519 M270TD010A10L150C 10 3926520 M270TD012A12L120C 12 3926521 M270TD012A12L160C 12 3926522 M270TD016A16L140C 16 3926543 M270TD016A16L180C 16 3926544 M270TD020A20L150C 20	3926518 M270TD010A10L120C 10 10 3926519 M270TD010A10L150C 10 10 3926520 M270TD012A12L120C 12 12 3926521 M270TD012A12L160C 12 12 3926522 M270TD016A16L140C 16 16 3926543 M270TD016A16L180C 16 16 3926544 M270TD020A20L150C 20 20	3926518 M270TD010A10L120C 10 10 9 3926519 M270TD010A10L150C 10 10 9 3926520 M270TD012A12L120C 12 12 11 3926521 M270TD012A12L160C 12 12 11 3926522 M270TD016A16L140C 16 16 14 3926543 M270TD016A16L180C 16 16 14 3926544 M270TD020A20L150C 20 20 18	3926518 M270TD010A10L120C 10 10 9 120 3926519 M270TD010A10L150C 10 10 9 150 3926520 M270TD012A12L120C 12 12 11 120 3926521 M270TD012A12L160C 12 12 11 160 3926522 M270TD016A16L140C 16 16 14 140 3926543 M270TD016A16L180C 16 16 14 180 3926544 M270TD020A20L150C 20 20 18 150	3926518 M270TD010A10L120C 10 10 9 120 45 3926519 M270TD010A10L150C 10 10 9 150 45 3926520 M270TD012A12L120C 12 12 11 120 50 3926521 M270TD012A12L160C 12 12 11 160 50 3926522 M270TD016A16L140C 16 16 14 140 57 3926543 M270TD016A16L180C 16 16 14 180 57 3926544 M270TD020A20L150C 20 20 18 150 70	3926518 M270TD010A10L120C 10 10 9 120 45 1 3926519 M270TD010A10L150C 10 10 9 150 45 1 3926520 M270TD012A12L120C 12 12 11 120 50 1 3926521 M270TD012A12L160C 12 12 11 160 50 1 3926522 M270TD016A16L140C 16 16 14 140 57 1 3926543 M270TD020A20L150C 20 20 18 150 70 1	3926518 M270TD010A10L120C 10 10 9 120 45 1 2 3926519 M270TD010A10L150C 10 10 9 150 45 1 2 3926520 M270TD012A12L120C 12 12 11 120 50 1 2 3926521 M270TD012A12L160C 12 12 11 160 50 1 2 3926522 M270TD016A16L140C 16 16 14 140 57 1 2 3926543 M270TD016A16L180C 16 16 14 180 57 1 2 3926544 M270TD020A20L150C 20 20 18 150 70 1 2	3926518 M270TD010A10L120C 10 10 9 120 45 1 2 M270TF10R 3926519 M270TD010A10L150C 10 10 9 150 45 1 2 M270TF10R 3926520 M270TD012A12L120C 12 12 11 120 50 1 2 M270TF12R 3926521 M270TD012A12L160C 12 12 11 160 50 1 2 M270TF12R 3926522 M270TD016A16L140C 16 16 14 140 57 1 2 M270TF16R 3926543 M270TD016A16L180C 16 16 14 180 57 1 2 M270TF16R 3926544 M270TD020A20L150C 20 20 18 150 70 1 2 M270TF20R	номер заказа номер по каталогу D1 D D3 L L2 Z Z U пластина частота вращ. 3926518 M270TD010A10L120C 10 10 9 120 45 1 2 M270TF10R 57000 3926519 M270TD010A10L150C 10 10 9 150 45 1 2 M270TF10R 57000 3926520 M270TD012A12L120C 12 12 11 120 50 1 2 M270TF12R 55000 3926521 M270TD016A16L140C 12 12 11 160 50 1 2 M270TF12R 55000 3926522 M270TD016A16L140C 16 16 14 140 57 1 2 M270TF16R 53000 3926543 M270TD026A20L150C 20 20 18 150 70 1 2 M270TF20R 52000	номер заказа номер по каталогу D1 D D3 L L2 Z ZU пластина частота вращ. подвод СОЖ 3926518 M270TD010A10L120C 10 10 9 120 45 1 2 M270TF10R 57000 Да 3926519 M270TD010A10L150C 10 10 9 150 45 1 2 M270TF10R 57000 Да 3926520 M270TD012A12L120C 12 12 11 120 50 1 2 M270TF12R 55000 Да 3926521 M270TD012A12L160C 12 12 11 160 50 1 2 M270TF12R 55000 Да 3926522 M270TD016A16L140C 16 16 14 140 57 1 2 M270TF16R 53000 Да 3926543 M270TD016A16L180C 16 16 14 180 57 1 2 M270TF16R 53000 Да

■ Тороидальные фрезы М270 • Комплектующие

D1	винт пластины	Нм	ключ Torx
10	12748610500	2,0	12148788900
10	12748610500	2,0	12148788900
12	12748610600	2,0	12148788900
12	12748610600	2,0	12148788900
16	12748610700	5,0	12148099300
16	12748610700	5,0	12148099300
20	12748610800	5,0	12148099300
20	12748610800	5,0	12148099300

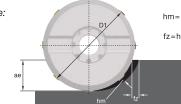
■ Тороидальные фрезы М270

• лучший выбор

○ альтернативный выбор

	w	s	RR	hm	N2505	TN2510	VECEV
номер по каталогу							4
M270TF10R03	10	2,38	0,3	0,08			1
M270TF10R05	10	2,38	0,5	0,08			1
M270TF10R1	10	2,38	1,0	0,08	•	•	,
M270TF12R03	12	3,18	0,3	0,08		•	1
M270TF12R05	12	3,18	0,5	0,08		•	,
M270TF12R1	12	3,18	1,0	0,08		•	,
M270TF12R2	12	3,18	2,0	0,08	•	•	,
M270TF16R03	16	4,76	0,3	0,08		•	ا•
M270TF16R05	16	4,76	0,5	0,08		•	,
M270TF16R1	16	4,76	1,0	0,08		•	,
M270TF16R2	16	4,76	2,0	0,08		•	,
M270TF16R3	16	4,76	3,0	0,08		•	•
M270TF20R03	20	4,76	0,3	0,08			,
M270TF20R05	20	4,76	0,5	0,08		•)
M270TF20R1	20	4,76	1,0	0,08		• •	,
M270TF20R2	20	4,76	2,0	0,08		•	1
M270TF20R4	20	4,76	4,0	0,10	•	•)

ПРИМЕЧАНИЕ: Ap1 max равно "RR."

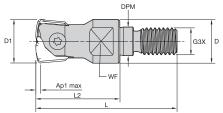

Режимы резания для тороидальных фрез М270

		TN2505				TN2510			TN2525	
Диа: плас	метр тины				По	дача на зуб fz	(мм)			
1		0,06	0,08	0,10	0,06	0,08	0,12	0,06	0,08	0,12
1		0,06	0,08	0,10	0,07	0,10	0,15	0,07	0,10	0,15
1		0,07	0,10	0,13	0,08	0,12	0,18	0,08	0,12	0,18
2 Fnv		0,08	0,12	0,15	0,10	0,14	0,22	0,10	0,14	0,22
матер	ппа риала				Скоро	сть резания vc	(м/мин)			
	1	_	_	_	_	_	_	290	225	190
	2	_	_	_	_	_	_	200	150	130
	3	_	_	_	_	_	_	170	130	110
	4	_	_	_	_	_	_	170	130	110
	5	_	_	_	_	_	_	145	105	90
	6	_	_	_	_	_	_	190	145	120
P	7	_	_	_	_	_	_	145	110	95
	8	_	_	_	_	_	_	130	95	80
	9	_	_	_	_	_	_	110	80	65
	10	230	180	170	190	150	140	145	115	105
	11	160	120	100	130	100	80	95	70	55
	12	290	230	180	240	190	150	185	140	120
	13.1	250	180	160	210	150	130	160	115	95
	13.2	130	100	80	110	80	70	80	60	50
	14.1									
M	14.2									
	14.3									
	14.4				000	F00	000			
	15 16	_	_	_	690 530	500 400	336 300	_	_	_
	17	730	— 480	360	610	400	300	200	— 150	130
K	18	470	350	260	390	290	220	170	130	110
	19	-	_	_	444	370	290	—	_	—
	20	_		_	400	300	216	_	_	_
	21				400	300	210			
	22									
	23									
	24									
	25									
N	26									
	27									
	28									
	29									
	30									
	31									
	32									
	33									
S	34									
	35									
	36									
	37									
	38.1	160	120	80	130	105	80	100	75	50
н	38.2	160	120	80	130	105	80	100	75	50
"	39.1	120	100	60	110	85	65	_	_	_
	39.2	_	— ====================================	_	— —		_	——————————————————————————————————————	_	_

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

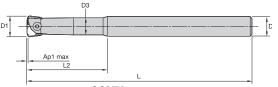
При меньших значениях ае, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1 =	0,02	0,05	0,1	0,2	0,4
коэффициент fz	3,5	3	2	1,5	1
коэффициент vc	1,6	1,5	1,4	1,3	1,1


Корпуса фрез для работы с большими подачами М270

- Большой удельный съем металла.
- Великолепно подходят для обработки труднодоступных мест.

■ Фрезы для работы с большими подачами M270


												IIIax		
номер заказа	номер по каталогу	D1 [DPM	G3X	L L2	WF	Ap1 max	Z	ΖU	пластина 1	пластина 2*	частота вращ.	подвод СОЖ	КГ
3926546	M270TD012M08	12 1	3 8,5	M8	42 25	10	0,6	1	2	M270HF12	M270HF13	55000	Да	0,02
3926547	M270TD016M08	16 1	3 8,5	M8	47 30	10	0,9	1	2	M270HF16	M270HF17	53000	Да	0,09
3926548	M270TD020M10	20 1	3 10,5	M10	59 40	14	1,1	1	2	M270HF20	_	52000	Да	0,07

*D1 = 13 мм при использовании M270HF13; D1 = 17 мм при использовании M270HF17.

■ Фрезы для работы с большими подачами М270 • Комплектующие

D1	винт пластины	Нм	ключ Torx
12	12748610600	2,0	12148788900
16	12748610700	5,0	12148099300
20	12748610800	5.0	12148099300

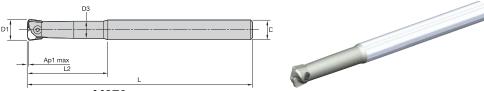
■ Фрезы для работы с большими подачами M270

									i					max		
	номер заказа	номер по каталогу	D1	D	D3	L	L2	Ap1 max	Z	Ζ	U	вставка 1	пластина 2*	частота вращ.	подвод СОЖ	ΚГ
ı	3926514	M270TD010A10L120	10	10	9	120	45	0,6	1	2	!	M270HF10	_	57000	Да	0,1
	3926515	M270TD012A12L140	12	12	11	140	50	0,6	1	2		M270HF12	M270HF13	55000	Да	0,1
ľ	3926516	M270TD016A16L160	16	16	14	160	57	0,9	1	2		M270HF16	M270HF17	53000	Да	0,2
	3926517	M270TD020A20L180	20	20	18	180	70	1,1	1	2		M270HF20	_	52000	Да	0,4

*D1 = 13 мм при использовании M270HF13; D1 = 17 мм при использовании M270HF17.

■ Фрезы для работы с большими подачами М270 • Комплектующие

D1	винт пластины	Нм	ключ Тогх
10	12748610500	2,0	12148788900
12	12748610600	2,0	12148788900
16	12748610700	5,0	12148099300
20	12748610800	5,0	12148099300

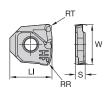


Корпуса фрез для работы с большими подачами М270

- Большой удельный съем металла.
- Великолепно подходят для обработки труднодоступных мест.
- Твердосплавный хвостовик.

■ Фрезы для работы с большими подачами М270

							max		
номер заказа	номер по каталогу	D1 D D3 L L2	Ap1 max	ZZU	пластина 1	пластина 2*	частота вращ.	подвод СОЖ	КГ
3926518	M270TD010A10L120C	10 10 9 120 45	0,6	1 2	M270HF10	_	57000	Да	0,1
3926519	M270TD010A10L150C	10 10 9 150 45	0,6	1 2	M270HF10	_	57000	Да	0,1
3926520	M270TD012A12L120C	12 12 11 120 50	0,6	1 2	M270HF12	M270HF13	55000	Да	0,2
3926521	M270TD012A12L160C	12 12 11 160 50	0,6	1 2	M270HF12	M270HF13	55000	Да	0,2
3926522	M270TD016A16L140C	16 16 14 140 57	0,9	1 2	M270HF16	M270HF17	53000	Да	0,3
3926543	M270TD016A16L180C	16 16 14 180 57	0,9	1 2	M270HF16	M270HF17	53000	Да	0,4
3926544	M270TD020A20L150C	20 20 18 150 70	1,1	1 2	M270HF20	_	52000	Да	0,5
3926545	M270TD020A20L200C	20 20 18 200 70	1,1	1 2	M270HF20	_	52000	Да	0,7


^{*}D1 = 13 мм при использовании M270HF13; D1 = 17 мм при использовании M270HF17.

■ Фрезы для работы с большими подачами М270 • Комплектующие

D1	винт пластины	Нм	ключ Torx
10	12748610500	2,0	12148788900
12	12748610600	2,0	12148788900
16	12748610700	5,0	12148099300
20	12748610800	5,0	12148099300

Пластины для фрез для работы с большими подачами М270

W

10

12

13

16

17

20

LI

10,50

12,40

12,40

16,70

16,70

20,70

■ Фрезы для работы с большими подачами M270

номер по каталогу

M270HF10

M270HF12

M270HF13

M270HF16

M270HF17

M270HF20

• лучший выбор

○ альтернативный выбор

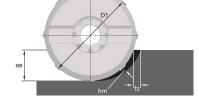
		H	•	
s	RR	RT	TN2505	TN6540
2,38 3,18	0,63 0,75	1,15 1,40	•	•
3,18 4,76	0,75 1,00	1,40 1,90	•	•
4,76 4,76	1,00 1,25	1,90 2,30	•	•

"RT" = радиус для программирования.

Преимущества специальных решений WIDIA

- Разработка, проектирование и изготовление различных видов режущих инструментов для фрезерования, сверления, развертывания, зенкования и других операций.
- Услуга выполняется в пределах одного инженерного подразделения, которое взаимодействует со всеми специализированными заводами WIDIA.
- Возможность использования всех существующих инструментальных материалов, таких как быстрорежущая сталь (HSS-E), порошковый металл, твердый сплав, напайные твердосплавные пластины, кермет, поликристаллический алмаз и кубический нитрид бора, а также изготовление инструмента с внутренним подводом СОЖ или без него.
- Весь спектр выполняемых услуг в компетенции одного поставщика: от проектирования по условиям заказчика, разработки и изготовления вплоть до переточки инструмента.
- Постоянство качества и полное соответствие техническим условиям и характеристикам инструмента.

Фрезы для профильной обработки • Серия М270


Режимы резания для фрез для работы с большими подачами М270

			TN2505			TN6540	
Диаметр пластины		Подача на зуб fz (мм)					
10		0,15	0,25	0,28	0,15	0,30	0,50
12/13		0,15	0,30	0,35	0,15	0,40	0,50
16/17		0,15	0,40	0,45	0,15	0,50	0,60
2		0,15	0,50	0,55	0,15	0,60	0,70
Гру матер	ппа оиала			Скорость реза	ания vc (м/мин)		
	1	_	_	_	290	225	190
	2	_	_	_	200	150	130
	3	_	_	_	170	130	110
	4	_	_	_	170	130	110
	5	_	_	_	145	105	90
	6	_	_	_	190	145	120
	7	_	_	_	145	110	95
P	8	_	_	_	130	95	80
	9	_	_	_	110	80	65
	10	170	140	130	145	115	105
	11	110	80	70	95	70	55
	12	220	170	140	185	140	120
	13.1	190	140	110	160	115	95
	13.2	100	70	60	80	60	50
	14.1				160	95	70
	14.2				130	75	55
M	14.3				95	55	45
	14.4				80	50	35
	15	_	_	_	_		_
	16	_	_	_	_	_	_
	17	240	180	160	200	150	130
K	18	200	160	130	170	130	110
	19		_	_	_	_	_
	20	_		_	_		_
	21						
	22						
	23						
	24						
	25						
N	26						
	27						
	28						
	29 30						
	31				60	50	45
	32				50	40	35
	33				35		20
c	34				30	25 20	15
S							
	35				30	20	15
	36				80	50 45	40
	37	160	120	80	70	45	35
	38.1						
н	38.2	160	120	80			
	39.1	120	100	60			
	39.2	120	100	60			

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ае, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1 =	≤0,2	0,3	0,4
коэффициент fz	1,5	1,3	1
коэффициент vc	1,3	1,2	1,1

Дополнительные рекомендации по применению фрез для работы с большими подачами М270

Применение фрез, предназначенных для работы с большими подачами

Основной принцип фрезерования с большими подачами состоит в малой глубине резания и больших значениях fz, результатом чего является большой удельный съем металла и высокая производительность с небольшими радиальными усилиями.

Рекомендуются при большом вылете инструмента по причине более низких радиальных усилий. Максимальное отношение L/D составляет 10 x D.

Небольшие значения Ap1 и высокие подачи определяют более низкие усилия резания по сравнению с традиционными методами фрезерования.

отношение L/D	% снижения Ар1 тах	% снижения ус
<4	0%	0%
4 <l d<7<="" th=""><th>55–65%</th><th>10–15%</th></l>	55–65%	10–15%
>8	65–75%	20–30%

При программировании в системе САМ, инструмент может программироваться как фреза тороидального типа с использованием значения Rt в качестве радиуса пластины.

Основные данные для программирования режимов резания с большими подачами для фрез M270

диаметр инструмента	Ø10	Ø12	Ø13	Ø16	Ø17	Ø20
рекомендуемое начальное значение Ар1 (мм)	0,40	0,40	0,40	0,60	0,60	0,75
программируемый Rt в системе CAM	1,15	1,40	1,40	1,90	1,90	2,30
рекомендуемое значение fz для операций общего назначения	0,45	0,55	0,55	0,60	0,60	0,70
рекомендуемое значение fz для обработки материала твердостью 45 HRC (приблизительно)	0,40	0,45	0,45	0,55	0,55	0,65
рекомендуемое значение fz для обработки материала твердостью 55 HRC (приблизительно)	0,30	0,35	0,35	0,45	0,45	0,50

Для расчета подачи используйте два рабочих зуба.

Для материалов твердостью более 45 HRC мы рекомендуем настраивать ае тах до 55% от диаметра фрезы и использовать не более чем 50% от Ap1 тах.

При фрезеровании центром фрезы мы рекомендуем использовать угол наклона 0,5°-1,0° для обеспечения плавности резания.

Широкий выбор конструкций для обработки любых групп материалов и решения любых задач • **серии М100**

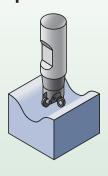
Фрезы серии М100 представляют собой универсальное многоцелевое решение для контурной и профильной обработки. Их конструкция гарантирует надежность работы на всех операциях профильного и торцевого фрезерования, винтовой интерполяции и черновой обработки, даже при самых жестких режимах.

 Большая толщина пластин гарантирует надежные

и высокие результаты.

M100

- Система предотвращения вращения, используемая на пластинах большого диаметра, обеспечивает возможность достижения большого удельного съема металла.
- Улучшенный стружкоотвод и внутренний подвод СОЖ обеспечивают высокую производительность.



Большая толщина пластин и система, предотвращающая вращение пластин большого диаметра, обеспечивают возможность эффективного снятие большого объема металла.

Рекомендуемое применение

Фрезы для профильной обработки

M100 RD0802...

Мах глубина резания:

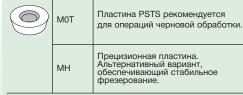
Диаметр: 12 мм - 16 мм Стр.: А182-А184

Р	
М	
K	
N	
S	
Н	O

•	

Геометрия

пластины


МОТ	Положительная геометрия пластины обеспечивает низкие усилия резания. Рекомендуется для обработки нержавеющей стали и жаропрочных сплавов.
ML/M0	Рекомендуется для легких режимов резания.
	B BOTO

Мах глубина резания: 5,0 MM

Диаметр: 20 мм - 30 мм Стр.: А186-А189

Мах глубина резания: 6,0 MM

Диаметр: 24 мм - 125 мм Стр.: А190-А195

Геометрия пластины	1	Рекомендуемое применение
	мотх	Положительная геометрия пластины обеспечивает более низкие усилия резания. Рекомендуется для обработки нержавеющей стали и жаропрочных сплавов.
	ML	Рекомендуется для легких режимов резания.
	MOTX	Пластина PSTS рекомендуется для операций черновой обработки.
	МН	Прецизионная пластина. Альтернативный вариант, обеспечивающий стабильное фрезерование.

M100 RD1605...

Мах глубина резания: 8,0 мм

Диаметр: 32 мм - 125 мм Стр.: А196-А199

Геометрия пластины	7
	МОТ

Рекомендуемое применение
Положительная геометрия пластины обеспечивает низкие усилия резания. Рекомендуется для обработки нержавеющей стали и жаропрочных сплавов.
Пластина PSTS рекомендуется для операций черновой обработки.

M100	RC1606

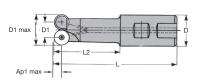
Мах глубина резания: 8,0 мм

Диаметр: 50 мм - 200 мм Pages: A200-A203

Геоме пласт

Геометрия пластины		Рекомендуемое применение
	43	Оптимизированная геометрия пластины обеспечивает великолепный стружкоотвод даже при малой глубине резания. Лучший выбор для обработки сталей.
	MOTX	Рекомендуется для обработки стали.

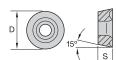


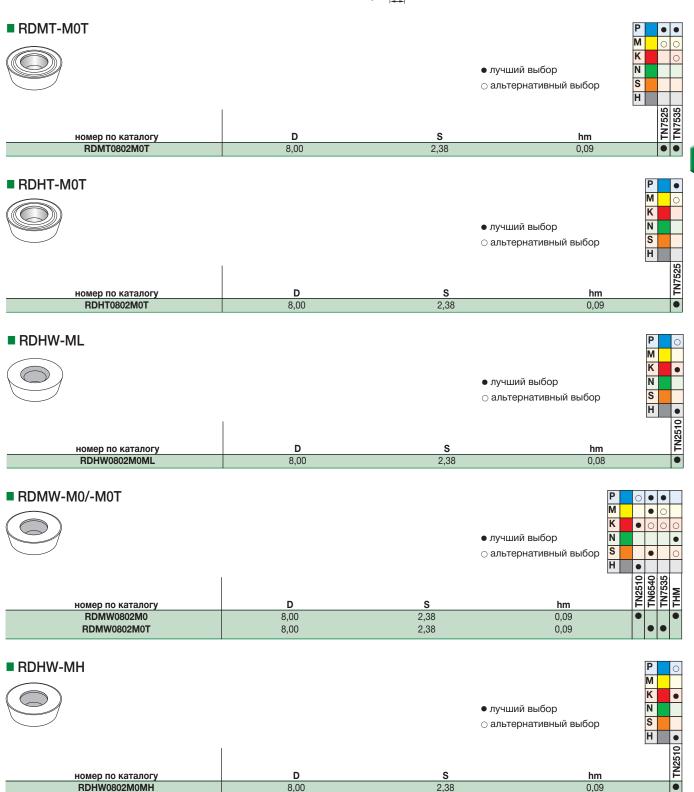


- Торцевое и профильное фрезерование общего назначения.
- Ассортимент включает большой выбор марок сплавов и геометрий.

■ M100

номер заказа	номер по каталогу	D1 max	D1	D	L	L2	Ap1 max	z	тах угол врезания	тах частота вращ.	подвод СОЖ	КГ
2021331	12391010000	12	4	16	90	42	4,0	1	2.0°	33000	Да	0,1
2021332	12391010400	12	4	16	130	82	4,0	1	2.0°	33000	Да	0,1
2021333	12391010600	16	8	16	90	42	4,0	2	7.5°	28000	Да	0,1
2021334	12391011000	16	8	20	132	82	4,0	2	7.5°	28000	Да	0,2
2021335	12391011400	16	8	25	183	127	4,0	2	7.5°	28000	Да	0,4

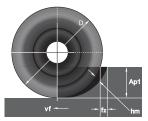

■ М100 • Комплектующие


D1 max	винт пластины	Нм	ключ Torx
12	12148001300	3,0	12148086600
16	12148001300	3,0	12148086600

2,38

8,00

RDHW0802M0MH


0,09

Фрезы для профильной обработки • Серия М100

Режимы резания для фрез M100 • RD0802..

			TN2510)		TN6540)		TN7525			TN7535			THM	
	етрия й кромки							Подача	на зуб	fz (mm)					
ML		0,06	0,10	0,12												
M		0,06	0,12	0,16	0,09	0,17	0,22	0,06	0,12	0,16	0,08	0,15	0,20	0,08	0,15	0,20
N	ИН	0,06	0,12	0,16												
Гру	ппо															
матер	оиала							рость р								
	1	390	290	250	290	220	190	410	320	280	360	280	240			
	2	260	200	180	200	150	130	290	220	190	250	190	165			
	3	220	180	140	170	130	110	240	180	160	210	160	140			
	4	220	180	140	170	130	110	250	190	160	215	165	140			
	5	190	130	120	140	100	90	210	150	130	180	130	110			
	6	250	190	150	190	140	120	280	210	170	240	180	150			
P	7	190	140	130	140	110	100	210	160	140	180	140	120			
	8	180	130	110	130	100	80	180	140	120	160	120	100			
	9	140	110	80	110	80	60	160	120	90	140	100	80			
	10	190	150	130	140	120	100	210	170	150	180	145	130			
	11	130	90	80	100	70	60	140	100	80	120	90	70			
	12	240	220	150	180	140	120	260	200	170	230	175	150			
	13.1	210	150	130	160	120	100	230	170	140	200	145	120			
	13.2	110	80	70	80	60	50	120	90	70	100	75	60			
	14.1				190	160	110	280	230	160	240	200	140			
M	14.2				150	150	100	220	210	140	190	185	125			
	14.3				110	110	80	160	160	110	140	135	95			
	14.4	400		200	100	80	60	140	120	80	120	100	70	400	100	100
	15	460	340	280	_	_	_				_	_	_	160	120	100
	16	350	260	220	_	_					-	_	_	120	90	80
K	17	390	280	230	200	150	130				240	180	160	140	105	90
	18	280	170	140	170	130	110				200	160	130	100	70	50
	19	390	230	190	_	_	_				_	_	_	140	90	70
	20 21	310	190	160	_						_			110 900	70 600	50 500
	22															
														450	300	250
	23													900	600	500
	24													700	500	400
N	25 26													450 400	280 250	200
															210	
	27													340		160
	28													250	160	120
	29													500	350	200
	30 31				60	50	15							500 38	350 25	200
	32				60 50	50 40	45 35							30	20	
	33				35	25	20							24	16	
S	34				30	20	15							20	13	
	35 26				30	20	15							20	13	_
	36				80	50	40							80	40	_
	37 38.1				70	45	35							70	35	_
Н	38.2 38.1															
	38.1 38.2															

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc).

Рекомендованные значения fz действительны для торцевого фрезерования с шириной резания (ae) ≥ 0,4 D1 и Ap1 max.

При меньших значениях ае и ар, используйте данные корректирующие коэффициенты (D = диаметр пластины, D1 = диаметр фрезы).

		ae	/D1								
Ap1/D	0,05	0,1	0,2	0,4							
0,05	9	6,3	4,3	3,2							
0,1	6,3	4,3	3,2	2,2							
0,2	4,3	3,2	2,2	1,6							
0,4	3,2	3,2 2,2 1,6 1,1									

	соответствие коэффициентов vc и fz													
Коэффициент fz 9 6,3 4,3 3,2 2,2 1,6 1,1														
Коэффициент vc	1,6	1,5	1,4	1,3	1,2	1,1	1							
Например: ae/D1	= 0,1; Ap	1/D = 0,2												
fz HOM. = 0,22 fz	z эфф. = (),22 x 3,2 =	= 0,7 мм											
vc ном. = 160 v	с эфф. =	160 x 1,3 =	= 208 м/ми	IH										

WIN WITH WIDIA

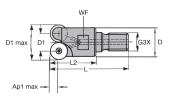
WIDIA

M100 RD0802.. | M100 RD1003.. | M100 RD1204.. M100 RD1605.. | M100 RC1606..

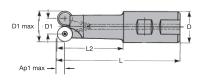
Прочная и жесткая конструкция корпуса фрез для профильной обработки серии М100 гарантирует высокую производительность даже в самых тяжелых условиях профильного и торцевого фрезерования, винтовой интерполяции и черновой обработки.

- Толщина пластин обеспечивает надежные и высокие результаты.
- Улучшенные показатели удельного съема металла и увеличенный стружкоотвод.
- Надежная и стабильная конструкция позволяет решать любые задачи.

Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт **www.widia.com**.



- Торцевое и профильное фрезерование общего назначения.
- Ассортимент включает большой выбор марок сплавов и геометрий.


■ M100

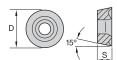
номер заказа	номер по каталогу	D1 max	D1	D	G3X	L	L2 \	WF	Ap1 max	z	тах угол врезания	тах частота вращ.	подвод СОЖ	ΚΓ
2021375	12391050400	25	15	22	M12	52	30	19	5,0	2	15.8°	22000	Да	0,1
2021376	12391050600	30	20	28	M16	63	40	22	5,0	3	10.3°	20000	Да	0,2

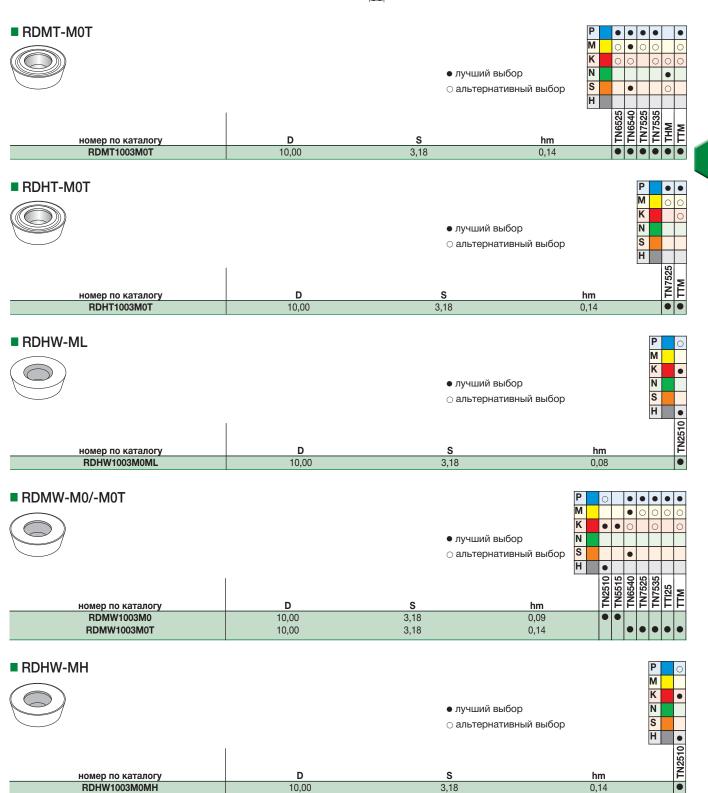
■ М100 • Комплектующие

D1 max	винт пластины	Нм	ключ Torx
25	12148036700	3,0	12148000600
30	12148036700	3,0	12148000600

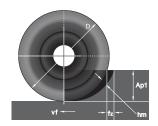
■ M100

номер зака	аза номер по каталогу	D1 max	D1	D	L	L2	Ap1 max	z	тах угол врезания	тах частота вращ.	подвод СОЖ	КГ
2021336	12391011600	20	10	20	92	42	5,0	2	7.8°	25000	Да	0,2
2021337	12391012000	20	10	25	138	82	5,0	2	8.8°	25000	Да	0,4
2021338	12391012400	20	10	25	183	127	5,0	2	7.5°	25000	Да	0,5
2021339	12391012800	26	16	32	142	82	5,0	2	13.5°	22000	Да	0,6
2021340	12391013200	26	16	32	187	127	5,0	2	14.3°	22000	Да	0,9


■ М100 • Комплектующие


D1 max	винт пластины	Нм	ключ Torx
20	12148036700	3,0	12148000600
26	12148036700	3,0	12148000600

Фрезы для профильной обработки • Серия М100



Режимы резания для фрез M100 • RD1003..

			TN2510			TN5515			TN6525			TN6540			TN7525	
	етрия й кромки							Подач	на на зуб	fz (мм)						
	//L	0,06	0,10	0,12						. ,						
N		0,06	0,10	0,12	0,06	0,12	0,16									
М		0,06	0,12	0,16	0,08	0,15	0,20	0,07	0,12	0,17	0,09	0,17	0,22	0,06	0,12	0,16
N		0,06	0,12	0,16												
Гру матер	ппа оиала							Скорость	резания	vc (м/мин)					
	1	390	290	250				350	260	230	290	220	190	410	320	280
	2	260	200	180				240	180	160	200	150	130	290	220	190
	3	220	180	140				200	160	130	170	130	110	240	180	160
	4	220	180	140				200	160	130	170	130	110	250	190	160
	5	190	130	120				170	120	110	140	100	90	210	150	130
	6	250	190	150				230	170	140	190	140	120	280	210	170
P	7	190	140	130				170	130	120	140	110	100	210	160	140
P	8	180	130	110				160	120	100	130	100	80	180	140	120
	9	140	110	80				130	100	70	110	80	60	160	120	90
	10	190	150	130				170	140	120	140	120	100	210	170	150
	11	130	90	80				120	80	70	100	70	60	140	100	80
	12	240	220	150				220	170	140	180	140	120	260	200	170
	13.1	210	150	130				190	140	120	160	120	100	230	170	140
	13.2	110	80	70				100	70	60	80	60	50	120	90	70
	14.1							230	190	130	190	160	110	280	230	160
М	14.2							180	180	120	150	150	100	220	210	140
	14.3							130	130	100	110	110	80	160	160	110
	14.4							120	100	70	100	80	60	140	120	80
	15	460	340	280	380	280	235	_	_	_	_	_	_			
	16	350	260	220	290	215	185	_	_	_	_	_	_			
K	17	390	280	230	325	235	195	240	180	160	200	150	130			
	18	280	170	140	235	145	120	200	160	130	170	130	110			
	19	390	230	190	325	195	160	_	_	_	_	_	_			
	20 21	310	190	160	260	160	130	_					_			
	21															
	23															
	23															
	25															
N	26															
	27															
	28															
	29															
	30															
	31										60	50	45			
	32										50	40	35			
	33										35	25	20			
S	34										30	20	15			
	35										30	20	15			
	36										80	50	40			
	37										70	45	35			
	38.1	290	240	200												
Н	38.2	240	200	160												
"	39.1	180	150	120												
	39.2	120	100	70												

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Рекомендованные значения fz действительны для торцевого фрезерования с шириной резания (ae) ≥ 0,4 D1 и Ap1 max.

При меньших значениях ае и ар, используйте данные корректирующие коэффициенты (D = диаметр пластины, D1 = диаметр фрезы).

	TN7535			TTI25			THM			TTM			
					Подача на	зуб fz (мі	и)					Геом	етрия
							<u>, </u>					+	й кромки VIL
													MO O
0,08	0,15	0,20	0,08	0,13	0,16	0,08	0,15	0,20	0,08	0,15	0,20		10T
	-	•			-								ИН
				Ско	рость реза	ния ус (м	/мин)					Гру матеј	ппа
360	280	240	450	345	300				320	195	180	1	лиала
250	190	165	380	280	240				160	130	120	2	
210	160	140	310	235	200				130	100	90	3	
215	165	140	350	260	220				140	110	100	4	
180	130	110	_	_	_				110	90	70	5	
240	180	150	380	280	240				160	130	120	6	
180	140	120	310	220	190				120	100	90	7	
160	120	100	250	175	150				100	80	65	8	Р
140	100	80	_	_	_				90	60	45	9	
180	145	130	360	265	220				140	110	100	10	
120	90	70	_	_	_				90	60	45	11	
230	175	150	350	260	220				150	120	110	12	
200	145	120	300	230	200				130	100	90	13.1	
100	75	60	150	115	100				65	50	45	13.2	
240	200	140	350	300	230				120	100	80	14.1	
190	185	125	270	240	190				100	90	60	14.2	M
140	135	95	220	180	140				85	70	50	14.3	IVI
120	100	70	180	150	115				60	50	40	14.4	
_	_	_				160	120	100	_	_	_	15	
_	_	_				120	90	80	_	_	_	16	
240	180	160				140	105	90	160	120	100	17	К
200	160	130				100	70	50	140	100	90	18	Α,
_	_	_				140	90	70	_	_	_	19	
						110	70	50				20	
						900	600	500				21	
						450	300	250				22	
						900	600	500				23	
						700	500	400				24	
						450	280	200				25	N
						400	250	200				26	
						340	210	160				27	
						250	160	120				28	
						500	350	200				29	
						500	350 25	200				30	
						38							
						30 24	20 16					32	
						20	13					33 34	S
						20	13					35	_ 。
						80	40	_				36	
						70	35	_				37	
						70	00					38.1	
												38.2	
												39.1	Н
												39.2	
				ae/D1			\neg					козффи	

	ae/D1									
Ap1/D	0,05	0,1	0,2	0,4						
0,05	9	6,3	4,3	3,2						
0,1	6,3	4,3	3,2	2,2						
0,2	4,3	3,2	2,2	1,6						
0,4	3,2	2,2	1,6	1,1						

соответствие коэффициентов vc и fz											
Коэффициент fz 9 6,3 4,3 3,2 2,2 1,6 1,1											
Коэффициент vc 1,6 1,5 1,4 1,3 1,2 1,1 1											
Например: ae/D1	Например: ae/D1 = 0,1; Ap1/D = 0,2										
fz ном. = 0,22 fz эфф. = 0,22 x 3,2 = 0,7 мм											
vc ном. = 160 vc эфф. = 160 x 1,3 = 208 м/мин											

Корпуса фрез М100 • RD1204..

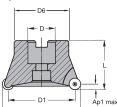
- Торцевое и профильное фрезерование общего назначения.
- Ассортимент включает большой выбор марок сплавов и геометрий.

• Система предотвращения вращения для обеспечения высшего уровня надежности.

■ M100

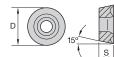
номер заказа	номер по каталогу	D1 max	D1 D	G3X	LL	2 WF	Ap1 max	z	тах угол врезания	тах частота вращ.	подвод СОЖ	КГ
2021374	12391050200	24	12 22	M12	52 3	0 19	6,0	2	10.0°	23000	Да	0,1
2021378	12391051000	35	23 28	M16	63 4	0 22	6,0	3	10.8°	19000	Да	0,2
2021379	12391051200	40	28 28	M16	63 4	0 22	6,0	4	8.3°	17000	Да	0,3

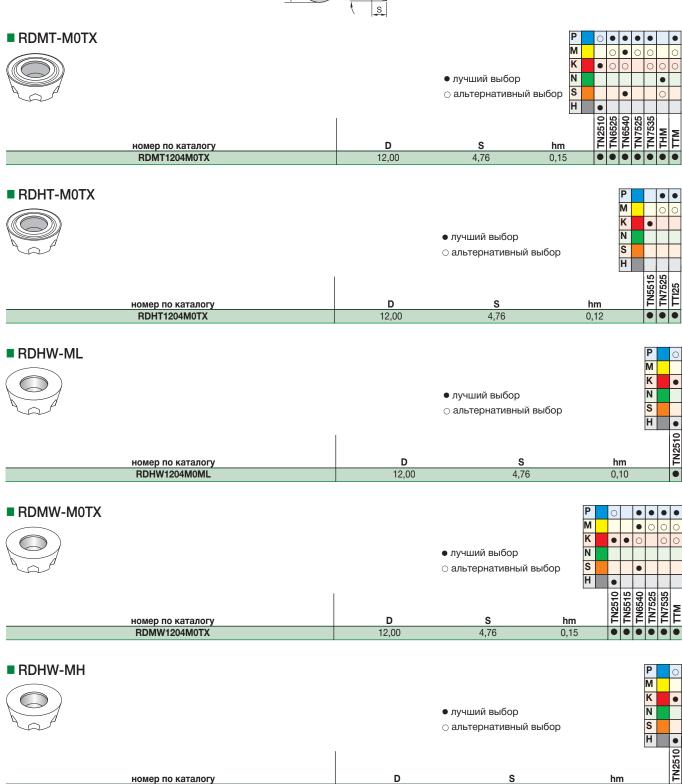
■ М100 • Комплектующие


D1 max	винт пластины	HM	ключ Torx
24	12148038800	3,0	12148000600
35	12148038800	3,0	12148000600
40	12148038800	3.0	12148000600

- Торцевое и профильное фрезерование общего назначения.
- Ассортимент включает большой выбор марок сплавов и геометрий.

• Система предотвращения вращения для обеспечения высшего уровня надежности.




■ M100

номер заказа	номер по каталогу	D1 max	D1	D	D6	L	Ap1 max	z	тах угол врезания	тах частота вращ.	подвод СОЖ	ΚΓ
2021342	12391020000	50	38	22	40	40	6,0	4	6.8°	15000	Да	0,2
2021361	12391024000	52	40	22	40	40	6,0	4	6.5°	15000	Нет	0,2
2021343	12391020200	63	51	27	48	40	6,0	5	4.5°	14000	Да	0,3
2021344	12391020400	80	68	27	60	50	6,0	6	3.5°	12000	Да	0,9
2021345	12391020600	100	88	32	78	50	6,0	6	2.5°	11000	Нет	1,2
2021346	12391020800	125	113	40	89	50	6,0	7	2.0°	10000	Нет	1,7

■ М100 • Комплектующие

D1 max	винт пластины	Нм	ключ Torx
50	12148038800	3,0	12148000600
52	12148038800	3,0	12148000600
63	12148038800	3,0	12148000600
80	12148038800	3,0	12148000600
100	12148038800	3,0	12148000600
125	12148038800	3,0	12148000600

12,00

номер по каталогу

RDHW1204M0MH

hm

0,14

S

4,76

Проектирование с учетом экологической безопасности

Экологическая ответственность

Мы считаем своим долгом проектировать и производить продукцию на основе принципов экологической ответственности, что позволяет выпускать изделия высокого качества и признанной ценности. Десятилетиями накапливая опыт в инструментальном оснащении механообрабатывающих производств, основываясь на тщательных инженерных разработках, передовых технологиях и специальных решениях, мы предлагаем Вам самые эффективные решения, обеспечивающие стабильность и эффективность производственных процессов. Наш широкий ассортимент и превосходное обслуживание клиентов делают нас Вашим надежным поставщиком стабильных решений в области инструментальной оснастки.

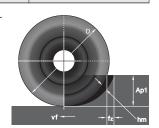
Проектирование с учетом экологической безопасности

Лидерство в области инновационных инженерных разработок как в отношении стандартного, так и специального инструмента. Признанные стратегии и надежное партнерство.

Основными предпосылками успешной реализации проекта являются грамотное планирование, четкое взаимодействие всех служб и соблюдение сроков выполнения работ. На базе нашего богатого опыта по разработке и внедрению технологических ноу-хау, мы первыми создали специальную методику, позволяющую изготовлять новые изделия и быстро выводить их на рынок. Перед началом проектирования внимательно описываются и согласовываются условия разработки документации в соответствии с техническим заданием. Мы тщательно отслеживаем этапы выполнения проекта и результаты проектирования, находясь в постоянном контакте с нашими заказчиками посредством наших систем управления процессом.

Мы работаем в тесном контакте с производителями металлорежущего оборудования и оказываем своим клиентам всестороннюю техническую поддержку, включая помощь в разработке технологии обработки детали. Благодаря нашей уникальной методике, Вы станете свидетелем ускоренного внедрения нового изделия, добьетесь снижения совокупных расходов и уменьшения рисков в процессе реализации новых технологий.

Фрезы для профильной обработки • Серия М100



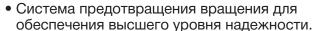
Режимы резания для фрез M100 • RD1204..

			TN2510			TN5515			TN6525			TN6540			TN7525	
	етрия й кромки							Подач	на на зуб	fz (мм)						
режуще		0,08	0,14	0,16												
M	ОТХ	0,08	0,18	0,24	0,10	0,22	0,30	0,08	0,18	0,25	0,11	0,24	0,33	0,08	0,18	0,24
۸	ЛΗ	0,08	0,18	0,24												
F																
Гру матер	ппа риала							Скорость	резания	vc (м/мин)					
	1	390	290	250				350	260	230	290	220	190	410	320	280
	2	260	200	180				240	180	160	200	150	130	290	220	190
	3	220	180	140				200	160	130	170	130	110	240	180	160
	4	220	180	140				200	160	130	170	130	110	250	190	160
	5	190	130	120				170	120	110	140	100	90	210	150	130
	6	250	190	150				230	170	140	190	140	120	280	210	170
P	7	190	140	130				170	130	120	140	110	100	210	160	140
	8	180	130	110				160	120	100	130	100	80	180	140	120
	9	140	110	80				130	100	70	110	80	60	160	120	90
	10 11	190	150	130				170	140 80	120 70	140	120	100	210	170	150
		130	90	80				120	170	140	100	70	60	140	100 200	80
	12 13.1	240 210	220 150	150 130				220 190	140	120	180 160	140 120	120 100	260 230	170	170 140
	13.1	110	80	70				100	70	60	80	60	50	120	90	70
	14.1	110	00	70				230	190	130	190	160	110	280	230	160
	14.2							180	180	120	150	150	100	220	210	140
M	14.3							130	130	100	110	110	80	160	160	110
	14.4							120	100	70	100	80	60	140	120	80
	15	460	340	280	380	280	235	_	_	_	_	_	_			
	16	350	260	220	290	215	185	_	_	_	_	_	_			
K	17	390	280	230	325	235	195	240	180	160	200	150	130			
, K	18	280	170	140	235	145	120	200	160	130	170	130	110			
	19	390	230	190	325	195	160	_	_	_	_	_	_			
	20	310	190	160	260	160	130	_			_					
	21															
	22															
	23															
	24															
N	25 26															
	20 27															
	28 29															
	30															
	31										60	50	45			
	32										50	40	35			
	33										35	25	20			
S	34										30	20	15			
	35										30	20	15			
	36										80	50	40			
	37										70	45	35			
	38.1	290	240	200												
Н	38.2	240	200	160												
	39.1	180	150	120												
	39.2	120	100	70												

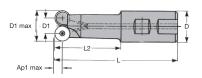
Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). **Рекомендованные значения fz действительны для торцевого фрезерования с шириной резания (ae)** ≥ 0,4 **D1 и Ap1 max.**

При меньших значениях ае и ар, используйте данные корректирующие коэффициенты (D =диаметр пластины, D1 =диаметр фрезы).

Режимы резания для фрез M100 • RD1204...

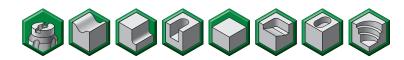

	TN7535			TTI25			THM			TTM			
					Подача на	зуб fz (мм)						режуще	
0,10	0,22	0,30	0,10	0,19	0,24	0,10	0,22	0,30	0,10	0,22	0,30		ML OTX
0,10	0,22	0,30	0,10	0,13	0,24	0,10	0,22	0,50	0,10	0,22	0,50		MH
			ı	С	корость реза	ния vc (м/мі	ин)					Гру мате	ппа риала
360	280	240	450	345	300				320	195	180	1	
250	190	165	380	280	240				160	130	120	2	
210	160	140	310	235	200				130	100	90	3	
215	165	140	350	260	220				140	110	100	4	
180	130	110	_	_	_				110	90	70	5	
240	180	150	380	280	240				160	130	120	6	
180	140	120	310	220	190				120	100	90	7	Р
160	120	100	250	175	150				100	80	65	8	
140	100	80	_	_	_				90	60	45	9	
180	145	130	360	265	220				140	110	100	10	
120	90	70	_	_	_				90	60	45	11	
230	175	150	350	260	220				150	120	110	12	
200	145	120	300	230	200				130	100	90	13.1	
100	75	60	150	115	100				65	50	45	13.2	
240	200	140	350	300	230				120	100	80	14.1	
190	185	125	270	240	190				100	90	60	14.2	M
140	135	95	220	180	140				85	70	50	14.3	
120	100	70	180	150	115	100	400	100	60	50	40	14.4	
_	_	_				160	120 90	100	_	_	_	15	
						120		80	100			16	
240200	180 160	160 130				140 100	105 70	90 50	160 140	120 100	100 90	17 18	K
						140	90	70				19	
_	_	_				110	70	50	_	_	_	20	
						900	600	500				21	
						450	300	250				22	
						900	600	500				23	
						700	500	400				24	
						450	280	200				25	
						400	250	200				26	N
						340	210	160				27	
						250	160	120				28	
						500	350	200				29	
						500	350	200				30	
						38	25	_				31	
						30	20	_				32	
						24	16	_				33	
						20	13	_				34	S
						20	13	_				35	
						80	40	_				36	
						70	35	_				37	
												38.1	
												38.2	Н
												39.1	
												39.2	

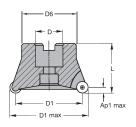
	ae/D1									
Ap1/D	0,05	0,1	0,2	0,4						
0,05	9	6,3	4,3	3,2						
0,1	6,3	4,3	3,2	2,2						
0,2	4,3	3,2	2,2	1,6						
0,4	3,2	2,2	1,6	1,1						


	соответствие коэффициентов vc и fz									
Коэффициент fz 9 6,3 4,3 3,2 2,2 1,6 1,1										
Коэффициент vc 1,6 1,5 1,4 1,3 1,2 1,1 1										
Например: ae/D1	= 0,1; Ap	1/D = 0,2								
fz ном. = 0,22 fz эфф. = 0,22 x 3,2 = 0,7 мм										
vc ном. = 160 vc эфф. = 160 x 1,3 = 208 м/мин										

WIDIA

- Торцевое и профильное фрезерование общего назначения.
- Ассортимент включает большой выбор марок сплавов и геометрий.




■ M100

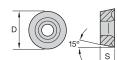
номер заказа	номер по каталогу	D1 max	D1	D	L	L2	Ap1 max	z	тах угол врезания	тах частота вращ.	подвод СОЖ	ΚΓ
2021341	12391013800	32	16	32	142	82	8,0	2	7.8°	19000	Да	1,1

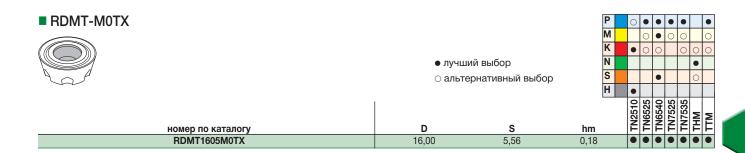
■ М100 • Комплектующие

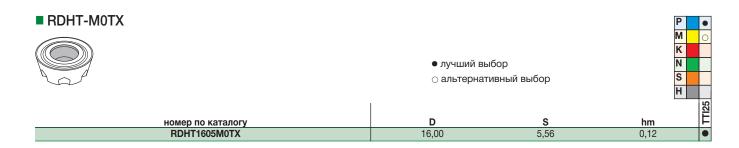
D1 max	винт пластины	Нм	ключ Torx
32	12148007200	4,0	12148007500

■ M100

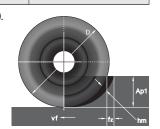
									тах угол	max		
номер заказа	номер по каталогу	D1 max	D1	D	D6	L	Ap1 max	Z	врезания	частота вращ.	подвод СОЖ	ΚГ
2021347	12391021000	50	34	22	40	40	8,0	4	10.3°	13000	Да	0,2
2021348	12391021200	63	47	27	48	40	8,0	4	7.0°	12000	Да	0,3
2021349	12391021400	80	64	27	60	50	8,0	5	4.8°	10000	Да	0,9
2021350	12391021600	100	84	32	78	50	8,0	6	3.8°	9000	Нет	1,2
2021351	12391021800	125	109	40	89	50	8,0	7	2.8°	8000	Нет	1,7


■ М100 • Комплектующие


D1 max	винт пластины	Нм	ключ Torx
50	12148007200	4,0	12148007500
63	12148007200	4,0	12148007500
80	12148007200	4,0	12148007500
100	12148007200	4,0	12148007500
125	12148007200	4,0	12148007500



Фрезы для профильной обработки • Серия М100



Режимы резания для фрез M100 • RD1605...

			TN2510			TN5515			TN6525			TN6540			TN7525	
	етрия й кромки							Подач	на на зуб	fz (мм)						
	VIL	0,10	0,16	0,20						. ,						
	ОТХ	0,10	0,21	0,29	0,12	0,26	0,36	0,10	0,21	0,30	0,13	0,29	0,40	0,10	0,21	0,29
	ИН	0,10	0,21	0,29			•		•				·		•	
Гру мате	ппа риала							Скорость	резания	vc (м/мин)					
	1	390	290	250				350	260	230	290	220	190	410	320	280
	2	260	200	180				240	180	160	200	150	130	290	220	190
	3	220	180	140				200	160	130	170	130	110	240	180	160
	4	220	180	140				200	160	130	170	130	110	250	190	160
	5	190	130	120				170	120	110	140	100	90	210	150	130
	6	250	190	150				230	170	140	190	140	120	280	210	170
P	7	190	140	130				170	130	120	140	110	100	210	160	140
	8	180	130	110				160	120	100	130	100	80	180	140	120
	9	140	110	80				130	100	70	110	80	60	160	120	90
	10	190	150	130				170	140	120	140	120	100	210	170	150
	11	130	90	80				120	80	70	100	70	60	140	100	80
	12	240	220	150				220	170	140	180	140	120	260	200	170
	13.1	210	150	130				190	140	120	160	120	100	230	170	140
	13.2	110	80	70				100	70	60	80	60	50	120	90	70
	14.1							230	190	130	190	160	110	280	230	160
M	14.2							180	180	120	150	150	100	220	210	140
	14.3 14.4							130 120	130 100	100 70	110 100	110 80	80 60	160 140	160 120	110 80
	15	460	340	280	380	280	235	- IZU	-	-	-	- OU	_	140	120	00
	16	350	260	220	290	215	185	_	_	_	_	_	_			
	17	390	280	230	325	235	195	240	180	160	200	150	130			
K	18	280	170	140	235	145	120	200	160	130	170	130	110			
	19	390	230	190	325	195	160	_	_	_	_	_	_			
	20	310	190	160	260	160	130	_	_	_	_	_	_			
	21															
	22															
	23															
	24															
N	25															
••	26															
	27															
	28															
	29															
	30 31										60	50	45			
	31										50	40	35			
	33										35	25	20			
S	34										30	20	15			
	35										30	20	15			
	36										80	50	40			
	37										70	45	35			
	38.1	290	240	200												
	38.2	240	200	160												
Н	39.1	180	150	120												
	39.2	120	100	70												

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). **Рекомендованные значения fz действительны для торцевого фрезерования с шириной резания** (ae) ≥ 0,4 D1 и Ap1 max.

При меньших значениях ае и ар, используйте данные корректирующие коэффициенты (D = диаметр пластины, D1 = диаметр фрезы).

Режимы резания для фрез M100 • RD1605...

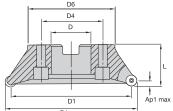
	TN7535			TI25			THM			TTM			
					Подача на	зуб fz (мм)						Геом	етрия
													й кромки ML
0,12	0,26	0,36	0,12	0,22	0,28	0,12	0,26	0,36	0,12	0,26	0,36		ОТХ
,		,	,		· · · · · · · · · · · · · · · · · · ·	,		· · · · · · · · · · · · · · · · · · ·	,	,	,		ИН
				C	корость реза	ния vc (м/м	ин)					Гру мате	ппа риала
360	280	240	450	345	300				320	195	180	1	
250	190	165	380	280	240				160	130	120	2	
210	160	140	310	235	200				130	100	90	3	
215	165	140	350	260	220				140	110	100	4	
180	130	110	_	_	_				110	90	70	5	
240	180	150	380	280	240				160	130	120	6	
180	140	120	310	220	190				120	100	90	7	P
160	120	100	250	175	150				100	80	65	8	
140	100	80	_	_	_				90	60	45	9	
180	145	130	360	265	220				140	110	100	10	
120	90	70	_	_	_				90	60	45	11	
230	175	150	350	260	220				150	120	110	12	
200	145	120	300	230	200				130	100	90	13.1	
100	75	60	150	115	100				65	50	45	13.2	
240	200	140	350	300	230				120	100	80	14.1	
190	185	125	270	240	190				100	90	60	14.2	M
140	135	95	220	180	140				85	70	50	14.3	IVI
120	100	70	180	150	115				60	50	40	14.4	
_	_	_				160	120	100	_	_	_	15	
_	_	_				120	90	80	_	_	_	16	
240	180	160				140	105	90	160	120	100	17	К
200	160	130				100	70	50	140	100	90	18	
_	_	_				140	90	70	_	_	_	19	
_						110	70	50	_			20	
						900	600	500				21	
						450	300	250				22	
						900	600	500				23	
						700	500	400				24	
						450	280	200				25	N
						400	250	200				26	-
						340	210	160				27	
						250	160	120				28	
						500	350	200				29	
						500	350	200				30	
						38	25	_				31	
						30	20	_				32	
						24	16	_				33	
						20	13	_				34	S
						20	13	_				35	
						80	40					36	
						70	35					37	
												38.1	
												38.2	Н
												39.1 39.2	
			20/01									39.2	

		ae/D1							
Ap1/D	0,05	0,1	0,2	0,4					
0,05	9	6,3	4,3	3,2					
0,1	6,3	4,3	3,2	2,2					
0,2	4,3	3,2	2,2	1,6					
0,4	3,2	2,2	1,6	1,1					

	соответствие коэффициентов vc и fz												
(оэффициент fz 9 6,3 4,3 3,2 2,2 1,6 1,1													
(оэффициент vc 1,6 1,5 1,4 1,3 1,2 1,1 1													
Например: ae/D1	Например: ae/D1 = 0,1; Ap1/D = 0,2												
fz ном. = 0,22 fz эфф. = 0,22 x 3,2 = 0,7 мм													
vc ном. = 160 v	, , , , , ,												

Корпуса фрез М100 • RC1606..

уровня надежности.



• Торцевое и профильное фрезерование общего назначения.

• Ассортимент включает большой выбор марок сплавов и геометрий.

 Система предотвращения вращения для обеспечения высшего

■ M100

								тах угол	max		
номер заказа	номер по каталогу	D1 max	D1 D	D4	D6 L	Ap1 max	Z	врезания	частота вращ.	подвод СОЖ	КГ
2021358	12391023400	50	34 22	_	40 4	0 8,0	4	6.0°	13000	Да	0,2
2021359	12391023600	52	36 22	_	40 4	0,8	4	5.8°	13000	Да	0,3
2021357	12391023200	63	47 27	_	48 4	0,8	5	4.0°	12000	Да	0,2
2021360	12391023800	66	50 27	_	48 4	0,8	5	3.8°	12000	Да	0,3
2021352	12391022000	80	64 27		60 5	0 8,0	6	2.8°	10000	Да	0,9
2021353	12391022200	100	84 32	_	78 5	0,8	7	2.3°	9000	Нет	1,2
2021354	12391022400	125	109 40	_	89 5	0 8,0	8	1.8°	8000	Нет	1,8
2021355	12391022600	160	144 40	66,7	90 6	3 8,0	9	1.3°	7000	Нет	2,9
2021356	12391022800	200	184 60	101,6	130 6	3 8,0	11	.8°	6000	Нет	0,3

■ М100 • Комплектующие

D1 max	винт пластины	Нм	ключ Torx
50	12148007200	4,0	12148007500
52	12148007200	4,0	12148007500
63	12148007200	4,0	12148007500
66	12148007200	4,0	12148007500
80	12148007200	4,0	12148007500
100	12148007200	4,0	12148007500
125	12148007200	4,0	12148007500
160	12148007200	4,0	12148007500
200	12148007200	4,0	12148007500

■ RCMT-43

√ лучший выбор

јальтернативный выбор

M
M
M j v j j K v j j N
M j v j j
M
P v v v v
D

				N5516 N6526 N6540 N7526 HM
номер по каталогу	D	S	hm	
RCMT1606M043	16,00	6,35	0,20	v
RCMT1606M043M	16,00	6,35	0,20	v v v v

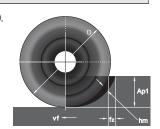
■ RCMT-M0TX

јальтернативный выбор

nm ,24		v	-	v	77	v	v
		TN2510	N5515	N6525	N6540	N7525	FN7535
	Н	v					
	S				v		
	N						
	K	v	v	j	j		j

номер по каталогу	D	s	hm	TN251(TN551	TN652	TN654(1N/32	TN753
RCMT1606M0TX	16,00	6,35	0,24	v	v	v	v v	v	v

Фрезы для профильной обработки • Серия М100



Режимы резания для фрез M100 • RC1606...

			TN2510			TN5515			TN6525			TN6540		
Геометрия							3y6 fz (MM)							
режущей кромки 43		0,10	0,21	0,29	0,12	0,26	0,36	0,10	0,21	0,30	0,13	0,29	0,40	
M		0,10	0,21	0,29	0,12	0,26	0,36	0,10	0,21	0,00	0,10	0,20	0,10	
		,		· · · · · · · · · · · · · · · · · · ·		,	· · · · · · · · · · · · · · · · · · ·							
Гру матер	ппа Эиала		Скорость резан						ния vc (м/мин)					
	1	390	290	250				350	260	230	290	220	190	
	2	260	200	180				240	180	160	200	150	130	
	3	220	180	140				200	160	130	170	130	110	
	4	220	180	140				200	160	130	170	130	110	
	5	190	130	120				170	120	110	140	100	90	
	6	250	190	150				230	170	140	190	140	120	
Р	7	190	140	130				170	130	120	140	110	100	
	8	180	130	110				160	120	100	130	100	80	
	9	140	110	80				130	100	70	110	80	60	
	10	190	150	130				170	140	120	140	120	100	
	11	130	90	80				120	80	70	100	70	60	
	12	240	220	150				220	170	140	180	140	120	
	13.1	210	150	130				190	140	120	160	120	100	
	13.2	110	80	70				100	70	60	80	60	50	
	14.1							230	190	130	190	160	110	
M	14.2							180	180	120	150	150	100	
	14.3							130	130	100	110	110	80	
	14.4	100			222		005	120	100	70	100	80	60	
	15	460	340	280	380	280	235	_	_	_	_	_	_	
	16	350	260	220	290	215	185	- 040	_					
K	17	390	280	230	325	235	195	240	180	160	200	150	130	
	18	280	170	140	235	145	120	200	160	130	170	130	110	
	19 20	390 310	230 190	190 160	325 260	195 160	160 130	_	_	_	_	_	_	
	21	310	190	100	200	100	130	_			_		_	
	22													
	23													
	24													
	25													
N	26													
	27													
	28													
	29													
	30													
	31										60	50	45	
	32										50	40	35	
	33										35	25	20	
S	34										30	20	15	
	35										30	20	15	
	36										80	50	40	
	37										70	45	35	
Н	38.1	290	240	200										
	38.2	240	200	160										
	39.1	180	150	120										
	39.2	120	100	70										

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). **Рекомендованные значения fz действительны для торцевого фрезерования с шириной резания (ae)** ≥ 0,4 D1 и Ap1 max.

При меньших значениях ае и ар, используйте данные корректирующие коэффициенты (D = диаметр пластины, $D1 = \mu$ диаметр фрезы).

Режимы резания для фрез M100 • RC1606...

	TN7525			TN7535			ТНМ			
			Подача на зуб fz (мм)						Геометрия режущей кромки	
0,10	0,21	0,29	0,12	0,26	0,36				43	
0,10	0,21	0,29	0,12	0,26	0,36	0,12	0,26	0,36	М	ОТХ
Скорость резания vc (м/мин)										
410	200	000					Гру матер			
410	320	280	360	280	240				1	
290	220	190	250	190	165				2	
240	180	160	210	160	140				3	
250	190	160	215	165	140				4	
210	150	130	180	130	110				5	
280	210	170	240	180	150				6	
210	160	140	180	140	120				7	P
180	140	120	160	120	100				8	
160	120	90	140	100	80				9	
210	170	150	180	145	130				10	
140	100	80	120	90	70				11	
260	200	170	230	175	150				12	
230 120	170 90	140 70	200 100	145 75	120 60				13.1 13.2	
280	230	160	240	200	140				14.1	
220	210	140	190	185	125				14.1	
160	160	110	140	135	95				14.2	M
140	120	80	120	100	70				14.3	
140	120	00	120	100	70	160	120	100	15	
						120	90	80	16	
			240	180	160	140	105	90	17	
			200	160	130	100	70	50	18	K
				_	_	140	90	70	19	
			_	_	_	110	70	50	20	
						900	600	500	21	
						450	300	250	22	
						900	600	500	23	
						700	500	400	24	
						450	280	200	25	
						400	250	200	26	N
						340	210	160	27	
						250	160	120	28	
						500	350	200	29	
						500	350	200	30	
						38	25	_	31	
						30	20	_	32	
						24	16	_	33	
						20	13	_	34	S
						20	13	_	35	
						80	40	_	36	
						70	35	_	37	
									38.1	
									38.2	н
									39.1	
									39.2	

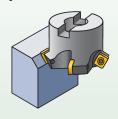
	ae/D1						
Ap1/D	0,05	0,1	0,2	0,4			
0,05	9	6,3	4,3	3,2			
0,1	6,3	4,3	3,2	2,2			
0,2	4,3	3,2	2,2	1,6			
0,4	3,2	2,2	1,6	1,1			

соответствие коэффициентов vc и fz									
Коэффициент fz	9	6,3	4,3	3,2	2,2	1,6	1,1		
Коэффициент vc	1,6	1,5	1,4	1,3	1,2	1,1	1		
Например: ae/D1 = 0,1; Ap1/D = 0,2									
fz ном. = 0,22 fz эфф. = 0,22 x 3,2 = 0,7 мм									
vc ном. = 160 vc эфф. = 160 x 1,3 = 208 м/мин									

Фрезы со сменными режущими пластинами • Фрезы для обработки фасок

WWW.WIDIA.COM A205

Фрезы для обработки фасок и конического зенкования •


- Прочная конструкция фрезы обеспечивает оптимальное закрепление режущих пластин.
- Угол в плане 45° является универсальным для большинства операций снятия фаски.

Угол в плане 45° подходит для большинства операций снятия фаски.

Фрезы для обработки фасок

M25 SD0903...

Мах глубина резания: 6,4 MM

Угол в плане: 45° Число кромок на пластине: 4 Диаметр: 25 мм – 40 мм

Стр.: А208-А211

	Р		Γ
я:	М		_
	K		
. 1	N		
: 4	S		1
	Н	10	
			_

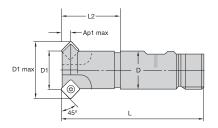
пл	астины		Рекомендуемое применение
		S.NT	Геометрия с позитивным стружколомом обеспечивает низкие усилия резания. Для обработки стали, нержавеющей стали и алюминия.
		S.MW	Пластины с плоской передней поверхностью и защитной фаской. Для обработки чугуна и стали, когда требуется повышенная надежность.

M25 SP1204..

Мах глубина резания: 8,3 мм

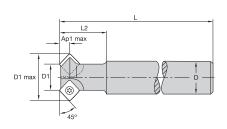
Угол в плане: 45° Число кромок на пластине: 4 Диаметр: 50 мм - 63 мм

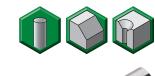
Стр.: А209-А211



Геометрия пластины		Рекомендуемое применение
	S.NT	Геометрия с позитивным стружколомом обеспечивает низкие усилия резания. Для обработки стали, нержавеющей стали и алюминия.
	S.MW	Пластины с плоской вершиной и защитными кромками. Для обработки чугуна и стали, когда требуется повышенная надежность.

• Снятие фасок при обработке стали, нержавеющей стали и чугуна.




■ M25

номер заказа	номер по каталогу	D1	D1 max	L	L2	Ap1 max	Z	пластина 1	подвод СОЖ	КГ
2022628	12292510400	16	29	75	27	6,4	2	SD0903	Нет	0,1
2022629	12292510800	25	38	96	40	6,4	2	SD0903	Нет	0,3
2022630	12292511000	32	45	100	40	6,4	3	SD0903	Нет	0,5

■ M25 • Комплектующие

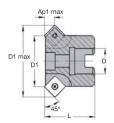
D1	D1 max	винт пластины	Нм	ключ Torx
16	29	12148095100	3,0	12148000600
25	38	12148095100	3,0	12148000600
32	45	12148095100	3.0	12148000600

■ M25

номер заказа	номер по каталогу	D1	D1 max	D	L	L2	Ap1 max	Z	пластина 1	подвод СОЖ	ΚΓ
2022634	12292550400	16	29	16	200	27	6,4	2	SD0903	Нет	0,4
2022635	12292550800	25	38	25	200	40	6,4	2	SD0903	Нет	0,7
2022636	12292551000	32	45	32	200	40	6,4	3	SD0903	Нет	1,2

■ M25 • Комплектующие

D1	винт пластины	Нм	ключ Torx
16	12148095100	3,0	12148000600
25	12148095100	3,0	12148000600
32	12148095100	3,0	12148000600

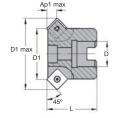


• Снятие фасок при обработке стали, нержавеющей стали и чугуна.

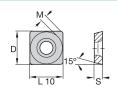
■ M25

номер заказа	номер по каталогу	D1	D1 max	D	L	Ap1 max	Z	пластина 1	подвод СОЖ	ΚГ
2022631	12292511200	40	52	22 4	40	6,1	4	SD0903	Нет	0,8

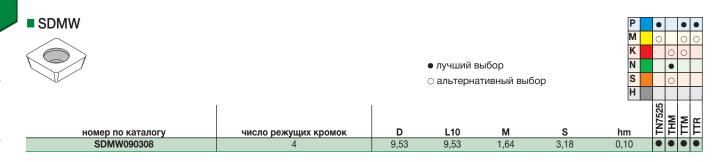
■ M25 • Комплектующие


D1	винт пластины	Нм	ключ Torx
40	12148095100	3,0	12148000600

ПРИМЕЧАНИЕ: для стандартных фрез допускается использование пластин с радиусом при вершине до 2 мм, без модификации корпуса.



■ M25


номер заказа	номер по каталогу	D1	D1 max	D	L	Ap1 max	z	пластина 1	подвод СОЖ	кг	
2022632	12292511400	50	67	22	40	8,3	4	SP1204	Нет	0,9	
2022633	12292511600	63	80	22	40	8,3	5	SP1204	Нет	1,1	

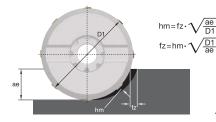
■ M25 • Комплектующие

D1	винт пластины	Нм	ключ Torx
50	12148007200	4,0	12148007500
63	12148007200	4,0	12148007500

■ SDNT N • лучший выбор S ○ альтернативный выбор TN7535 THM TTM D L10 S номер по каталогу M hm число режущих кромок 3,18 SDNT090308 9,53 9,53 1,64 0,10 SDNT090308T 9,53 0,10 4 9,53 1,64 3,18

■ SPMW						P				•	
\sim						М		0		0	0
						K	•	0	0	0	
			• лучший вы	бор		N			• 0		
			○ альтернати	ивный выб	ор	S			0 0		
						Н					
	1							35			П
							155	175	₽	₽	뜨
номер по каталогу	число режущих кромок	D	L10	M	S	hm	Z	Z	FF	= =	-
SPMW120408	4	12,70	12,70	2,30	4,76	0,14	•		•		

Propagation Propagation			1	N251	0	1	N551	5		TN752	25	Т	N7535	5		THM			TTM			TTR	
SP.12 0.06 0.06 0.10 0.15 0.08 0.12 0.20 0.06 0.10 0.15 0.08 0.12 0.20 0.10 0.08 0.12 0.20 0.10 0.08 0.12 0.20 0.10 0.08 0.12 0.20 0.10 0.08 0.12 0.20 0.10 0.08 0.12 0.20 0.10 0.08 0.12 0.20 0.10 0.10 0.10 0.10 0.10 0.10											По	дача н	а зуб 1	fz (MM)									
SP-12 0.06 0,10 0,16 0.08 0,12 0,20 0.06 0,10 0,16 0.06 0,12 0,20 0.08 0,20 0,20 0.08 0,20 0,20 0.08 0,20 0,20 0.08 0,20 0,20 0.08 0,20 0,20 0.08 0,20 0,20 0.08 0,20 0,2		_	0,06	0,10	0,16	0,08	0,12	0,20	0,06	0,10	0,16	0,08	0,12	0,20	0,08	0,12	0,20	0.08	0,12	0,20	0,08	0,12	0,20
Mariegrams Mar						<u> </u>									-			-			-		
Mariegrams Mar																							
Mariegrams Mar																							
1											Скоро	сть рез	ания	VC (M/N	лин)								
P			390	300	250				410	320	280	360	280	240				220	195	180	180	160	145
P		2	260	200	180				290	220	190	250	190					160	130	120	130	105	95
P		3	231	170	140				240	184	160	210	160	140				130	100	90	105	80	70
P		4	230	180	140				250	190	160	215	165	140				140	110	100	110	90	80
P		5	190	140	120				210	150	130	180	130	110				110	90	80	90	70	65
Note		6	250	190	150				280	210	170	240	180	150				160	130	120	130	105	95
8		7	190	140	130				210	160	140	180	140	120				120	100	90	95	80	70
10	Р	8	170	130	110				180	140	120	160	120	100				100	80	70	80	65	55
11		9	140	110	90				160	120	90	140	100	80				90	60	50	70	50	40
12		10	190	150	140				210	170	150	180	145	130				140	110	100	110	90	80
13.1 210 150 130 130 130 120		11	130	100	80				140	100	80	120	90	70				90	60	50	70	50	40
13.2 110 80 70 70 70 70 70 70 7		12	240	190	150				270	200	170	230	175	150				150	120	110	120	95	90
14.1		13.1	210	150	130				230	170	140	200	145	120				130	100	90	105	80	70
March 14.2 14.3 14.4		13.2	110	80	70				120	90	70	100	75	60				65	50	45	50	40	
14.3		14.1							230	140	100	200	120	90				120	80	70	110	70	60
14.3	D/I	14.2							180	110	80	160	95	70				90	60	55	80	50	50
15	IVI	14.3							140	80	60	120	70	55				65	50	40	60	50	40
16		14.4							120	70	50	100	60	45				60	40	35	50	40	30
N		15	690	500	335	530	390	280				_	_	_	160	120	100	_	_	_			
18		16	530	400	300	410	310	230				_	_	_	120	90	80	_	_	_			
18	V	17	610	400	300	460	310	230				250	190	165	140	105	90	200	150	130			
N	Α.	18	390	290	220	300	220	170				210	160	140	100	70	55	170	130	110			
N		19	445	370	290	370	290	220				_	_	_	140	90	70	_	_	_			
N		20	400	300	215	310	230	180				_	_	_	110	70	55	_	_	_			
N		21													1000	750	600						
N		22													500	360	300						
N		23													1000	750	600						
A A A A A A A A A A		24													800	600	500						
26	N	25													500	350	250						
28		26													450	300	200						
29 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 200 500 350 3																							
30 500 350 200 31 38 29 25 30 23 20 33 23 20 33 24 19 16 34 35 36 37 38 39 31 30 105 80 39 110 85 65 39 110 85 65 380 30 30 23 20 30 23 20 30 23 20 30 23 20 30 23 20 30 23 20 30 23 20 30 3		28													300	180	100						
31		29													500	350	200						
32 30 23 20 24 19 16 20 15 13 35 36 36 37 37 38.1 130 105 80 39.1 110 85 65																							
33																							
S 34 20 15 13 20 15 13 3 35 36 36 37 40 37 46 35 38 38.2 130 105 80 39.1 110 85 65		32													30	23							
35 36 80 50 40 37 70 46 35 38.1 130 105 80 39.1 110 85 65																							
36 80 50 40 70 46 35 80 88.2 130 105 80 80 83.1 110 85 65	S	34													20	15	13						
37 70 46 35 38.1 130 105 80 38.2 130 105 80 39.1 110 85 65		35													20	15	13						
H 38.1 130 105 80 38.2 130 105 80 39.1 110 85 65																	40						
H 38.2 130 105 80 39.1 110 85 65															70	46	35						
H 39.1 110 85 65																							
39.1 110 85 65	Н	38.2			80																		
39.2 110 85 65																							
		39.2	110	85	65																		


Рекомендуемая начальная подача (fz) указана **жирным** шрифтом.

Используйте соответствующую скорость (vc).

Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ae, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1 =	0,1	0,2	0,3	0,4
коэффициент fz	2	1,5	1,3	1
коэффициент vc	1,4	1,3	1,2	1,1

Фрезы со сменными режущими пластинами • Торцевые фрезы общего назначения

Серия М68	
M68 SE1203	
M68 SE1204	
M68 SF1504	

WWW.WIDIA.COM A213

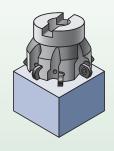
Торцевые фрезы для операций фрезерования общего назначения • **Серия М68**

Фрезы серии M68 подходят для обработки любых материалов. Простая в использовании система крепления пластины посредством клина обеспечивает точность позиционирования и высокую надежность закрепления.

M68

- Большой объем стружечных канавок обеспечивает эффективный стружкоотвод.
- Высокоточные гнезда и пластины.
- Идеальный инструмент для операций торцевого фрезерования общего назначения.

Геометрия стружечных канавок обеспечивает оптимальную прочность и эффективный стружкоотвод.



Система крепления пластины посредством клина обеспечивает максимальную устойчивость пластины.

Торцевые фрезы общего назначения

M68 SE1203...

Мах глубина резания: 6,0 мм

Угол в плане: 45° Число кромок на пластине: 4 Диаметр: 50 мм - 315 мм

Стр.: А216-А218

Геометрия пластины	1	Рекомендуемое применение						
	MS	Рекомендуется для обработки нержавеющей и низкоуглеродистой стали. Оптимизированная геометрия обеспечивает низкие усилия резания.						
	1	Рекомендуется для обработки стали и чугуна. Лучший выбор для операций общего фрезерования.						

M68 SE1204..

Мах глубина резания: 6,0 мм

Угол в плане: 45° Число кромок на пластине: 4 Диаметр: 50 мм – 250 мм

Стр.: А220-А222

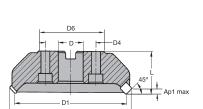
Геометрия пластины	1	Рекомендуемое применение
	MS	Рекомендуется для обработки нержавеющей и низкоуглеродистой стали. Оптимизированная геометрия обеспечивает низкие усилия резания.
	1	Рекомендуется для обработки стали и чугуна. Лучший выбор для операций общего фрезерования.

M68 SE1504..

Мах глубина резания: 8,3 мм

Угол в плане: 45° Число кромок на пластине: 4 Диаметр: 80 мм – 315 мм

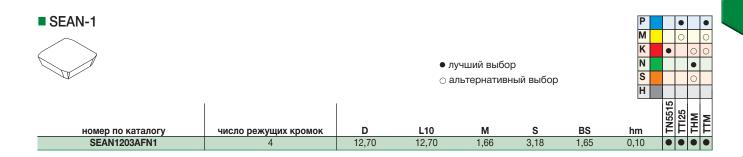
Стр.: А223-А225

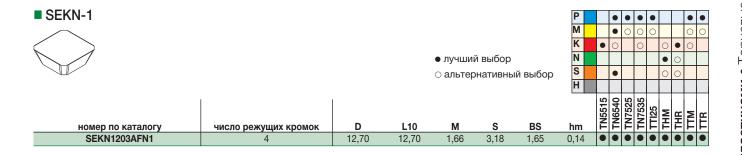

Геометрия пластины	7	Рекомендуемое применение						
	MS	Рекомендуется для обработки нержавеющей и низкоуглеродистой стали. Оптимальная геометрия обеспечивает низкие усилия резания.						
	1	Рекомендуется для обработки стали и чугуна. Лучший выбор для операций общего фрезерования.						

- Торцевые фрезы общего назначения.
- Марки сплавов для обработки любых материалов.

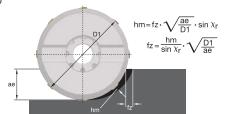
■ M68


									ı	max		
номер заказа	номер по каталогу	D1	D1 max	D	D4	D6	L	Ap1 max	Z	частота вращ.	подвод СОЖ	КГ
2004577	12396804000	50	64	22	_	50	40	6,0	4	7000	Нет	0,6
2004740	12396804400	63	77	22	_	50	40	6,0	5	6000	Нет	0,8
2004774	12396804600	80	94	27	_	60	50	6,0	8	5500	Нет	1,5
2004775	12396804800	80	94	27	_	60	50	6,0	6	5500	Нет	1,4
2004118	12396805000	100	114	32	_	78	50	6,0	10	5000	Нет	1,9
2004119	12396805200	100	114	32	_	78	50	6,0	6	5000	Нет	1,8
2004135	12396805400	125	139	40	_	89	63	6,0	12	4500	Нет	3,4
2004136	12396805600	125	139	40	_	89	63	6,0	8	4500	Нет	3,3
2004142	12396805800	160	174	40	66,7	90	63	6,0	16	4000	Нет	4,7
2004153	12396806000	160	174	40	66,7	90	63	6,0	10	4000	Нет	4,6
2004259	12396806200	200	214	60	101,6	130	63	6,0	20	3500	Нет	8,6
2004260	12396806400	200	214	60	101,6	130	63	6,0	12	3500	Нет	8,2
2004355	12396806800	250	264	60	101,6	130	63	6,0	16	3000	Нет	13,1
2004398	12396807200	315	329	60	101,6	230	80	6,0	20	2800	Нет	29,7


■ M68 • Комплектующие

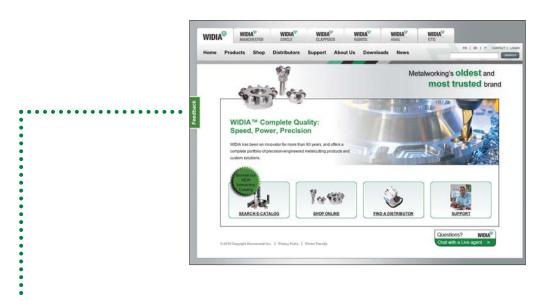

D1	винт клина	Нм	шестигранный ключ	клин
50	12148574900	7,0	12148044900	12748305600
63	12148574900	7,0	12148044900	12748305600
80	12748600900	7,0	12148044900	12748305800
100	12748600900	7,0	12148044900	12748305800
125	12748600900	7,0	12148044900	12748305800
160	12748600900	7,0	12148044900	12748306000
200	12748600900	7,0	12148044900	12748306000
250	12748600900	7,0	12148044900	12748306000
315	12748600900	7,0	12148044900	12748306000

Торцевые фрезы общего назначения • Серия М68


Режимы резания для фрез серии M68 • SE1203..

			1	N551	5	Т	N752	5	Т	N753	5		TTI25			ТНМ			THR			TTM			TTR	
_	Геоме												Пода	ача на	зуб fz ((мм)										
pe	жущеи М	í кромки IS	0,10	0.22	0.30	0.08	0,18	0.24	0.10	0.22	0,30				0,10	` ′	0.30	0.10	0,22	0.30	0.10	0,22	0.30			
					0,30		0,18			0,22		0,10	0,18	0,24	0,10				0,22		_	0,22		0,10	0,22	0,30
										ŕ			-									-				·
	Груг матер											Cĸ	орост	ъ реза	ния ус	(м/мі	ин)									
		1				410	320	280	360	280	240	450	345	300							220	195	180	180	160	145
		2				290	220	190	250	190	165	380	280	240							160	130	120	130	105	95
		3				240	184	160	210	160	140	310	235	200							130	100	90	105	80	70
		4				250	190	160	215	165	140	350	260	220							140	110	100	110	90	80
		5				210	150	130	180	130	110	_	_	_							110	90	80	90	70	65
		6				280	210	170	240	180	150	380	280	220							160	130	120	130	105	95
	Р	7				210	160	140	180	140	120	310	220	190							120	100	90	95	80	70
		8				180	140	120	160	120	100	250	175	150							100	80	70	80	65	55
		9				160	120	90		100	80	_	_	_							90	60	50	70	50	40
		10				210	170	150	180	145	130	360	265	220							140	110	100	110	90	80
		11				140	100	80	120	90	70		_	_							90	60	50	70	50	40
		12				270	200	170	230	175	150	350	260	220							150	120	110	120	95	90
		13.1 13.2				230 120	170 90	140 70	100	145 75	120 60	300 150	230 115	200 100							130 65	100 50	90 45	105 50	80 40	70 35
		14.1				230	140	100	200	120	90	300	240	180							120	80	60	95	65	50
		14.2				180	110	80	160	95	70	250	220	155							100	75	55	80	60	45
	M	14.3				140	80	60	120	70	55	190	160	110							75	55	40	60	45	30
		14.4				120	70	50	100	60	45	150	120	85							60	45	35	50	35	25
		15	530	390	280				_	_	_				_	_	_	_	_	_	_	_	_			
		16	410	310	230				_	_	_				_	_	_	_	_	_	_	_	_			
	K	17	460	310	230				250	190	165				230	170	150	200	150	130	180	140	120			
	^	18	300	220	170				210	160	140				190	140	130	170	130	110	150	120	100			
		19	370	290	220				_	_	_				_	_	_	_	_	_	_	_	_			
		20	310	230	180				_	_						_	_	_	_	_	_	_				
		21													1000	750	600	900	600	500						
		22													500	360	300	450	300	250						
		23 24													1000	750 600	600 500	700	600 500	500 400						
		25													500	350	250	450	280	200						
	N	26																400	250	200						
		27													_	_	_		210							
		28													_	_	_		160							
		29													_	_	_	500		200						
		30													_	_	_	500		200						
		31													38	25	_	38	29							
		32													30	20	_	30		20						
		33													24	16	_	24	19	16						
	S	34													20	13	_	20		13						
		35													20	13	—	32		21						
		36													80	40	_	50	40	32						
		37													60	30	_	_	_	_						
		38.1																								
	Н	38.2																								
		39.1 39.2																								

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.


При меньших значениях ae, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1 =	0,1	0,2	0,3	0,4
коэффициент fz	2	1,5	1,3	1
коэффициент vc	1,4	1,3	1,2	1,1

Интернет

Быстрота и простота регистрации

Вы можете легко зарегистрироваться на www.widia.com для получения полного доступа ко всем разделам сайта.

Выберите ближайшего к Вам регионального официального дистрибьютора WIDIA

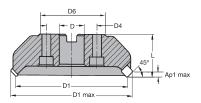
WIDIA Products Group предлагает изделия мирового класса и глобальное сервисное обслуживание. Наши дистрибьюторы хорошо знакомы с нашей продукцией, но еще лучше они знают Ваши потребности. Они в состоянии найти грамотное применение глобальным ресурсам компании WIDIA в Ваших конкретных условиях — на Вашем производстве, в Вашем регионе, способствуя развитию Вашего бизнеса.

Свяжитесь с нами

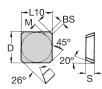
Наши клиенты - наша главная ценность. Поэтому мы стремимся предложить Вам сервис и техническую поддержку самого высокого уровня. Мы открыты для диалога и готовы ответить на все Ваши вопросы и замечания в течение 24 часов.

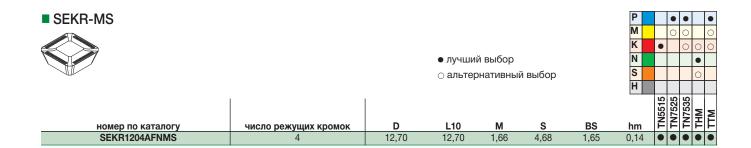
Продукция WIDIA

Чем бы Вы ни занимались, точением, фрезерованием или сверлением, компания WIDIA предоставит Вам высокопроизводительный инструмент, отвечающий Вашим конкретным условиям. Наш ассортимент объединяет широкую программу стандартного инструмента и возможности изготовления специальной продукции для большинства производственных областей.

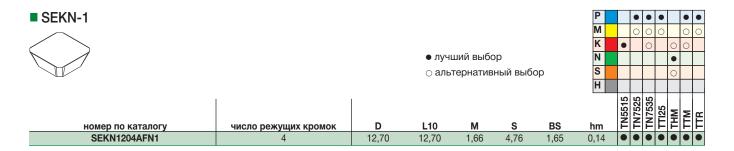


- Торцевые фрезы общего назначения.
- Марки сплавов для обработки любых материалов.

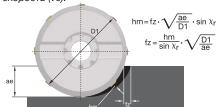

■ M68


										max		
номер заказа	номер по каталогу	D1	D1 max	D	D4	D6	L	Ap1 max	Z	частота вращ.	подвод СОЖ	ΚΓ
2033482	12396814000	50	64	22		50	40	6,0	4	7000	Нет	0,6
2004776	12396814600	80	94	27	_	60	50	6,0	8	5500	Нет	1,5
2004777	12396814800	80	94	27	_	60	50	6,0	6	5500	Нет	1,4
2004120	12396815000	100	114	32	_	78	50	6,0	10	5000	Нет	1,9
2004121	12396815200	100	114	32	_	78	50	6,0	6	5000	Нет	1,8
2004137	12396815400	125	139	40	_	89	63	6,0	12	4500	Нет	3,4
2004138	12396815600	125	139	40	_	89	63	6,0	8	4500	Нет	3,3
2004154	12396815800	160	174	40	66,7	90	63	6,0	16	4000	Нет	4,7
2004155	12396816000	160	174	40	66,7	90	63	6,0	10	4000	Нет	4,6
2004261	12396816200	200	214	60	101,6	130	63	6,0	20	3500	Нет	8,6
2004262	12396816400	200	214	60	101,6	130	63	6,0	12	3500	Нет	8,2
2004356	12396816800	250	264	60	101,6	130	63	6,0	16	3000	Нет	13,1

■ M68 • Комплектующие


D1	винт клина	Нм	шестигранный ключ	клин
50	12148574900	7,0	12148044900	12748306200
80	12748600900	7,0	12148044900	12748306400
100	12748600900	7,0	12148044900	12748306400
125	12748600900	7,0	12148044900	12748306400
160	12748600900	7,0	12148044900	12748306600
200	12748600900	7,0	12148044900	12748306600
250	12748600900	7.0	12148044900	12748306600

Торцевые фрезы общего назначения • Серия М68

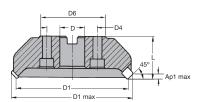

Режимы резания для фрез серии M68 • SE1204..

		1	ΓN551	5	T	N752	5	Т	N753	5		TTI25			тнм			THR			TTM			TTR	
	метрия											Под	ача на	зуб fz	(мм)										
	ей кромки .MS	_	0.24	0,32	0,10	0,19	0.26	0.12	0.24	0,32				0,12		0.32				0.12	0,24	0.32			
	1	_		0,35		0,21		-		0,35	0.10	0,18	0.24	0,12			0.12	0,26	0.35	-	0,26		0.10	0,22	0.30
		,,,,	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,-:	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,
	уппа ериала										Си	орост	гь реза	ния ус	(м/мі	ин)									
Mar	1				410	320	280	360	280	240	450	345	300							220	195	180	180	160	145
	2				290	220	190	250	190	165	380	280	240							160	130	120		105	95
	3				240	184	160		160	140	310		200							130	100	90	105	80	70
	4				250	190	160		165	140	350	260	220							140	110	100	110	90	80
	5				210	150	130		130	110	_	_	_							110	90	80	90	70	65
	6				280	210	170	240	180	150	380	280	220							160	130	120	130	105	95
	7				210	160	140		140	120		220	190							120	100	90	95	80	70
P	8				180	140	120	160	120	100	250	175	150							100	80	70	80	65	55
	9				160	120	90	140	100	80	_	_	_							90	60	50	70	50	40
	10				210	170	150	180	145	130	360	265	220							140	110	100	110	90	80
	11				140	100	80	120	90	70	_	_	_							90	60	50	70	50	40
	12				270	200	170	230	175	150	350	260	220							150	120	110	120	95	90
	13.1				230	170	140	200	145	120	300	230	200							130	100	90	105	80	70
	13.2				120	90	70	100	75	60	150	115	100							65	50	45	50	40	35
	14.1				230	140	100	200	120	90	300	240	180							120	80	60	95	65	50
	14.2				180	110	80	160	95	70	250	220	155							100	75	55	80	60	45
M	14.3				140	80	60	120	70	55	190	160	110							75	55	40	60	45	30
	14.4				120	70	50	100	60	45	150	120	85							60	45	35	50	35	25
	15	530	390	280				_	_	_				_	_	_	_	_	_	_	_	_			
	16	410	310	230				_	_	_				_	_	_	_	_	_	_	_	_			
K	17	460	310					250	190	165				230	170	150	200	150	130	180	140	120			
••	18	300	220					210	160	140				190	140	130	170	130	110	150	120	100			
	19	370	290	220				_	_	_				_	_	_	_	_	_	_	_	_			
	20	310	230	180				_	_									_		_	_				
	21													1000	750	600	900	600	500						
	22 23													500	360	300	450	300	250						
														1000	750	600	900	600	500						
	24 25													800	600 350	500 250	700 450	500 280	400 200						
N	26													500	330	250	400	250	200						
	27																340	210	160						
	28																	160							
	29																	350							
	30													_			500		200						
	31													38	25		38	29							
	32													30	20	_	30	23							
	33													24	16	_	24	19							
S	34													20	13	_	20		13						
	35													20	13	_	32		21						
	36													80	40	_	50	40	32						
	37													60	30	_	_	_	_						
	38.1																								
	38.2																								
Н	39.1																								
	39.2																								

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ae, fz и vc необходимо умножить на коэффициент, указанный ниже:

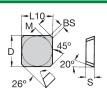
отношение ae/D1 =	0,1	0,2	0,3	0,4
коэффициент fz	2	1,5	1,3	1
коэффициент vc	1,4	1,3	1,2	1,1



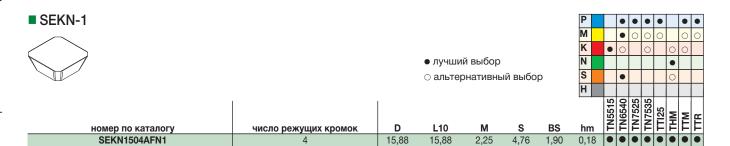
- Торцевые фрезы общего назначения.
- Марки сплавов для обработки любых материалов.

■ M68

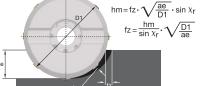
										max		
номер заказа	номер по каталогу	D1	D1 max	D	D4	D6	L	Ap1 max	Z	частота вращ.	подвод СОЖ	КГ
2004778	12396824800	80	98	27	_	60	50	8,3	5	4500	Нет	1,5
2004122	12396825200	100	118	32	_	78	50	8,3	6	4000	Нет	2,0
2004139	12396825600	125	143	40	_	89	63	8,3	7	3700	Нет	3,4
2004156	12396826000	160	178	40	66,7	90	63	8,3	8	3200	Нет	5,1
2004273	12396826400	200	218	60	101,6	130	63	8,3	10	2900	Нет	8,7
2004357	12396826800	250	268	60	101,6	130	63	8,3	12	2500	Нет	13,4
2004399	12396827200	315	333	60	101,6	230	80	8,3	16	2300	Нет	29,3


■ M68 • Комплектующие

D1	винт клина	Нм	шестигранный ключ	клин
80	12748601400	16,0	12148045000	12748306800
100	12748601400	16,0	12148045000	12748306800
125	12748601400	16,0	12148045000	12748306800
160	12748601400	16,0	12148045000	12748307000
200	12748601400	16,0	12148045000	12748307000
250	12748601400	16,0	12148045000	12748307000
315	12748601400	16,0	12148045000	12748307000


Торцевые фрезы общего назначения • Серия М68

Пластины M68 • SE1504..

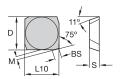

Режимы резания для фрез серии M68 • SE1504...

			TN551	15	1	N654	0	Т	N752	5	T	N753	5	·	TTI25			THM			TTM			TTR	
Геом режуще	іетрия й кромки											Под	ача на	зуб fz	(мм)										
	MS	0,12	0,24	0,32				0,10	0,19	0,26	0,12	0,24	0,32				0,10	0,18	0,24	0,12	0,24	0,32			
	.1	0,12	0,26	0,35	0,15	0,30	0,40	0,10	0,21	0,28	0,12	0,26	0,35	0,10	0,18	0,24	0,12	0,24	0,32	0,12	0,26	0,35	0,10	0,22	0,30
	/ппа риала										CH	орост	ъ реза	ния ус	(м/м	ин)									
	1				290	220	190	410	320	280	360	280	240	450	345	300				220	195	180	180	160	145
	2				200	150	130	290	220	190	250	190	165	380	280	240				160	130	120	130	105	95
	3				170	130	110	240	184	160	210	160	140	310	235	200				130	100	90	105	80	70
	4				170	130	110	250	190	160	215	165	140	350	260	220				140	110	100	110	90	80
	5				140	100	90	210	150	130	180	130	110	_	_	_				110	90	80	90	70	65
	6				190	140	120	280	210	170	240	180	150	380	280	220				160	130	120	130	105	95
	7				140	110	100	210	160	140	180	140	120	310	220	190				120	100	90	95	80	70
Р	8				130	100	80	180	140	120	160	120	100	250	175	150				100	80	70	80	65	55
	9				110	80	60	160	120	90	140	100	80	_	_	_				90	60	50	70	50	40
	10				140	120	100	210	170	150	180	145	130	360	265	220				140	110	100	110	90	80
	11				100	70	60	140	100	80	120	90	70	_	_	_				90	60	50	70	50	40
	12				180	140	120	270	200	170	230	175	150	350	260	220				150	120	110	120	95	90
	13.1				160	120	100	230	170	140	200	145	120	300	230	200				130	100	90	105	80	70
	13.2				80	60	50	120	90	70	100	75	60	150	115	100				65	50	45	50	40	35
	14.1				160	100	70	230	140	100	200	120	90	300	240	180				120	80	60	95	65	50
М	14.2				130	80	60	180	110	80	160	95	70	250	220	155				100	75	55	80	60	45
	14.3				100	60	40	140	80	60	120	70	55	190	160	110				75	55	40	60	45	30
	14.4	E20	200	200	80	50	40	120	70	50	100	60	45	150	120	85				60	45	35	50	35	25
	15 16		390		_	_	_				_	_	_				_	_	_	_	_	_			
	16 17		310		200	150	130				250	190	165				220	170	150	100	140	120			
K	18		310 220		170	130	110				250	160	140				230 190	140	150 130	180	120	100			
	19		290		170	-	-				210	-	140				130	140	130	130	-				
	20		230									_									_				
	21	010	200	100													1000	750	600						
	22																500	360	300						
	23																1000	750	600						
	24																800	600	500						
	25																500	350	250						
N	26																_	_	_						
	27																_	_	_						
	28																_	_	_						
	29																_	_	_						
	30																_	_	_						
	31				60	50	45										38	25	_						
	32				50	40	35										30	20							
	33				35	25	20										24		_						
S	34				30	20	15										20		_						
	35				30	20	15										20		_						
	36				80	50	40										80	40	_						
	37				70	45	35										60	30	_						
	38.1																								
н	38.2																								
	39.1 39.2																								
	JJ.Z																								

Рекомендуемая начальная подача (fz) указана **жирным** шрифтом. Используйте соответствующую скорость (vc). Значения fz и vc действительны при ае ≥0,4 D1.

При меньших значениях ae, fz и vc необходимо умножить на коэффициент, указанный ниже:

отношение ae/D1 =	0,1	0,2	0,3	0,4
коэффициент fz	2	1,5	1,3	1
коэффициент vc	1,4	1,3	1,2	1,1


Фрезы со сменными режущими пластинами • Дополнительные пластины

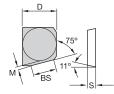
Дополнительные пластины	
SP	
SPMS	
Зачистная пластина SP1203	
TPKR-MS	
TPKN	Δ220

WWW.WIDIA.COM A227

■ SP...

- лучший выбор
- альтернативный выбор

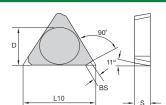
номер по каталогу	число режущих кромок	D	L10	М	s	BS	hm	TN5515	1752	TN7535	TTI25	Σ	Æ
SPAN1203EDR	4	12,70	12,70	0,91	3,18	1,50	0,10				•	•	
SPKN1203EDL	4	12,70	12,70	0,90	3,18	1,42	0,10	•			•		
SPKN1203EDR	4	12,70	12,70	0,90	3,18	1,42	0,10	•			•	,	П
SPKN1203EDTR	4	12,70	12,70	0,90	3,18	1,42	0,10		•	•	•	•	
SPKN1504EDL	4	15,88	15,88	1,25	4,76	1,42	0,18				•		
SPKN1504EDR	4	15,88	15,88	1,25	4,76	1,42	0,18	•	•		•		


■ SP.. -MS

- лучший выбор
- альтернативный выбор

	P M K N S		•	•	0	0	• 0	0
ŀ	H nm		TN5515	TN7525	TN7535	THM	표	MTT
0	,10 ,10)		•				

номер по каталогу	число режущих кромок	D	L10	М	s	BS	hm	TN551	TN752	TN753	<u>₹</u>	Ŧ E	=
SPKR1203EDLMS	4	12,70	12,70	0,91	3,18	1,40	0,10						ı
SPKR1203EDRMS	4	12,70	12,70	0,91	3,18	1,40	0,10			•		•	١


■ Зачистная пластина SP1203

- лучший выбор
- \bigcirc альтернативный выбор

номер по каталогу	число режущих кромок	D	М	s	BS	TN5515	
121358680	1	12,70	0,97	3,18	10,00	•	,
							_

• лучший выбор

○ альтернативный выбор

						• •		\perp	
							N5515	N7535	Σ
номер по каталогу	число режущих кромок	D	L10	S	BS	hm	<u> </u>	<u>- ⊢</u>	· I
TPKR1603PDRMS	3	9,53	16,50	3,18	1,40	0,10			
TPKR2204PDRMS	3	12,70	22,00	4,76	1,40	0,10			
	•	•							


• лучший выбор

○ альтернативный выбор

0								
	,14 .18						Ė	
h	ım	TN5515	TN7525	TN7535	TT125	MHL	TTM	TTR
	Н							
	S					0		
	N					•		
	١,	•		0		0	0	
	K							

							N551	N752	N753	TI25	₽₽	드	
номер по каталогу	число режущих кромок	D	L10	S	BS	hm	F	F	E	H		- -	
TPKN1603PDR	3	9,53	16,50	3,18	1,29	0,14	•			•			
TPKN2204PDL	3	12,70	22,00	4,76	1,40	0,18					•	<u>' </u>	
TPKN2204PDR	3	12,70	22,00	4,76	1,40	0,18	•	•	•	•	•	•	

Обработка отверстий

Введение	B2–B9
Цельные твердосплавные сверла	B10–B31
Модульные сверла	B32–B47
Сверла со сменными режущими пластинами	B48–B84
Инструмент для обработки предизионных отверстий	B86-B111

Модульные сверла

Простой и экономически выгодный процесс обработки отверстий

Мы предлагаем наиболее полный спектр иструментов для обработки отверстий из представленных сегодня на рынке: от прочных сверл общего назначения до высокоточных расточных систем. Если Вам необходимо обеспечить непревзойденную производительность и надежность обработки, обратите внимание на широкий ассортимент наших твердосплавных и модульных сверл, сверл со сменными режущими пластинами и инструмента для обработки прецизионных отверстий.

цельные сверла твердосплавные сверла

TOP DRILL S™ • TOP DRILL S+™

Широкий ассортимент наших цельных твердосплавных сверл объединяет множество специальных решений, в том числе для работы по наклонным поверхностям или сверления пересекающихся отверстий. Сверла данного типа работают на высоких скоростях и подачах и обеспечивают отличное качество отверстий, что упрощает или исключает их последующую чистовую обработку. Серия представлена двумя типами универсальных высокопроизводительных сверл — TOP DRILL S и TOP DRILL S+.

- Подходят для широкого спектра обрабатываемых материалов и различных типов отверстий.
- PVD покрытие обеспечивает повышенную износостойкость и стойкость инструмента в целом.
- Стабильное стружкообразование.

Victory TOP DRILL M1™

Наши модульные сверла, характеризующиеся сопоставимыми с твердосплавными сверлами уровнем производительности и удельным съемом металла, объединяют в себе высокое качество обработки, ее универсальность и экономичность. Мы рекомендуем сверла Victory TOP DRILL М1 для выполнения всех основных операций сверления стали и чугуна.

- Гарантированно высокая стойкость инструмента, исключает необходимость в настройке и затратах на переточку пластин.
- Улучшенное качество отверстий и более высокий удельный съем металла по сравнению с аналогами, представленными на рынке.
- Неперетачиваемые, легко заменяемые пластины обеспечивают снижение себестоимости отверстий и высокую производительность обработки.

Сверла со сменными ежущими пластинами

Сверло Top Cut™ • Top Cut Plus™

Усовершенствованные технологии изготовления твердых сплавов способствуют повышению безопасности, стойкости и скорости резания при работе наших сверл со сменными твердосплавными пластинами. При невысоком уровне расходов на инструмент и гибкости применения сменных пластин, Вы каждый раз наблюдаете плавный и стабильный процесс резания.

- Каждая пластина Top Cut Plus обладает четырьмя эффективными режущими кромками.
- Улучшенный стружкоотвод и превосходный удельный съем металла.
- Высокие подачи и улучшенные центрирующие возможности.

инструмент для обработки цизионных отверстий

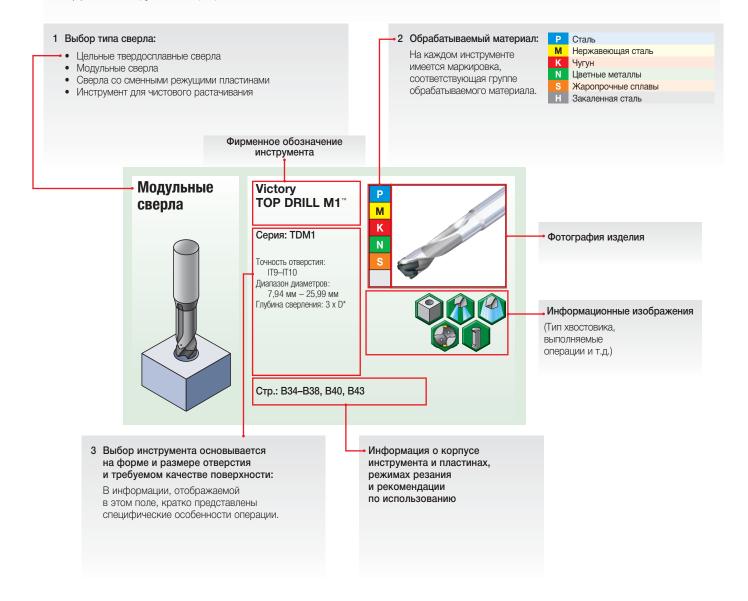
ROTAFLEX™

Являясь лидером в области чистовой обработки отверстий, наши вращающиеся расточные инструменты комплектуются как черновыми расточными головками, так и головками для финишной прецизионной обработки. При этом они гарантируют безвибрационную обработку на высоких подачах, повышение эффективности использования станка и увеличенные интервалы между планово-предупредительным обслуживанием.

- Усовершенствованное соединение RFX и новейшая технология изготовления токарных пластин.
- Наивысшие подачи и точность настройки обеспечивают высочайшую производительность.
- Подходит для операций черновой и чистовой обработки в широком диапазоне диаметров.

Инструменты для обработки отверстий от WIDIA: рост производительности

Увеличение производительности и эффективности:


- Специализация по обрабатываемому материалу и типу операции.
- Максимальный удельный съем металла и высокая стабильность.
- Стандартная конструкция платформ для проектирования специальных инструментов, разработанных методом оптимизации и комбинирования проверенных решений по отдельным инструментам.

Управление общими затратами по инструментальной оснастке:

- Высокий коэффициент использования инструмента, благодаря применению специализированных решений для конкретных обрабатываемых материалов и типов операций.
- Восстановительный сервис с гарантией качества.
- Уменьшение припусков за счет применения эффективной модульных концепций.

Выгодное приобретение:

- Широкий выбор инструментов для обработки отверстий.
- Полный спектр металлорежущего инструмента и сервисных услуг "из одних рук".
- Техническая поддержка при внедрении и эксплуатации инструмента обеспечивает эффективность механообработки.

Выберите оптимальную инструментальную концепцию для решения Вашей задачи

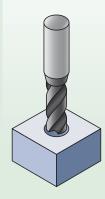
4 Выберите лучшую инструментальную концепцию:

Определитесь с диаметром и качеством отверстия, чтобы оценить предлагаемые варианты. После этого выберите ту инструментальную систему, которая максимально удовлетворяет Вашим требованиям.

- Цельные твердосплавные сверла
- Модульные сверла
- Сверла со сменными режущими пластинами
- Инструмент для чистового растачивания
- Инструмент для развертывания

	стоимость станкочаса	низкая (черно			истовая обработка)	высокая (чист	овая обработка)
	качество отверстия	IT11	IT10	IT9	IT8	IT7	IT6
Σ̈́	диаметр						
IZ	3				RILL S+™		
отверстийй	6			с внутренним	RILL S+ подводом СОЖ	Цельные твердос развертки Н	
TB	9		Victory TOP	DRILL M1™	TOP DRILL S		
	12				с внутренним подводом СОЖ		
ан	15		СВЕРЛА Тор Cut™				
развертывания	18						
ep	21					Развертки І	HSR
азв	24	24				со вставка	ми*
Ž	27						
	30		Ton Out Dive™				
сверления	33		Top Cut Plus™				
ерг	36						
	39						
для	42						
	45						
мен	58						
ď	51						
инструмент	54						
Z	57						
	60	Сверла Тор (Cut Plus со сменны (до 110 мм) ▼	ии кассетами			

	стоимость станкочаса	низкая (черно	низкая (черновая обработка)		стовая обработка)	высокая (чистовая обработк		
	качество отверстия	IT11	IT10	IT9	IT8	IT7	IT6	
_	диаметр							
HZ	10			Растолина г	оловки ROTAFLEX™	FRURR and		
ИВа	20				аботки с расточны			
растачивания	30							
ас	40	Doorouson orno	DUO DOTAELEV TOL	JC ===				
	50		вка ROTAFLEX TCH с двумя режущими		Прецизионные чис головки ВОТ			
для	60		(до 115 мм)		с державкой і	под пластину		
늄	70 _				(до 11	5 мм)		
инструмент	80							
стр	90							
	100							
íся	110							
вращающийся	120							
19E	130	Попзуны	мостового типа R	OTAFI FX	Ползуны мос	тового типа		
Ĕ	140		ернового растачи		ROTAFLEX дл			
вр	150		(87 мм – 202 мм)		растачи			
ЫЙ	160				(87 мм –	202 MM)		
eM	170							
МР	180							
регулируемый	190							
bel	200	Ползуны	мостового типа R	OTAFLEX	Ползуны мос	тового типа		
		для ч	ернового растачи	зания	ROTAFLEX дл			
	V 510		(200 мм – 520 мм) ▼		растачі (200 мм – 5			
	520				(200 MM - 5)	20 MM) V		


*Информация об инструментах содержится в каталоге «Обработка отверстий / Осевой инструмент». По заказу, начиная с диаметра 10 мм, возможно изготовление цельнотвердосплавных разверток HSR и разверток HSR со вставками (точность отверстий по IT6).

Обзорная таблица инструмента

Цельные твердосплавные сверла

Цельные твердосплавные сверла

TOP DRILL S+™

Серия: 170500

Точность отверстия: IT8–IT9 Диапазон диаметров: 3 мм - 20 мм Глубина сверления: 3 x D^*

Стр.: В12-В14, В30

TOP DRILL S+ с внутренним подводом СОЖ

Серия: 170501

Точность отверстия: IT8—IT9 Диапазон диаметров: 3 мм - 20 мм Глубина сверления: 3 x D^*

Стр.: В15-В17, В30

TOP DRILL S+ с внутренним подводом СОЖ

Серия: 170502

Точность отверстия: IT8–IT9 Диапазон диаметров: 3 мм – 20 мм Глубина сверления: 5 х D^*

Стр.: В18-В20, В30

TOP DRILL S+ с внутренним подводом СОЖ

Серия: 170503

Точность отверстия: IT8—IT9 Диапазон диаметров: 3 мм - 20 мм Глубина сверления: 7 x D^*

Стр.: В21-В22, В30

TOP DRILL S[™] с внутренним подводом СОЖ

Серия: 170511

Точность отверстия: IT8–IT9 Диапазон диаметров: 3 мм – 20 мм Глубина сверления: 3 х D^*

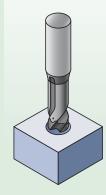
Стр.: В23-В25, В31

TOP DRILL S с внутренним подводом СОЖ

Серия: 170512

Точность отверстия: IT8—IT9 Диапазон диаметров: $3\ \text{мм} - 20\ \text{мм}$ Глубина сверления: $5\ \text{x}\ \text{D}^*$

Стр.: В26-В28, В31



Модульные сверла

Victory TOP DRILL M1™

Серия: TDM1

Точность отверстия: IT9—IT10 Диапазон диаметров: 7,94 мм — 25,99 мм Глубина сверления: $3 \times D^*$

Стр.: В34-В38, В40, В43

Victory TOP DRILL M1

Серия: TDM1

Точность отверстия: IT9—IT10 Диапазон диаметров: 7,94 мм — 25,99 мм Глубина сверления: 5 х D*

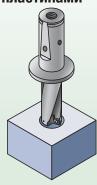
Стр.: В34-В38, В41, В43

Victory TOP DRILL M1

Серия: ТDМ1

Точность отверстия: IT9–IT10 Диапазон диаметров: 7,94 мм – 25,99 мм Глубина сверления: 8 x D*

Стр.: В34-В38, В42-В43



Сверла со сменными режущими пластинами

СВЕРЛА Тор Cut™

Серия: TCD

Точность отверстия: IT9—IT11 Диапазон диаметров: $11 \ \text{мм} - 25,4 \ \text{мм}$ Глубина сверления: 2 x D*

Стр.: В50, В55-В60

Сверла Тор Cut

Серия: TCD

Точность отверстия: IT9—IT11 Диапазон диаметров: 11 мм — 25,4 мм Глубина сверления: 3 х D*

Стр.: В51, В53-В60

Сверла Тор Cut

Серия: TCD

Точность отверстия: IT9—IT11 Диапазон диаметров: 14 мм - 25,4 мм Глубина сверления: 4 x D^*

Стр.: В52, В55-В60

Сверла Top Cut Plus[™]

Серия: ТСР

Точность отверстия: IT9—IT11 Диапазон диаметров: 19 мм — 60 мм Глубина сверления: $2 \times D^*$

Стр.: В62-В63, В74-В78

Сверло Top Cut Plus

Серия: ТСР

Точность отверстия: IT9–IT11 Диапазон диаметров: 19 мм – 60 мм Глубина сверления: 3 х D*

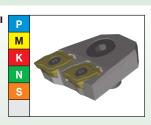
Стр.: B64-B65, B68-B70, B74-B78

Сверло Top Cut Plus

Серия: ТСР

Точность отверстия: IT9–IT11 Диапазон диаметров: 19 мм – 60 мм Глубина сверления: 4 х D*

Стр.: В66-В67, В74-В78



Сменные кассеты для сверл Top Cut Plus

Серия: 121679

Точность отверстия: IT9–IT11 Диапазон диаметров: 60 мм — 110 мм

Стр.: В71-В72

*Даны приблизительные значения отношения длины к диаметру. Точные характеристики приведены в таблицах заказа соответствующего инструмента.

Инструмент для чистового растачивания

Расточные оправки ROTAFLEX™ TCHS для черновой обработки с двумя режущими кромками

Серия: RFX..TCHS.. KM..TCHS..

Точность отверстия: IT9-IT11 Диапазон диаметров: 22 мм – 115 мм Глубина сверления: **

Стр.: В88-В89, В94-В95

M

Ползуны мостового типа ROTAFLEX малого размера для чернового растачивания

Серия: 126002..

Точность отверстия: IT9—IT11 Диапазон диаметров: 87 мм — 202 мм Глубина сверления: **

Стр.: В90-В91, В94-В95

Ползуны мостового типа ROTAFLEX большого размера для чернового растачивания

Серия: 126000...

Точность отверстия: IT9–IT11
Диапазон диаметров: 200 мм – 520 мм
Глубина сверления: **

N

Стр.: В92-В95

Ползуны мостового типа ROTAFLEX малого размера для чистового растачивания

Серия: RFX..FBHBB.. KM..FBHBB..

Точность отверстия: IT7—IT9 Диапазон диаметров: 6 мм — 22 мм Глубина сверления: **

Стр.: В97-В99

Ползуны мостового типа ROTAFLEX большого размера для чистового растачивания

Серия: RFX..FBH.. KM..FBH..

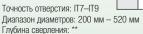
Точность отверстия: IT7–IT9 Диапазон диаметров: 22 мм – 115 мм Глубина сверления: **

Стр.: В100-В102

Ползуны мостового типа ROTAFLEX малого размера для чернового растачивания

Серия: 126002..

Точность отверстия: IT7—IT9
Диапазон диаметров: 87 мм — 202 мм
Глубина сверления: **


Стр.: В90-В91, В96

Ползуны мостового типа ROTAFLEX большого размера для чистового растачивания

Серия: 126000...

Стр.: В92-В93, В96

^{**}Точные характеристики приведены в таблицах заказа соответствующего инструмента.

Цельные твердосплавные сверла

Широкий ассортимент цельных твердосплавных сверл WIDIA обеспечивает высокую производительность при решении самых разнообразных, даже наиболее сложных задач. Уникальная технология изготовления сверл данного типа позволяет вести обработку с максимальными подачами.

- Подходят для широкого спектра обрабатываемых материалов и типов обработки.
- Характеризуются увеличенным сроком службы и высокой износостойкостью.
- Обеспечивают стабильное стружкообразование.

TOP DRILLS+

Универсальные сверла TOP DRILL S+ обеспечивают надежную работу в широких областях применения, включая сверление легированных и нелегированных сталей, чугуна, некоторых нержавеющих сталей и жаропрочных сплавов.

- Конструкция с четырьмя ленточками обеспечивает стабильность и точность обработки.
- PVD покрытие обеспечивает увеличение срока службы и износостойкости инструмента.
- Стандартный ассортимент включает сверла с внутренним подводом СОЖ и без.

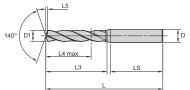

Обработка отверстий • Цельные твердосплавные сверла

TOP DRILL S+™	Рекомендации по примененик
Серия 170500	B30
Серия 170501	B30
Серия 170502	
Серия 170503	B30
TOP DRILL S™	
Серия 170511	B3 ⁻
Серия 170512	B3°

WWW.WIDIA.COM B11

Высокопроизводительные цельные твердосплавные сверла

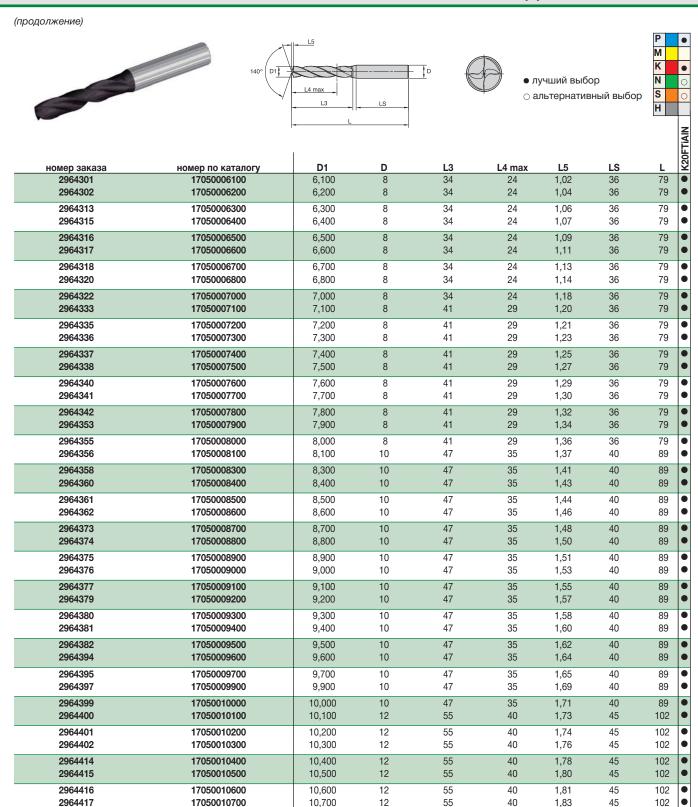
■ Серия 170500



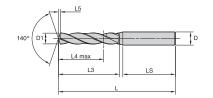
_				
п	_	п١	10	1
Д	··		v	·N

D1	Допуск m7	D	Допуск h6
>от 3 до 6	0,004/0,016	6	0,000/-0,008
>от 6 до 10	0,006/0,021	от 8 до 10	0,000/-0,009
>от 10 до 18	0,007/0,025	от 12 до 18	0,000/-0,011
>от 18 до 20	0,008/0,029	20	0,000/-0,013

лучший выборальтернативный выбор


		ļ. L	-					
		1						
номер заказа	номер по каталогу	D1	D	L3	L4 max	L5	LS	L
2964222	17050003000	3,000	6	20	14	0,48	36	62
2964233	17050003100	3,100	6	20	14	0,50	36	62
2964234	17050003200	3,200	6	20	14	0,52	36	62
2964235	17050003250	3,250	6	20	14	0,53	36	62
2964236	17050003300	3,300	6	20	14	0,54	36	62
2964237	17050003400	3,400	6	20	14	0,55	36	62
2964238	17050003500	3,500	6	20	14	0,57	36	62
2964239	17050003600	3,600	6	20	14	0,59	36	62
2964240	17050003700	3,700	6	20	14	0,61	36	62
2964241	17050003800	3,800	6	24	17	0,62	36	66
2964242	17050003900	3,900	6	24	17	0,64	36	66
2964243	17050004000	4,000	6	24	17	0,66	36	66
2964244	17050004100	4,100	6	24	17	0,67	36	66
2964245	17050004200	4,200	6	24	17	0,69	36	66
2964246	17050004300	4,300	6	24	17	0,71	36	66
2964248	17050004400	4,400	6	24	17	0,73	36	66
2964250	17050004600	4,600	6	24	17	0,76	36	66
2964251	17050004650	4,650	6	24	17	0,77	36	66
2964252	17050004700	4,700	6	24	17	0,78	36	66
2964275	17050004900	4,900	6	28	20	0,81	36	66
2964276	17050005000	5,000	6	28	20	0,83	36	66
2964277	17050005100	5,100	6	28	20	0,85	36	66
2964279	17050005200	5,200	6	28	20	0,87	36	66
2964280	17050005300	5,300	6	28	20	0,88	36	66
2964281	17050005400	5,400	6	28	20	0,90	36	66
2964282	17050005500	5,500	6	28	20	0,92	36	66
2964293	17050005550	5,550	6	28	20	0,93	36	66
2964295	17050005600	5,600	6	28	20	0,94	36	66
2964296	17050005700	5,700	6	28	20	0,95	36	66
2964297	17050005800	5,800	6	28	20	0,97	36	66
2964298	17050005900	5,900	6	28	20	0,99	36	66
2964300	17050006000	6,000	6	28	20	1,00	36	66
		1						

(продолжение)



Высокопроизводительные цельные твердосплавные сверла

Сталь и чугун • TOP DRILL S+ $^{\text{\tiny TM}}$ • 3 x D

(продолжение)

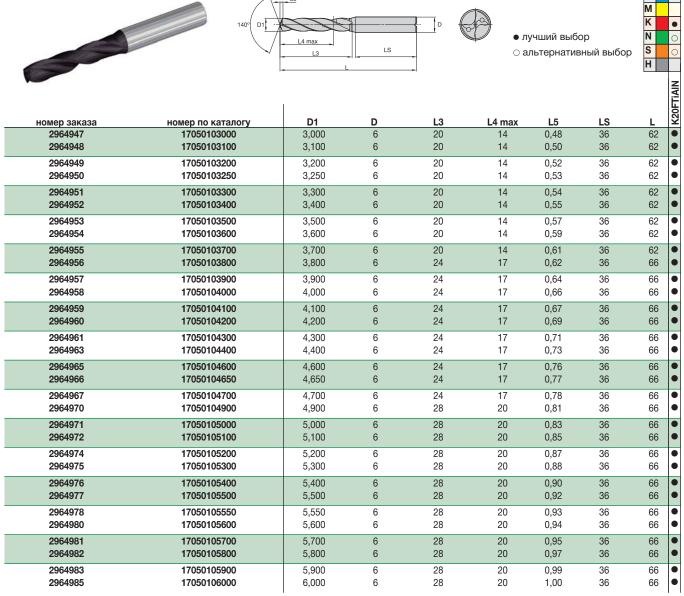
• лучший выбор ○ альтернативный выбор

	M	
	K	
	N	C
)	S	C
	11	

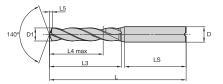
		L							1 1
		ı							● K20FTiAIN
номер заказа	номер по каталогу	D1	D	L3	L4 max	L5	LS	L	2
2964419	17050010800	10,800	12	55	40	1,85	45	102	
2964420	17050010900	10,900	12	55	40	1,87	45	102	
2964421	17050011000	11,000	12	55	40	1,88	45	102	•
2964423	17050011100	11,100	12	55	40	1,90	45	102	•
2964425	17050011200	11,200	12	55	40	1,92	45	102	
2964426	17050011300	11,300	12	55	40	1,94	45	102	
2964427	17050011400	11,400	12	55	40	1,95	45	102	•
2964428	17050011500	11,500	12	55	40	1,97	45	102	•
2964429	17050011600	11,600	12	55	40	1,99	45	102	
2964430	17050011700	11,700	12	55	40	2,01	45	102	
2964431	17050011800	11,800	12	55	40	2,03	45	102	
2964432	17050011000	11,900	12	55	40	2,04	45	102	
2964434	17050012000		12	55	40	2,06	45	102	•
2964436	17050012000	12,000 12,500	14	60	43	2,06	45 45	102	
2964438 2964439	17050012800 17050013000	12,800 13,000	14 14	60 60	43 43	2,20 2,24	45 45	107 107	
									\perp
2964440	17050013500	13,500	14	60	43	2,33	45	107	
2964441	17050013800	13,800	14	60	43	2,38	45	107	
2964442	17050014000	14,000	14	60	43	2,41	45	107	
2964444	17050014500	14,500	16	65	45	2,50	48	115	
2964445	17050014800	14,800	16	65	45	2,56	48	115	
2964446	17050015000	15,000	16	65	45	2,59	48	115	
2964447	17050015500	15,500	16	65	45	2,68	48	115	•
2964448	17050015800	15,800	16	65	45	2,73	48	115	
2964450	17050016000	16,000	16	65	45	2,77	48	115	
2964451	17050016500	16,500	18	73	51	2,86	48	123	
2964453	17050016800	16,800	18	73	51	2,91	48	123	
2964454	17050017000	17,000	18	73	51	2,95	48	123	
2964455	17050017500	17,500	18	73	51	3,04	48	123	
2964456	17050017800	17,800	18	73	51	3,09	48	123	
2964457	17050018000	18,000	18	73	51	3,12	48	123	
2964458	17050018500	18,500	20	79	55	3,21	50	131	
2964459	17050018800	18,800	20	79	55	3,27	50	131	
2964460	17050019000	19,000	20	79	55	3,30	50	131	
2964462	17050019500	19,500	20	79	55	3,39	50	131	•
2964462 2964463	17050019500	19,800	20	79 79	55	3,39 3,44	50 50	131	
									•
2964464	17050020000	20,000	20	79	55	3,48	50	131	

Сталь и чугун • TOP DRILL S+™ • 3 x D

■ Серия 170501



	Допус	CK	
D1	Допуск т7	D	Допуск h6
>от 3 до 6	0,004/0,016	6	0,000/-0,008
>от 6 до 10	0,006/0,021	от 8 до 10	0,000/-0,009
>от 10 до 18	0,007/0,025	от 12 до 18	0,000/-0,011
>от 18 до 20	0,008/0,029	20	0,000/-0,013

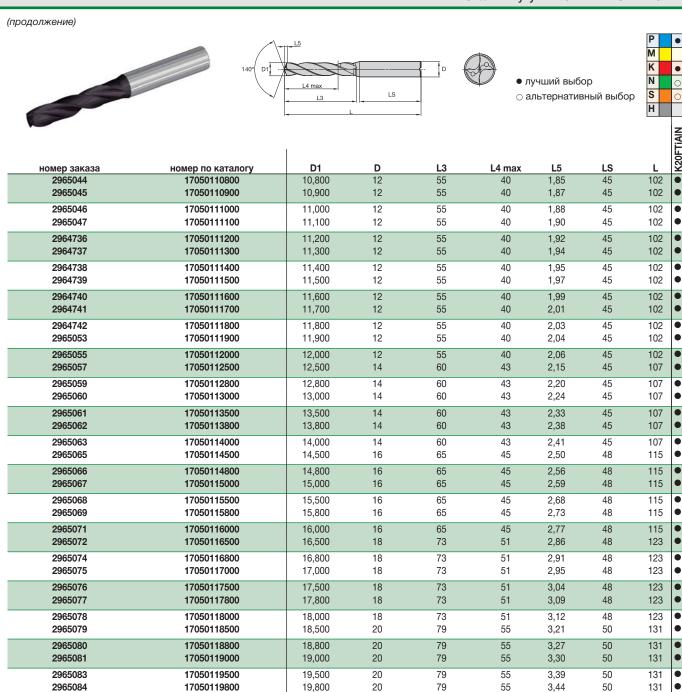


Высокопроизводительные цельные твердосплавные сверла • Внутренний подвод СОЖ

WIDIA[™]

Сталь и чугун • TOP DRILL S+™ • 3 x D

лучший выборальтернативный выбор


	М	
	K	•
	N	С
р	S	С
	н	

		1-4							—
									● K20FTiAIN
номер заказа	номер по каталогу	D1	<u>D</u>	L3	L4 max	L5	LS	L	X
2964986 2964987	17050106100 17050106200	6,100 6,200	8 8	34 34	24 24	1,02 1,04	36 36	79 79	
		-							
2964988	17050106300	6,300	8 8	34	24 24	1,06	36	79 79	•
2964990	17050106400	6,400		34		1,07	36		Ш
2964991	17050106500	6,500	8	34	24	1,09	36	79	
2964992	17050106600	6,600	8	34	24	1,11	36	79	
2964993	17050106700	6,700	8	34	24	1,13	36	79	
2964995	17050106800	6,800	8	34	24	1,14	36	79	
2964997	17050107000	7,000	8	34	24	1,18	36	79	
2964998	17050107100	7,100	8	41	29	1,20	36	79	
2965000	17050107200	7,200	8	41	29	1,21	36	79	
2965001	17050107300	7,300	8	41	29	1,23	36	79	
2965002	17050107400	7,400	8	41	29	1,25	36	79	
2965003	17050107500	7,500	8	41	29	1,27	36	79	
2965005	17050107600	7,600	8	41	29	1,29	36	79	•
2965006	17050107700	7,700	8	41	29	1,30	36	79	
2965007	17050107800	7,800	8	41	29	1,32	36	79	•
2965008	17050107900	7,900	8	41	29	1,34	36	79	
2965010	17050108000	8,000	8	41	29	1,36	36	79	•
2965011	17050108100	8,100	10	47	35	1,37	40	89	
2965013	17050108300	8,300	10	47	35	1,41	40	89	
2965015	17050108400	8,400	10	47	35	1,43	40	89	
2965016	17050108500	8,500	10	47	35	1,44	40	89	
2965017	17050108600	8,600	10	47	35	1,46	40	89	•
2965018	17050108700	8,700	10	47	35	1,48	40	89	
2965019	17050108700	8,800	10	47	35	1,50	40	89	
2965020	17050108900	8,900	10	47	35	1,51	40	89	
2965021	17050108900	9,000	10	47	35	1,53	40	89	
2965022		-		47				89	•
2965024	17050109100 17050109200	9,100 9,200	10 10	47	35 35	1,55 1,57	40 40	89	
1111		-							
2965025 2965026	17050109300 17050109400	9,300 9,400	10 10	47 47	35 35	1,58 1,60	40 40	89 89	•
		-							Ш
2965027 2965029	17050109500	9,500	10 10	47 47	35 35	1,62	40	89 89	
	17050109600	9,600		47		1,64	40		
2965030	17050109700	9,700	10	47	35	1,65	40	89	•
2965032	17050109900	9,900	10	47	35	1,69	40	89	Ш
2965034	17050110000	10,000	10	47	35	1,71	40	89	
2965035	17050110100	10,100	12	55	40	1,73	45	102	
2965036	17050110200	10,200	12	55	40	1,74	45	102	•
2965037	17050110300	10,300	12	55	40	1,76	45	102	•
2965039	17050110400	10,400	12	55	40	1,78	45	102	
2965040	17050110500	10,500	12	55	40	1,80	45	102	
2965041	17050110600	10,600	12	55	40	1,81	45	102	•
2965042	17050110700	10,700	12	55	40	1,83	45	102	
		•							

Сталь и чугун • TOP DRILL S+™ • 3 x D

20,000

20

79

55

3,48

50

2965085

17050120000

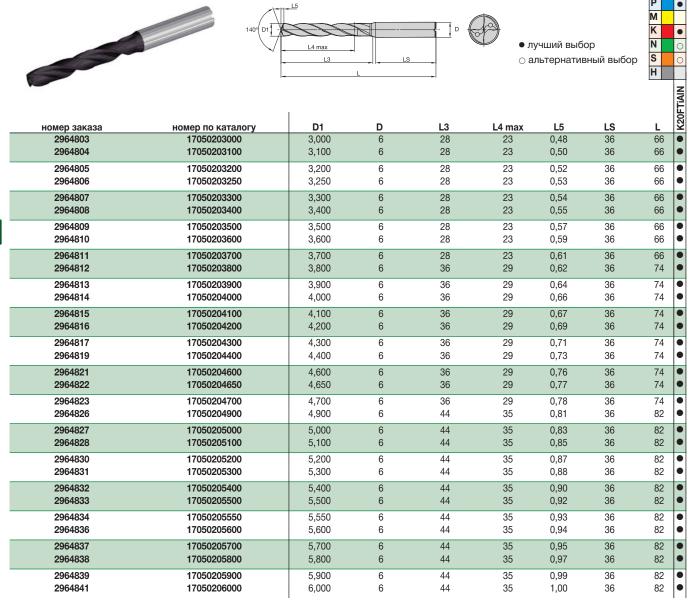
•

131

Высокопроизводительные цельные твердосплавные сверла • Внутренний подвод СОЖ

Сталь и чугун • TOP DRILL S+™ • 5 x D

■ Серия 170502

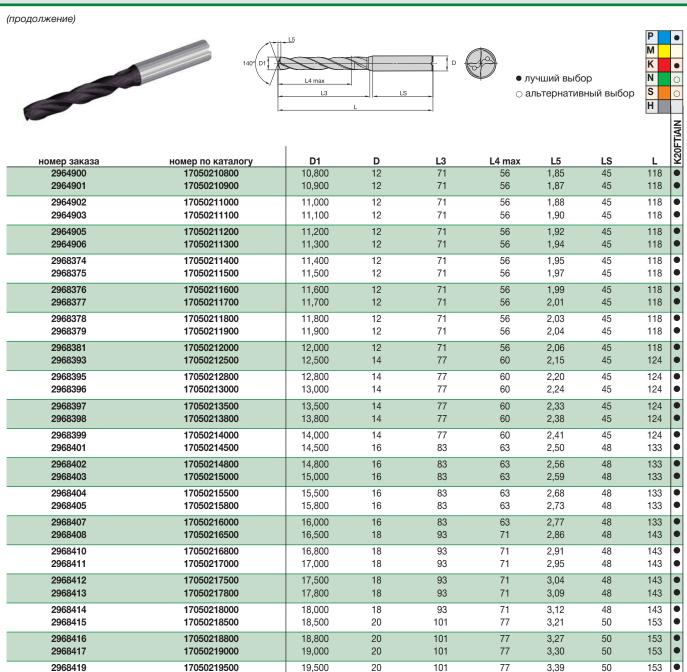


	Допуск							
D1	Допуск т7	D	Допуск h6					
>от 3 до 6	0,004/0,016	6	0,000/-0,008					
>от 6 до 10	0,006/0,021	от 8 до 10	0,000/-0,009					
>от 10 до 18	0,007/0,025	от 12 до 18	0,000/-0,011					
>от 18 до 20	0,008/0,029	20	0,000/-0,013					

		-	_	-				• •	
									K20FTIAIN
номер заказа	номер по каталогу	D1	D	L3	L4 max	L5	LS	L	K20
2964842 2964843	17050206100 17050206200	6,100 6,200	8 8	53 53	43 43	1,02 1,04	36 36	91 91	
2964844	17050206300	6,300	8	53	43	1,04	36	91	•
2964846	17050206400	6,400	8	53	43	1,07	36	91	•
2964847	17050206500	6,500	8	53	43	1,09	36	91	
2964848 2964849	17050206600 17050206700	6,600 6,700	8	53	43	1,11	36	91	•
2964851	17050206800	6,800	8	53	43	1,14	36	91	•
2964853	17050207000	7,000	8	53	43	1,18	36	91	
2964854	17050207100	7,100	8	53	43	1,20	36	91	•
2964856 2964857	17050207200 17050207300	7,200 7,300	8 8	53 53	43 43	1,21 1,23	36 36	91 91	•
2964858	17050207400	7,400	8	53	43	1,25	36	91	•
2964859	17050207500	7,500	8	53	43	1,27	36	91	
2964861 2964862	17050207600 17050207700	7,600 7,700	8 8	53 53	43 43	1,29 1,30	36 36	91 91	
2964863	17050207800	7,800	8	53	43	1,32	36	91	
2964864	17050207900	7,900	8	53	43	1,34	36	91	
2964866 2964867	17050208000 17050208100	8,000 8,100	8 10	53 61	43 49	1,36 1,37	36 40	91 103	
2964869	17050208300	8,300	10	61	49	1,41	40	103	
2964871	17050208400	8,400	10	61	49	1,43	40	103	
2964872 2964873	17050208500 17050208600	8,500 8,600	10 10	61 61	49 49	1,44 1,46	40 40	103 103	
2964874	17050208700	8,700	10	61	49	1,48	40	103	
2964875	17050208800	8,800	10	61	49	1,50	40	103	•
2964876 2964877	17050208900 17050209000	8,900 9,000	10 10	61 61	49 49	1,51 1,53	40 40	103 103	•
2964878	17050209000	9,000	10	61	49	1,55	40	103	
2964880	17050209200	9,200	10	61	49	1,57	40	103	•
2964881	17050209300	9,300	10	61	49	1,58	40	103	•
2964882 2964883	17050209400 17050209500	9,400	10	61	49	1,60	40	103	•
2964885	17050209600	9,600	10	61	49	1,64	40	103	
2964886	17050209700	9,700	10	61	49	1,65	40	103	•
2964888	17050209900	9,900	10	61	49	1,69	40	103	•
2964890 2964891	17050210000 17050210100	10,000 10,100	10 12	61 71	49 56	1,71 1,73	40 45	103 118	
2964892	17050210200	10,200	12	71	56	1,74	45	118	•
2964893	17050210300	10,300	12	71	56	1,76	45	118	•
2964895 2964896	17050210400 17050210500	10,400 10,500	12 12	71 71	56 56	1,78 1,80	45 45	118 118	
2964897	17050210600	10,600	12	71	56	1,81	45	118	•
2964898	17050210700	10,700	12	71	56	1,83	45	118	•

2968420

2968421


17050219800

17050220000

Высокопроизводительные цельные твердосплавные сверла • Внутренний подвод СОЖ

WIDIA[™]

Сталь и чугун • TOP DRILL S+™ • 5 x D

20

20

101

101

19,800

20,000

77

77

3,44

3,48

50

50

•

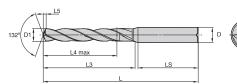
153

153

Сталь и чугун • TOP DRILL S+™ • 8 x D

■ Серия 170503

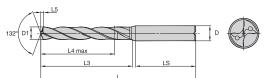
Допуск



	Ho.	iyon	
D1	Допуск т7	D	Допуск h6
>от 3 до 6	0,004/0,016	6	0,000/-0,008
>от 6 до 10	0,006/0,021	от 8 до 10	0,000/-0,009
>от 10 до 18	0,007/0,025	от 12 до 18	0,000/-0,011
>от 18 до 20	0,008/0,029	20	0,000/-0,013
	'		•

• лучший выбор
○ альтернативный выбор

		-	L					П
uomon govogo	HOMOD TO KOTOTOTY	D1	D	L3	L4 max	L5	LS	
номер заказа 2968422	номер по каталогу 17050303000	3.000	الا	40	33	0.61	36	L 78
2968503	17050303000	3,300	6	40	33	0,67	36	78
2968504	17050303500	3,500	6	40	33	0,71	36	78
2968505	17050303700	3,700	6	40	33	0,76	36	78
2968506 2968507	17050303800 17050304000	3,800 4,000	6 6	49 49	41 41	0,78 0,82	36 36	87
2968508	17050304200	4,200	6	49	41	0,86	36	8
2968509	17050304200	4,370	6	49	41	0,90	36	8
2968510	17050304500	4,500	6	49	41	0,93	36	8
2968511	17050304700	4,700	6	49	41	0,97	36	87
2968512	17050304760	4,760	6	56	48	0,98	36	94
2968513	17050304800	4,800	6	56	48	0,99	36	94
2968514 2968515	17050305000 17050305160	5,000 5,160	6 6	56 56	48 48	1,03 1,07	36 36	94 94
2968516	17050305500	5,500	6	56	48	1,14	36	94
2968517	17050305560	5,560	6	56	48	1,15	36	94
2968518	17050305800	5,800	6	56	48	1,21	36	94
2968519	17050305950	5,950	6	56	48	1,24	36	94
2968520	17050306000	6,000	6	56	48	1,25	36	94
2968521	17050306350	6,350	8	67	57	1,32	36	10
2968522 2968523	17050306500 17050306750	6,500 6,750	8 8	67 67	57 57	1,36 1,41	36 36	10: 10:
2968524	17050306800	6,800	8	67	57	1,42	36	10
2968525	17050307000	7,000	8	67	57	1,46	36	10
2968526	17050307140	7,140	8	72	61	1,49	36	11
2968527	17050307500	7,500	8	72	61	1,57	36	11
2968528 2968529	17050307540 17050307800	7,540 7,800	8 8	72 72	61 61	1,58 1,64	36 36	11 11
2968529	17050307800	7,800	8	72	61	1,64	36	11
2968531	17050307940	8,000	8	72	61	1,68	36	11
2968532	17050308330	8,330	10	80	68	1,75	40	12:
2968533	17050308500	8,500	10	80	68	1,79	40	12:
2968534	17050309000	9,000	10	80	68	1,90	40	12:
2968535	17050309130	9,130	10	80	68	1,93	40	12:
2968536 2968537	17050309500 17050309520	9,500 9,520	10 10	80 80	68 68	2,01 2,01	40 40	12: 12:
2968538	17050309800	9,800	10	80	68	2,07	40	12:
2968539	17050309920	9,920	10	80	68	2,10	40	12
2968540	17050310000	10,000	10	80	68	2,11	40	12:
2968541	17050310200	10,200	12	94	79	2,16	45	14



Высокопроизводительные цельные твердосплавные сверла \bullet Внутренний подвод СОЖ Сталь и чугун \bullet TOP DRILL S+ $^{\text{\tiny TM}}$ \bullet 8 x D

WIDIA[™]

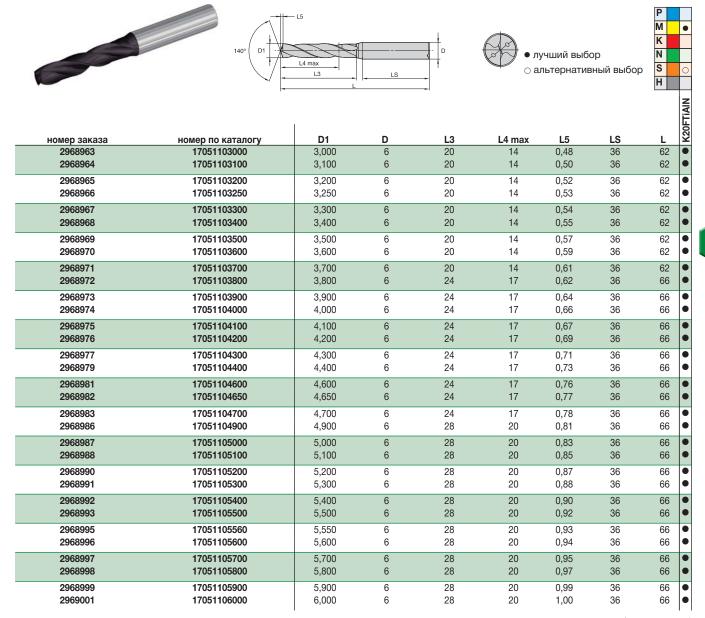
(продолжение)

лучший выборальтернативный выбор

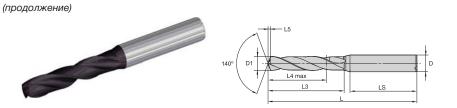
	Р	•
	М	
	K	•
р	N	0
	S	0
	Н	

		-	L						4
									● K20FTiAIN
номер заказа	номер по каталогу	D1	D	L3	L4 max	L5	LS	L	K20
2968542	17050310320	10,320	12	94	79	2,18	45	141	•
2968543	17050310500	10,500	12	94	79	2,22	45	141	•
2968544	17050310720	10,720	12	94	79	2,27	45	141	•
2968545	17050310800	10,800	12	94	79	2,29	45	141	•
2968546	17050311000	11,000	12	94	79	2,33	45	141	
2968547	17050311500	11,500	12	94	79	2,44	45	141	
2968548	17050311800	11,800	12	94	79	2,50	45	141	•
2968549	17050311910	11,910	12	94	79	2,53	45	141	
2968550	17050312000	12,000	12	94	79	2,55	45	141	
2968551	17050312300	12,300	14	108	91	2,61	45	155	•
2968552	17050312500	12,500	14	108	91	2,66	45	155	•
2968553	17050312700	12,700	14	108	91	2,70	45	155	•
2968554	17050312800	12,800	14	108	91	2,72	45	155	•
2968555	17050313000	13,000	14	108	91	2,77	45	155	
2968556	17050313500	13,500	14	108	91	2,87	45	155	•
2968557	17050313800	13,800	14	108	91	2,94	45	155	•
2968558	17050314000	14,000	14	108	91	2,98	45	155	•
2968559	17050314290	14,290	16	121	101	3,05	48	171	
2968560	17050314500	14,500	16	121	101	3,09	48	171	•
2968561	17050314800	14,800	16	121	101	3,16	48	171	•
2968562	17050315000	15,000	16	121	101	3,20	48	171	•
2968563	17050315500	15,500	16	121	101	3,31	48	171	•
2968564	17050315800	15,800	16	121	101	3,38	48	171	•
2968565	17050315870	15,870	16	121	101	3,39	48	171	•
2968566	17050316000	16,000	16	121	101	3,42	48	171	

■ Серия 170511

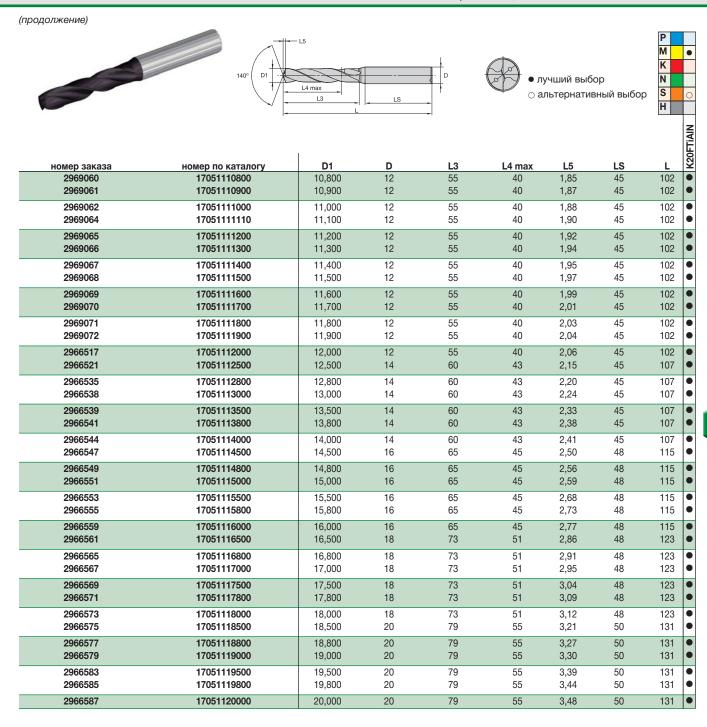


	Допу	CK	
D1	Допуск m7	D	Допуск h6
>от 3 до 6	0,004/0,016	6	0,000/-0,008
>от 6 до 10	0,006/0,021	от 8 до 10	0,000/-0,009
>от 10 до 18	0,007/0,025	от 12 до 18	0,000/-0,011
>от 18 до 20	0,008/0,029	20	0,000/-0,013


Высокопроизводительные цельные твердосплавные сверла

Нержавеющая сталь • TOP DRILL S™ • 3 x D

Обработка отверстий • Цельные твердосплавные сверла

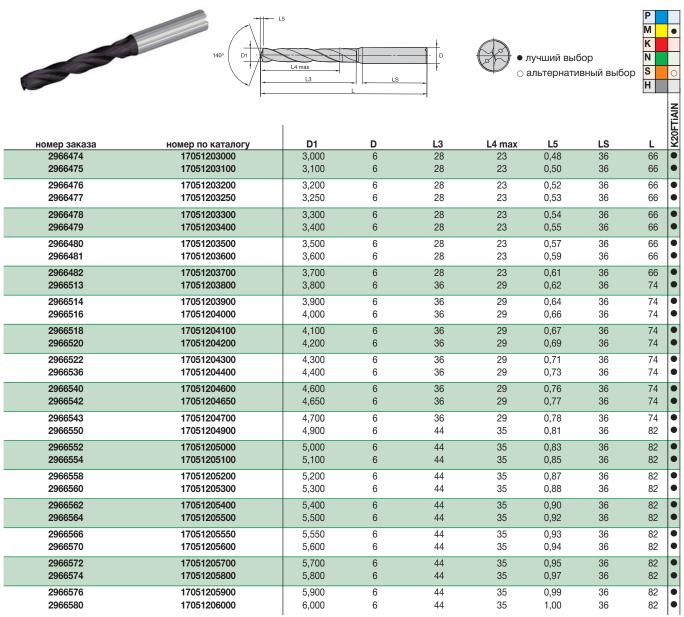


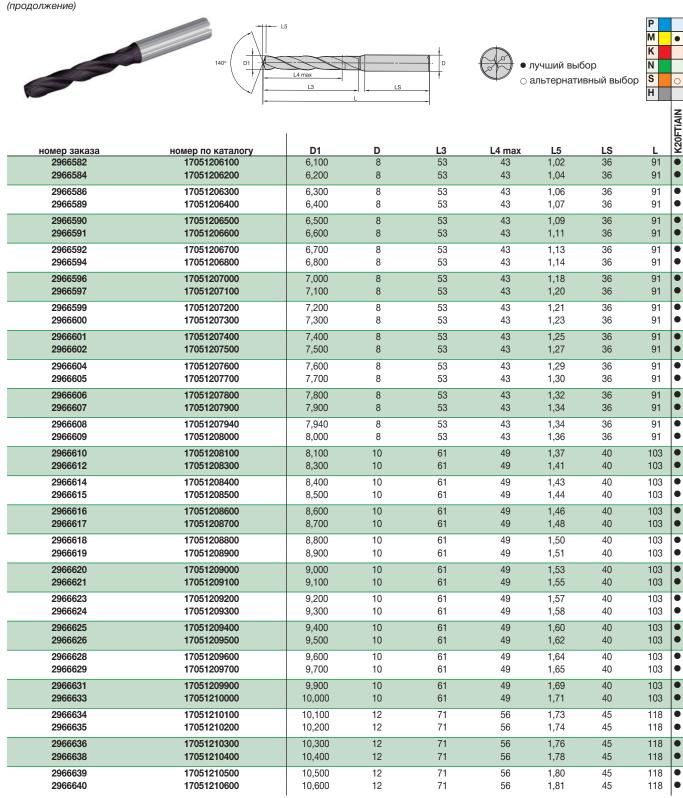
		1		-,					K20FTIAIN
номер заказа	номер по каталогу	D1	D 8	L3	L4 max 24	L5 1,02	LS 36	L 79	● 3
2969002 2969003	17051106100 17051106200	6,100 6,200	8	34	24	1,02	36	79 79	
2969004	17051106300	6,300	8	34	24	1,06	36	79	•
2969006	17051106400	6,400	8	34	24	1,07	36	79	
2969007	17051106500	6,500	8	34	24	1,09	36	79	•
2969008	17051106600	6,600	8	34	24	1,11	36	79	
2969009	17051106700	6,700	8	34	24	1,13	36	79	•
2969011	17051106800	6,800	8	34	24	1,14	36	79	
2969013	17051107000	7,000	8	34	24	1,18	36	79	•
2969014	17051107100	7,100	8	41	29	1,20	36	79	
2969016	17051107200	7,200	8	41	29	1,21	36	79	•
2969017	17051107300	7,300	8	41	29	1,23	36	79	
2969018	17051107400	7,400	8	41	29	1,25	36	79	•
2969019	17051107500	7,500	8	41	29	1,27	36	79	
2969021	17051107600	7,600	8	41	29	1,29	36	79	•
2969022	17051107700	7,700	8	41	29	1,30	36	79	
2969023	17051107800	7,800	8	41	29	1,32	36	79	•
2969024	17051107900	7,900	8	41	29	1,34	36	79	
2969026	17051108000	8,000	8	41	29	1,36	36	79	•
2969027	17051108100	8,100	10	47	35	1,37	40	89	
2969029	17051108300	8,300	10	47	35	1,41	40	89	•
2969031	17051108400	8,400	10	47	35	1,43	40	89	
2969032	17051108500	8,500	10	47	35	1,44	40	89	•
2969033	17051108600	8,600	10	47	35	1,46	40	89	
2969034	17051108700	8,700	10	47	35	1,48	40	89	•
2969035	17051108800	8,800	10	47	35	1,50	40	89	
2969036	17051108900	8,900	10	47	35	1,51	40	89	•
2969037	17051109000	9,000	10	47	35	1,53	40	89	
2969038	17051109100	9,100	10	47	35	1,55	40	89	•
2969040	17051109200	9,200	10	47	35	1,57	40	89	
2969041	17051109300	9,300	10	47	35	1,58	40	89	•
2969042	17051109400	9,400	10	47	35	1,60	40	89	
2969043	17051109500	9,500	10	47	35	1,62	40	89	•
2969045	17051109600	9,600	10	47	35	1,64	40	89	
2969046	17051109700	9,700	10	47	35	1,65	40	89	•
2969048	17051109900	9,900	10	47	35	1,69	40	89	
2969050	17051110000	10,000	10	47	35	1,71	40	89	•
2969051	17051110100	10,100	12	55	40	1,73	45	102	
2969052	17051110200	10,200	12	55	40	1,74	45	102	•
2969054	17051110320	10,300	12	55	40	1,76	45	102	
2969055	17051110400	10,400	12	55	40	1,78	45	102	•
2969056	17051110500	10,500	12	55	40	1,80	45	102	
2969057	17051110600	10,600	12	55	40	1,81	45	102	•
2969058	17051110700	10,700	12	55	40	1,83	45	102	

Высокопроизводительные цельные твердосплавные сверла • Внутренний подвод СОЖ

■ Серия 170512

Нержавеющая сталь • TOP DRILL S™ • 5 x D




	Допу	CK	
D1	Допуск т7	D	Допуск h6
>от 3 до 6	0,004/0,016	6	0,000/-0,008
>от 6 до 10	0,006/0,021	от 8 до 10	0,000/-0,009
>от 10 до 18	0,007/0,025	от 12 до 18	0,000/-0,011
>от 18 до 20	0,008/0,029	20	0,000/-0,013

Нержавеющая сталь • TOP DRILL S™ • 5 x D

Высокопроизводительные цельные твердосплавные сверла • Внутренний подвод СОЖ

Нержавеющая сталь • TOP DRILL S™ • 5 x D

(продолжение)	1400 DI	L5		- D		лучший вы	ốon.	P M K	•
		L4 max L3	LS			-	вный выбор		K20FTiAIN O
номер заказа	номер по каталогу	D1	D	L3	L4 max	L5	LS	L	82
2966641 2966643	17051210700 17051210800	10,700 10,800	12 12	71 71	56 56	1,83 1,85	45 45	118 118	
2966644 2966645	17051210900 17051211000	10,900 11,000	12 12	71 71	56 56	1,87 1,88	45 45	118 118	•
2966646 2966648	17051211100 17051211200	11,100 11,200	12 12	71 71	56 56	1,90 1,92	45 45	118 118	•
2966649 2966650	17051211200 17051211300 17051211400	11,300 11,400	12	71 71	56 56	1,94 1,95	45 45	118 118	•
2966651 2966652	17051211400 17051211500 17051211600	11,500 11,600	12 12 12	71 71	56 56	1,95 1,97 1,99	45 45 45	118 118	
2966653 2966654	17051211700 17051211700 17051211800	11,700 11,800	12	71 71	56 56	2,01	45 45 45	118 118	•
2966655	17051211900	11,900	12	71	56	2,04	45	118	•
2966490	17051212000 17051212500	12,000	12	71 77	56 60	2,06	45 45	118	•
2966494 2966496	17051212800 17051213000	12,800	14	77 77	60	2,20	45 45	124	•
2966498 2966499	17051213500 17051213800	13,500	14	77 77	60	2,33	45 45	124	•
2966500 2966502	17051214500 17051214500	14,000	16	77 83	60	2,41	45	124	•
2966503 2966504	17051214800 17051215000	14,800	16	83	63	2,56	48	133	•
2966505 2966506	17051215500 17051215800	15,500	16	83	63	2,68	48	133	•
2966508 2966509	17051216000 17051216500	16,000 16,500	16	93	63 71	2,77	48	133	•
2966511 2966512	17051216800 17051217000	16,800	18	93	71 71	2,91	48	143	•
2966523 2966524	17051217500 17051217800	17,500 17,800	18	93	71 71	3,04	48	143	•
2966525 2966526	17051218000 17051218500	18,000 18,500	18	93	71 77	3,12 3,21	48 50	143 153	•
2966527 2966528	17051218800 17051219000	18,800 19,000	20	101	77 77	3,27 3,30	50 50	153 153	•
2966530 2966531	17051219500 17051219800	19,500 19,800	20	101	77 77	3,39	50 50	153 153	•
2966532	17051220000	20,000	20	101	77	3,48	50	153	•

MIN MITH WIDLA

Цельные твердосплавные сверла WIDIA TOP DRILL S+™

Серия 170500 | Серия 170501 | Серия 170502 | Серия 170503

Сверла TOP DRILL S+ предназначены для решения широкого спектра задач, обладают универсальностью и надежностью, обеспечивают максимальный уровень подач.

- Покрытие PVD увеличивает срок службы и износостойкость инструмента.
- Уникальная технология изготовления цельных твердосплавных сверл гарантирует высокие прочность и производительность.
- Идеальное решение для основных операций сверления.

Для получения дополнительной информации обратитесь к Вашему региональному дистрибьютору или посетите сайт **www.widia.com**.

Рекомендации по применению • TOP DRILL S+™ • Серия 170500 • Серии 170501 170502 170503

				TOP D	RILL S+ • Cepi	ия 170500 • С	галь и чугун •	Режимы рез	ания			
		Скор										
			Диапазон м/мин	_			Рекоме	ендуемая под	ача (Fz)			
	Группа	Начальное значение	Min Ma	Диаметр х инструмента	3,0	4,0	6,0	8,0	10,0	12,0	16,0	20,0
	1	95	80 - 13	- ''	0,06 - 0,12	0,10 - 0,18	0,12 - 0,24	0,14 - 0,29	0,17 - 0,34	0,20 - 0,39	0,24 - 0,47	0,31 - 0,60
	2	115	100 - 13	О мм/об	0,07 - 0,12	0,09 - 0,18	0,13 - 0,24	0,16 - 0,29	0,19 - 0,34	0,22 - 0,39	0,27 - 0,47	0,34 - 0,59
P	3, 4, 6	90	60 - 12	О мм/об	0,07 - 0,13	0,10 - 0,19	0,14 - 0,25	0,17 - 0,31	0,21 - 0,37	0,24 - 0,42	0,29 - 0,52	0,38 - 0,65
	5, 7, 8, 9	90	60 - 12	0 мм/об	0,07 - 0,13	0,09 - 0,19	0,13 - 0,25	0,16 - 0,31	0,19 - 0,37	0,21 - 0,42	0,26 - 0,52	0,32 - 0,65
	10, 11	55	40 - 7	мм/об	0,05 - 0,08	0,06 - 0,11	0,09 - 0,16	0,11 - 0,20	0,13 - 0,24	0,15 - 0,27	0,20 - 0,35	0,26 - 0,45
	15, 16, 17	170	100 - 21	0 мм/об	0,08 - 0,16	0,12 - 0,24	0,16 - 0,30	0,20 - 0,38	0,23 - 0,44	0,25 - 0,49	0,31 - 0,60	0,38 - 0,74
K	17	145	130 - 16	О мм/об	0,08 - 0,13	0,12 - 0,19	0,16 - 0,25	0,20 - 0,31	0,23 - 0,36	0,25 - 0,40	0,31 - 0,48	0,38 - 0,60
	15, 16, 17	135	100 - 17	О мм/об	0,06 - 0,13	0,09 - 0,19	0,12 - 0,25	0,14 - 0,30	0,17 - 0,35	0,19 - 0,40	0,25 - 0,48	0,30 - 0,60

				TO	P DRILL S+™	• Серии 1705	01 170502 17	70503 • Сталь	и чугун • Рех	кимы резания	l		
			C										
		резан	ость ия (Vc))									
			Диапа	азон — мин				Рекоме	ндуемая пода	ача (Fz)			
_		Начальное			Диаметр		4.0			40.0	40.0	40.0	
	руппа	значение	Min		инструмента	3,0	4,0	6,0	8,0	10,0	12,0	16,0	20,0
	1	130	90 -		мм/об	0,08 - 0,16	0,09 - 0,18	0,12 - 0,24	0,14 - 0,29	0,17 - 0,34	0,20 - 0,39	0,24 - 0,47	0,31 - 0,60
	2	145	110 -		мм/об	0,08 - 0,16	0,09 - 0,18	0,13 - 0,24	0,16 - 0,29	0,19 - 0,34	0,22 - 0,39	0,27 - 0,47	0,34 - 0,59
P	3, 4, 6	100	80 -	- 120	мм/об	0,09 - 0,17	0,10 - 0,19	0,14 - 0,25	0,17 - 0,31	0,21 - 0,37	0,24 - 0,42	0,29 - 0,52	0,38 - 0,65
	5, 7, 8, 9	95	70 -	- 120	мм/об	0,08 - 0,17	0,09 - 0,19	0,13 - 0,25	0,16 - 0,31	0,19 - 0,37	0,21 - 0,42	0,26 - 0,52	0,32 - 0,65
	10, 11	65	50 -	- 80	мм/об	0,05 - 0,09	0,06 - 0,11	0,09 - 0,16	0,11 - 0,20	0,14 - 0,24	0,15 - 0,27	0,20 - 0,35	0,26 - 0,45
	15, 16, 17	155	100 -	- 210	мм/об	0,11 - 0,22	0,12 - 0,24	0,16 - 0,31	0,20 - 0,38	0,23 - 0,44	0,25 - 0,49	0,31 - 0,60	0,38 - 0,74
K	17	140	100 -	- 180	мм/об	0,11 - 0,17	0,12 - 0,19	0,16 - 0,25	0,20 - 0,31	0,23 - 0,36	0,25 - 0,40	0,31 - 0,48	0,38 - 0,60
	18, 19, 20	130	100 -	- 160	мм/об	0,08 - 0,17	0,09 - 0,19	0,12 - 0,25	0,14 - 0,30	0,17 - 0,35	0,19 - 0,40	0,24 - 0,48	0,30 - 0,60

ПРИМЕЧАНИЕ: Наружный подвод СОЖ рекомендуется применять только для 3 х D. При наружном подводе СОЖ уменьшите скорость на 20%.

Рекомендации по применению • TOP DRILL S™ • Серии 170511 170512

				T	OP DRILL S	• Серии 170	511 170512	Нержавею	щая сталь •	Режимы ре	зания			
				(
		l ,	Скорос [.]) резания											
				апазо м/ми					Рекомен	дуемая пода	ача (Fz)			
ı	руппа	Начальное значение	Min		Max	Диаметр инструмента	3,0	4,0	6,0	8,0	10,0	12,0	16,0	20,0
	12	50	45	-	60	мм/об	0,03 - 0,04	0,04 - 0,06	0,06 - 0,10	0,10 - 0,12	0,12 - 0,15	0,15 - 0,18	0,18 - 0,20	0,20 - 0,22
Р	13	40	35	-	45	мм/об	0,03 - 0,04	0,04 - 0,06	0,06 - 0,10	0,10 - 0,12	0,12 - 0,15	0,15 - 0,18	0,18 - 0,20	0,20 - 0,22
	14.1	35	30	-	40	мм/об	0,03 - 0,04	0,04 - 0,06	0,06 - 0,10	0,10 - 0,12	0,12 - 0,15	0,15 - 0,18	0,18 - 0,20	0,20 - 0,22
M	14.2	35	30	-	40	мм/об	0,03 - 0,04	0,04 - 0,06	0,06 - 0,10	0,10 - 0,12	0,12 - 0,15	0,15 - 0,18	0,18 - 0,20	0,20 - 0,22
	14.3	30	25	-	35	мм/об	0,03 - 0,04	0,04 - 0,06	0,06 - 0,10	0,10 - 0,12	0,12 - 0,15	0,15 - 0,18	0,18 - 0,20	0,20 - 0,22
	21, 22	175	145	-	205	мм/об	0,10 - 0,15	0,15 - 0,20	0,20 - 0,25	0,25 - 0,28	0,28 - 0,30	0,30 - 0,33	0,33 - 0,36	0,36 - 0,38
N	23, 24, 25	230	205	-	255	мм/об	0,15 - 0,18	0,18 - 0,20	0,20 - 0,30	0,30 - 0,35	0,35 - 0,40	0,40 - 0,45	0,45 - 0,50	0,50 - 0,55
	26, 27, 28	113	100	-	125	мм/об	0,10 - 0,15	0,15 - 0,20	0,20 - 0,25	0,25 - 0,28	0,28 - 0,30	0,30 - 0,33	0,33 - 0,36	0,36 - 0,38
	31, 32	20	20	-	40	мм/об	0,05 - 0,10	0,10 - 0,16	0,16 - 0,18	0,18 - 0,20	0,20 - 0,22	0,22 - 0,24	0,24 - 0,26	0,26 - 0,28
S	33, 34, 35	20	20	-	40	мм/об	0,03 - 0,04	0,04 - 0,06	0,06 - 0,10	0,10 - 0,12	0,12 - 0,15	0,15 - 0,18	0,18 - 0,20	0,20 - 0,22
	36	20	20	-	50	мм/об	0,03 - 0,04	0,04 - 0,06	0,06 - 0,10	0,10 - 0,12	0,12 - 0,15	0,15 - 0,18	0,18 - 0,20	0,20 - 0,22
	37	20	20	-	50	мм/об	0,03 - 0,04	0,04 - 0,06	0,06 - 0,10	0,10 - 0,12	0,12 - 0,15	0,15 - 0,18	0,18 - 0,20	0,20 - 0,22

Модульные сверла

Универсальные модульные сверла WIDIA, представляющие собой более экономичный, при этом столь же производительный аналог цельным твердосплавным сверлам, рекомендуются для выполнения широкого спектра операций сверления.

- Типовые операции сверления деталей из стали и чугуна.
- Экономичные, стабильные и надежные в работе.
- Улучшенное качество отверстий и высокий удельный съем металла.

Сверла WIDIA Victory TOP DRILL M1 обеспечивают подачи и производительность, сравнимые с показателями обработки цельными твердосплавными сверлами. Однако они обладают преимуществом перед цельным инструментом в экономическом отношении. При этом модульные сверла демонстрируют отличные результаты по качеству отверстий.

- Высокий удельный съем металла и прекрасное центрирование сверла.
- Неперетачиваемые сменные пластины обеспечивают увеличенную стойкость и снижение затрат.
- Уникальная система торцевого крепления пластин обеспечивает простоту замены пластин.

WWW.WIDIA.COM B32

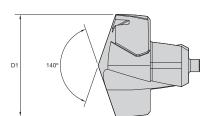
Обработка отверстий • Модульные сверла

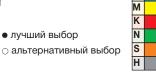
Victory TOP DRILL M1™	M	B34–B47
Пластины		B34-B38
Корпуса сверл		B40-B42
Рекомендации по пр	применению	

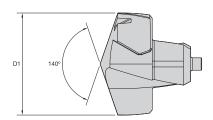
WWW.WIDIA.COM

■ Пластины Victory TOP DRILL M1 • Геометрия UP(M)

Доп	уски
Допуск k8	D1
0,000/+0,022	от 8 до 10
0,000/+0,027	>от 10 до 17
0,000/+0,027	>от 17 до 18
0.000/+0.033	>от 18 ло 21






			,	● K20F
номер заказа 3850959	номер по каталогу TDM0794UPM	D1 7,94	посадочный размер/серия W10	_
3848984	TDM0800UPM	8,00	W10 W10	
		· · · · · · · · · · · · · · · · · · ·		
3848985	TDM0810UPM	8,10	W10	•
3850960	TDM0816UPM	8,16	W10	
3850961	TDM0820UPM	8,20	W10	•
3848986	TDM0830UPM	8,30	W10	•
3850962	TDM0833UPM	8,33	W10	•
3848987	TDM0840UPM	8,40	W10	•
3850963	TDM0843UPM	8,43	W10	•
3848988	TDM0850UPM	8,50	W11	•
3848989	TDM0860UPM	8,60	W11	•
3850964	TDM0861UPM	8,61	W11	•
3848990	TDM0870UPM	8,70	W11	•
3850965	TDM0873UPM	8,73	W11	
3848991	TDM0880UPM	8,80	W11	•
3850966	TDM0884UPM	8,84	W11	
3848992	TDM0890UPM	8,90	W11	•
3849043	TDM0900UPM	9,00	W12	•
3850967	TDM0909UPM	9,09	W12	•
3849044	TDM0910UPM	9,10	W12	•
3850968	TDM0913UPM	9,13	W12	•
3849045	TDM0920UPM	9,20	W12	•
3849046	TDM0930UPM	9,30	W12	•
3850969	TDM0935UPM	9,35	W12	•
3849047	TDM0940UPM	9,40	W12	•
3849048	TDM0950UPM	9,50	W13	
3850970	TDM0953UPM			•
3850970 3850971	TDM09530PM TDM0956UPM	9,53 9,56	W13 W13	
		,		
3850972	TDM0958UPM	9,58	W13	•
3849049	TDM0960UPM	9,60	W13	•
3850973	TDM0970UPM	9,70	W13	•
3850974	TDM0980UPM	9,80	W13	•
3849050	TDM0990UPM	9,90	W13	•
3850975	TDM0992UPM	9,92	W13	•
3849051	TDM1000UPM	10,00	W14	•
3850976	TDM1002UPM	10,02	W14	•
3850977	TDM1008UPM	10,08	W14	•
3849052	TDM1010UPM	10,10	W14	•
3849053	TDM1020UPM	10,20	W14	•
3850978	TDM1026UPM	10,26	W14 W14	
0000010	I DIVI I OZOOF IVI	10,20	W14	ı

(продолжение)

VICTORY

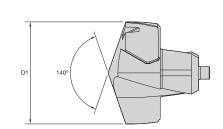
лучший выборальтернативный выбор

		4
	М	
	K	
	N	
р	S	
	Н	

номер заказа	номер по каталогу	D1	посадочный размер/серия	
3849054	TDM1030UPM	10,30	W14	
3850979	TDM1032UPM	10,32	W14	
3849055	TDM1040UPM	10,40	W14	
3850980	TDM1049UPM	10,49	W14	
3849056	TDM1050UPM	10,50	W15	
3849057	TDM1060UPM	10,60	W15	
3849058	TDM1070UPM	10,70	W15	
3850981	TDM1072UPM	10,72	W15	
			W15	_
3849059 3849060	TDM1080UPM TDM1090UPM	10,80 10,90	W15 W15	
3849061	TDM1100UPM	11,00	W16	
3849062	TDM1110UPM	11,10	W16	
3850982	TDM1111UPM	11,11	W16	
3849063	TDM1120UPM	11,20	W16	
3849064	TDM1130UPM	11,30	W16	
3849065	TDM1140UPM	11,40	W16	
3849066	TDM1150UPM	11,50	W17	
3850983	TDM1151UPM	11,51	W17	
3849067 3850984	TDM1160UPM TDM1161UPM	11,60	W17	
		11,61	W17	
3849068	TDM1170UPM	11,70	W17	
3849069	TDM1180UPM	11,80	W17	
3849070	TDM1190UPM	11,90	W17	
3850985	TDM1191UPM	11,91	W17	
3849071	TDM1200UPM	12,00	W18	
3849072	TDM1210UPM	12,10	W18	
3849073	TDM1220UPM	12,20	W18	
3850986	TDM1230UPM	12,30	W18	
3849074	TDM1240UPM		W18	
3850987	TDM12400PM	12,40 12,47	W18	
3849075	TDM1250UPM	12,50	W19	
3849076	TDM1260UPM	12,60	W19	
3850988	TDM1270UPM	12,70	W19	
3849077	TDM1280UPM	12,80	W19	
3850989	TDM1290UPM	12,90	W19	
3849078	TDM1300UPM	13,00	W20	
3850990	TDM1310UPM	13,10	W20	
3849079	TDM1320UPM	13,20	W20	
3849080	TDM1330UPM	13,30	W20	
3849081	TDM1340UPM	13,40	W20	
	TDM1349UPM		W20	
3850991 3849082	TDM13490PM TDM1350UPM	13,49	W20 W21	
		13,50		
3849083	TDM1360UPM	13,60	W21	
3849084	TDM1370UPM	13,70	W21	
3849085	TDM1380UPM	13,80	W21	
3850992	TDM1389UPM	13,89	W21	
3850993	TDM1390UPM	13,90	W21	
3849086	TDM1400UPM	14,00	W22	

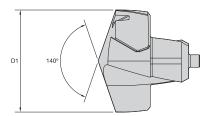
■ Пластины Victory TOP DRILL M1 • Геометрия UP(M)

Допуски							
Допуск k8	D1						
0,000/+0,022	от 8 до 10						
0,000/+0,027	>от 10 до 17						
0,000/+0,027	>от 17 до 18						
0,000/+0,033	>от 18 до 21						



VICTORY

лучший выборальтернативный выбор


Р	
M	Г
K	•
N	
S	
Н	
	Г

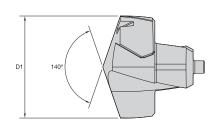
				3
		I		● K20FTiAIN
номер заказа	номер по каталогу	D1	посадочный размер/серия	2
3849087	TDM1410UPM	14,10	W22	
3849088	TDM1420UPM	14,20	W22	
3850994	TDM1429UPM	14,29	W22	•
3849089	TDM1430UPM	14,30	W22	
3849090	TDM1440UPM	14,40	W22	•
3849091	TDM1450UPM	14,50	W23	
3849092	TDM1460UPM	14,60	W23	•
3850995	TDM1467UPM	14,67	W23	
3850996	TDM1468UPM	14,68	W23	
3849093	TDM1470UPM	14,70	W23	
3849094	TDM1480UPM	14,80	W23	•
3849095	TDM1490UPM	14,90	W23	
3849096	TDM1500UPM	15,00	W24	•
3850997	TDM1508UPM	15,08	W24	
3849097	TDM1510UPM	15,10	W24	•
3849098	TDM1520UPM	15,20	W24	
3849099	TDM1530UPM	15,30	W24	•
3849100	TDM1540UPM	15,40	W24	
3850998	TDM1548UPM	15,48	W24	•
3849101	TDM1550UPM	15,50	W24	
3849102	TDM1560UPM	15,60	W24	•
3849103	TDM1570UPM	15,70	W24	
3849104	TDM1580UPM	15,80	W24	•
3850999	TDM1588UPM	15,88	W24	
3849105	TDM1600UPM	16,00	W25	•
3851000	TDM1603UPM	16,03	W25	
3851001	TDM1608UPM	16,08	W25	•
3849106	TDM1610UPM	16,10	W25	•
3849107	TDM1620UPM	16,20	W25	
3851002	TDM1627UPM	16,27	W25	
3849108	TDM1630UPM	16,30	W25	•
3849109	TDM1640UPM	16,40	W25	

(продолжение)

VICTORY

лучший выборальтернативный выбор

	l '	ч
	М	
	K	
	N	
р	S	
	Н	


номер заказа	номер по каталогу	D1	посадочный размер/серия
3849110	TDM1650UPM	16,50	W25
3849111	TDM1660UPM	16,60	W25
3851003	TDM1667UPM	16,67	W25
3849112	TDM1670UPM	16,70	W25
3849113	TDM1680UPM	16,80	W25
3851004	TDM1687UPM	16,87	W25
3849114	TDM1690UPM	16,90	W25
3849119	TDM1700UPM	17,00	W25 W26
		,	
3851005 3849120	TDM1707UPM	17,07	W26 W26
	TDM1710UPM	17,10	
3849121	TDM1720UPM	17,20	W26
3849122	TDM1730UPM	17,30	W26
3849193	TDM1740UPM	17,40	W26
3851006	TDM1746UPM	17,46	W26
3849194	TDM1750UPM	17,50	W26
3849195	TDM1760UPM	17,60	W26
3849196	TDM1770UPM	17,70	W26
3849197	TDM1780UPM	17,80	W26
3851007	TDM1786UPM	17,86	W26
3849198	TDM17800PM	17,90	W26
3849199 3849200	TDM1800UPM TDM1810UPM	18,00	W27 W27
		18,10	
3849201	TDM1820UPM	18,20	W27
3851008	TDM1826UPM	18,26	W27
3849202	TDM1830UPM	18,30	W27
3849203	TDM1840UPM	18,40	W27
3849204	TDM1850UPM	18,50	W27
3849205	TDM1860UPM	18,60	W27
3851009	TDM1865UPM	18,65	W27
3849206	TDM1870UPM	18,70	W27
3849207	TDM1880UPM	18,80	W27
3849208	TDM1890UPM	18,90	W27
3849209	TDM1900UPM	19,00	W28
3851010	TDM19000PM TDM1905UPM	19,00	W28
3849210 3849211	TDM1910UPM TDM1920UPM	19,10	W28 W28
		19,20	
3851011	TDM1923UPM	19,23	W28
3851012	TDM1925UPM	19,25	W28
3851013	TDM1928UPM	19,28	W28
3849212	TDM1930UPM	19,30	W28
3851014	TDM1935UPM	19,35	W28
3849213	TDM1940UPM	19,40	W28
3851015	TDM1945UPM	19,45	W28
3849214	TDM1950UPM	19,50	W28

(продолжение)

VICTORY

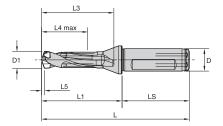
лучший выборальтернативный выбор

۲	Ľ
M	
K	
N	
S	
H	

номер заказа	номер по каталогу	D1	посадочный размер/серия	● K20FT
3849215	TDM1960UPM	19,60	W28	• •
3849216	TDM1970UPM	19,70	W28	
3849217	TDM1980UPM	19,80	W28	•
3851016	TDM1984UPM	19,84	W28	
3849218	TDM1990UPM	19,90	W28	•
3849219	TDM2000UPM	20,00	W29	
3849220	TDM2010UPM	20,10	W29	•
3849221	TDM2020UPM	20,20	W29	
3851017	TDM2024UPM	20,24	W29	•
3849222	TDM2030UPM	20,30	W29	
3849223	TDM2040UPM	20,40	W29	•
3849224	TDM2050UPM	20,50	W29	
3849225	TDM2060UPM	20,60	W29	•
3851018	TDM2064UPM	20,64	W29	
3849226	TDM2070UPM	20,70	W29	•
3849227	TDM2080UPM	20,80	W29	
3849228	TDM2090UPM	20,90	W29	•
3849229	TDM2099UPM	20,99	W29	
4003225	TDM2100UPM	21,00	W30	•
3969291	TDM2150UPM	21,50	W30	
4003226	TDM2200UPM	22,00	W31	•
4003204	TDM2223UPM	22,23	W31	
4003205	TDM2245UPM	22,45	W31	•
4003227	TDM2250UPM	22,50	W31	
4003228	TDM2300UPM	23,00	W32	•
4003229	TDM2350UPM	23,50	W32	
4003206	TDM2381UPM	23,81	W32	•
4003230	TDM2400UPM	24,00	W33	
4003203	TDM2144UPM	24,44	W30	•
4003231	TDM2450UPM	24,50	W33	
4003207	TDM2461UPM	24,61	W33	•
4003232	TDM2500UPM	25,00	W34	
4003208	TDM2540UPM	25,40	W34	•
4002444	TDM2550UPM	25,50	W34	
4003209	TDM2568UPM	25,68	W34	•
4003210	TDM2581UPM	25,81	W34	
3992013	TDM2599UPM	25,99	W34	•

WIN WITH WIDIA **WIDIA** Модульные сверла WIDIA Victory TOP DRILL M1™ Серия: TDM1 По сравнению с цельными твердосплавными сверлами, производительность и экономически выгодная цена делают модульные сверла TOP DRILL M1 идеальным выбором для всех операций сверления стали и чугуна общего назначения.

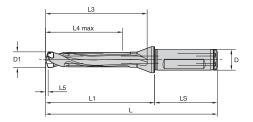
- Неперетачиваемые сменные пластины исключают необходимость в их настройке или затратах на переточку.
- Улучшенные возможности центрирования сверла и большой удельный съем металла.
- Подачи и производительность сопоставимы с цельными твердосплавными сверлами.


Для получения дополнительной информации обратитесь к Вашему региональному дистрибьютору или посетите сайт **www.widia.com**.

• Корпус сверла поставляется вместе с ключом для закрепления пластины.

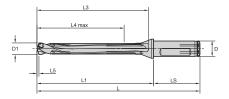
VICTORY

■ 3 x D, хвостовик с фланцем


номер заказа	номер по каталогу	D1	D1 max	D	L	L1	L3	L4 max	L5	LS	посадочный размер пластины
3850904	TDM080R3SCF12M	8,00	8,49	12	86	41	35	26	1,5	45	W10
3850906	TDM085R3SCF12M	8,50	8,99	12	88	43	37	27	1,6	45	W11
3850908	TDM090R3SCF12M	9,00	9,49	12	90	45	39	29	1,7	45	W12
3850910	TDM095R3SCF12M	9,50	9,99	12	92	47	41	30	1,8	45	W13
3850912	TDM100R3SCF16M	10,00	10,49	16	97	49	43	32	1,9	48	W14
3850924	TDM105R3SCF16M	10,50	10,99	16	99	51	45	33	2,0	48	W15
3850926	TDM110R3SCF16M	11,00	11,49	16	101	53	47	35	2,1	48	W16
3850928	TDM115R3SCF16M	11,50	11,99	16	103	55	49	36	2,2	48	W17
3850930	TDM120R3SCF16M	12,00	12,49	16	106	58	52	38	2,3	48	W18
3850932	TDM125R3SCF16M	12,50	12,99	16	108	60	54	39	2,4	48	W19
3850934	TDM130R3SCF16M	13,00	13,49	16	110	62	56	41	2,5	48	W20
3850936	TDM135R3SCF16M	13,50	13,99	16	112	64	58	42	2,6	48	W21
3850938	TDM140R3SCF16M	14,00	14,49	16	114	66	60	44	2,7	48	W22
3850940	TDM145R3SCF16M	14,50	14,99	16	116	68	62	45	2,8	48	W23
3850942	TDM150R3SCF20M	15,00	15,99	20	122	72	66	48	2,8	50	W24
3850944	TDM160R3SCF20M	16,00	16,99	20	126	76	70	51	3,0	50	W25
3850946	TDM170R3SCF20M	17,00	17,99	20	131	81	75	54	3,2	50	W26
3850948	TDM180R3SCF25M	18,00	18,99	25	141	85	79	57	3,4	56	W27
3850950	TDM190R3SCF25M	19,00	19,99	25	144	89	83	60	3,6	56	W28
3850952	TDM200R3SCF25M	20,00	20,99	25	149	93	87	63	3,8	56	W29
3992070	TDM210R3SCF25M	21,00	22,00	25	153	97	91	66	3,7	56	W30
3992071	TDM220R3SCF25M	22,00	23,00	25	158	102	96	69	3,9	56	W31
3992072	TDM230R3SCF25M	23,00	24,00	25	162	106	100	72	4,1	56	W32
3992483	TDM240R3SCF25M	24,00	25,00	25	166	110	104	75	4,2	56	W33
3992484	TDM250R3SCF25M	25,00	26,00	25	170	114	108	78	4,4	56	W34

• Корпус сверла поставляется вместе с ключом для закрепления пластины.

VICTORY


■ 5 x D, хвостовик с фланцем

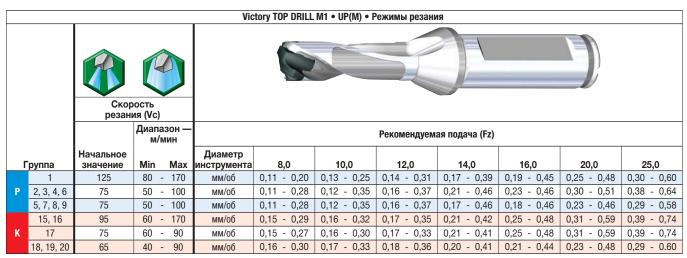
номер заказа	номер по каталогу	D1	D1 max	D I	L	L1	L3	L4 max	L5	LS	посадочный размер пластины
3850905	TDM080R5SCF12M	8,00	8,49	12 10	04	59	53	43	1,5	45	W10
3850907	TDM085R5SCF12M	8,50	8,99	12 10	07	62	56	45	1,6	45	W11
3850909	TDM090R5SCF12M	9,00	9,49	12 1	10	65	59	48	1,7	45	W12
3850911	TDM095R5SCF12M	9,50	9,99	12 1	14	69	63	50	1,8	45	W13
3850923	TDM100R5SCF16M	10,00	10,49	16 1	20	72	66	53	1,9	48	W14
3850925	TDM105R5SCF16M	10,50	10,99	16 1	23	75	69	55	2,0	48	W15
3850927	TDM110R5SCF16M	11,00	11,49	16 1	26	78	72	58	2,1	48	W16
3850929	TDM115R5SCF16M	11,50	11,99	16 1	29	81	75	60	2,2	48	W17
3850931	TDM120R5SCF16M	12,00	12,49	16 1	32	84	78	63	2,3	48	W18
3850933	TDM125R5SCF16M	12,50	12,99	16 13	35	87	81	65	2,4	48	W19
3850935	TDM130R5SCF16M	13,00	13,49	16 13	38	90	84	68	2,5	48	W20
3850937	TDM135R5SCF16M	13,50	13,99	16 1	42	94	88	70	2,6	48	W21
3850939	TDM140R5SCF16M	14,00	14,49	16 1	45	97	91	73	2,7	48	W22
3850941	TDM145R5SCF16M	14,50	14,99	16 1	48	100	94	75	2,8	48	W23
3850943	TDM150R5SCF20M	15,00	15,99	20 1	56	106	100	80	2,8	50	W24
3850945	TDM160R5SCF20M	16,00	16,99	20 1	62	112	106	85	3,0	50	W25
3850947	TDM170R5SCF20M	17,00	17,99	20 1	69	119	113	90	3,2	50	W26
3850949	TDM180R5SCF25M	18,00	18,99	25 18	81	125	119	95	3,4	56	W27
3850951	TDM190R5SCF25M	19,00	19,99	25 18	87	131	125	100	3,6	56	W28
3850953	TDM200R5SCF25M	20,00	20,99	25 19	93	137	131	105	3,8	56	W29
3992485	TDM210R5SCF25M	21,00	22,00	25 20	00	144	138	110	3,7	56	W30
3992486	TDM220R5SCF25M	22,00	23,00	25 20	06	150	144	115	3,9	56	W31
3992487	TDM230R5SCF25M	23,00	24,00	25 2	12	156	150	120	4,1	56	W32
3992488	TDM240R5SCF25M	24,00	25,00	25 2	18	162	156	125	4,2	56	W33
3992489	TDM250R5SCF25M	25,00	26,00	25 2	25	169	163	130	4,4	56	W34

• Корпус сверла поставляется вместе с ключом для закрепления пластины.

VICTORY

■ 8 x D, хвостовик с фланцем

			- .	_							
номер заказа 3992141	номер по каталогу TDM080R8SCF12M	D1	D1 max	D	L 129	L1	L3	L4 max 68	L5	LS	посадочный размер пластины W10
*******		8,00	8,50			٠.			1,4		****
3992142	TDM085R8SCF12M	8,50	9,00		134	89	83	72	1,5	45	W11
3992213	TDM090R8SCF12M	9,00	9,50	12	138	93	88	76	1,6	45	W12
3992214	TDM095R8SCF12M	9,50	10,00	12	144	99	93	80	1,7	45	W13
3992215	TDM100R8SCF16M	10,00	10,50	16	151	103	98	84	1,8	48	W14
3992216	TDM105R8SCF16M	10,50	11,00	16	156	108	102	88	1,9	48	W15
3992217	TDM110R8SCF16M	11,00	11,50	16	160	112	107	92	2,0	48	W16
3992218	TDM115R8SCF16M	11,50	12,00	16	165	117	111	96	2,1	48	W17
3992219	TDM120R8SCF16M	12,00	12,50	16	169	121	116	100	2,1	48	W18
3992220	TDM125R8SCF16M	12,50	13,00	16	174	126	120	104	2,2	48	W19
3992221	TDM130R8SCF16M	13,00	13,50	16	178	130	125	108	2,3	48	W20
3992222	TDM135R8SCF16M	13,50	14,00	16	184	136	130	112	2,4	48	W21
3992223	TDM140R8SCF16M	14,00	14,50	16	188	140	135	116	2,5	48	W22
3992224	TDM145R8SCF16M	14,50	15,00	16	193	145	139	120	2,6	48	W23
3992225	TDM150R8SCF20M	15,00	16,00	20	204	154	148	128	2,7	50	W24
3992226	TDM160R8SCF20M	16,00	17,00	20	213	163	157	136	2,8	50	W25
3992227	TDM170R8SCF20M	17,00	18,00	20	223	173	167	144	3,0	50	W26
3992228	TDM180R8SCF25M	18,00	19,00	25	238	182	176	152	3,2	56	W27
3992229	TDM190R8SCF25M	19,00	20,00	25	247	191	185	160	3,4	56	W28
3992230	TDM200R8SCF25M	20,00	21,00	25	256	200	194	168	3,6	56	W29
3992231	TDM210R8SCF25M	21,00	22,00	25	266	210	204	176	3,7	56	W30
3992232	TDM220R8SCF25M	22,00	23,00	25	275	219	213	184	3,9	56	W31
3992233	TDM230R8SCF25M	23,00	24,00	25	284	228	222	192	4,1	56	W32
3992234	TDM240R8SCF25M	24,00	25,00	25	293	237	231	200	4,2	56	W33
3992235	TDM250R8SCF25M	25,00	26,00	25	303	247	241	208	4,4	56	W34


Давление СОЖ

На диаграмме слева давление СОЖ представлено в виде функции диаметра отверстия. Чем больше давление СОЖ, тем лучше результат сверления. Срок службы инструмента и качество отверстий возрастают с увеличением давления потока СОЖ.

Сверление наклонных поверхностей

При сверлении наклонных или криволинейных поверхностей используйте меньшую, по сравнению со стандартными значениями, подачу. Уменьшение подачи зависит от угла наклона поверхности детали. После полного захода ленточек сверла в деталь, увеличьте подачу до стандартного значения (100%).

VICTORY

ПРИМЕЧАНИЕ: Наружный подвод СОЖ не рекомендуется применять для глубины обработки более 3 х D.

Закрепление пластины

 Закрепите корпус сверла в патроне.
 Установите патрон со сверлом на станок или на устройстве предварительной настройки инструмента.

Очистите посадочные поверхности посредством воздушной струи.

 Поместите пластину в корпус сверла. (Работайте в перчатках во избежании возможных повреждений).

 Осторожно поверните пластину в направлении по часовой стрелке.
 (Работайте в перчатках во избежании возможных повреждений).

5) Установите ключ в правильном положении.*

6) Убедитесь, в совпадении разъема ключа и пластины. (Ключ не вышел из паза?)

 Плавно поверните ключ в направлении по часовой стрелке.

8) Установка завершена.

Раскрепление пластины

1) Очистите сверло посредством воздушной струи.

2) Установите ключ в правильном положении.*

3) Плотно вставьте ключ в паз пластины.

4) Поверните ключ в направлении против часовой стрелки.

 Как только зажим ослаблен, пластину можно повернуть руками. (Работайте в перчатках во избежании возможных повреждений).

6) Вытащите вставку. (Работайте в перчатках во избежании возможных повреждений).

*Для заказа ключа TDM1, пожалуйста, используйте: номер заказа 3861623 и номер по каталогу 170.315.

Меры предосторожности

СОЖ

1) Рекомендуется вести обработку с внутренним подводом СОЖ.

2) При работе с наружным подводом СОЖ глубина отверстия не должна превышать 3 x D.

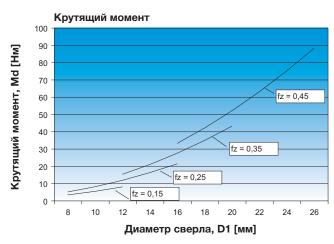
3) Не рекомендуется проводить обработку без использования СОЖ.

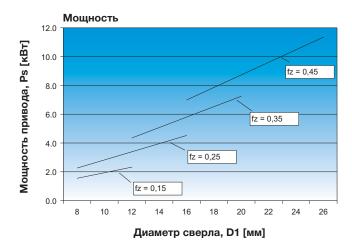
Меры предосторожности Отклонение от оси центров

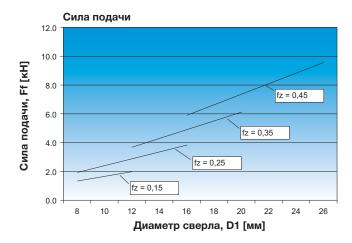
1) Для токарных станков

Максимально допустимое отклонение между осью детали и осью сверла составляет 0,02 мм.

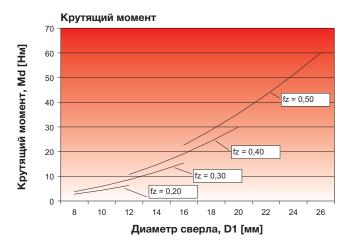
2) Для обрабатывающих центров

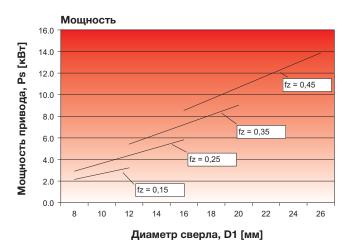

Не используйте патрон с поврежденной посадочной поверхностью. Отклонение оси патрона не должно превышать 0,02 мм.

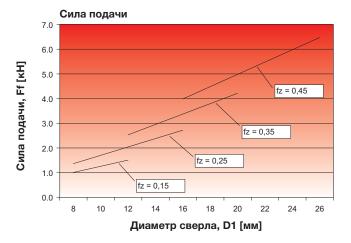

Рекомендация по применению	Типы отверстий
Плоская поверхность входа в отверстие Рекомендуется	
Сверление пакета деталей Не рекомендуется	
Поверхность с углом наклона >3° Не рекомендуется	
Сверление неполных отверстий Не рекомендуется	
Растачивание отверстия Не рекомендуется	
Засверливание в вогнутую поверхность Не рекомендуется	
Сверление отверстий в трубах Не рекомендуется	ॐ
Сверление предварительно сформированных отверстий Не рекомендуется	



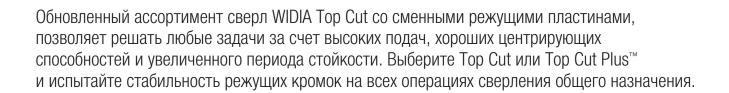
Метрическая система







Метрическая система



Сверла со сменными режущими пластинами

Серия сверл WIDIA со сменными режущими пластинами, изготовленных с использованием современных технологий, обеспечивает высокие скорости резания и плавный процесс резания одновременно. Широкий выбор пластин способствует гибкости и экономичности обработки.

- Улучшенные стружкоотвод и удельный съем металла.
- Улучшенные центрирующие возможности.
- Каждая пластина обладает четырьмя эффективными режущими кромками.

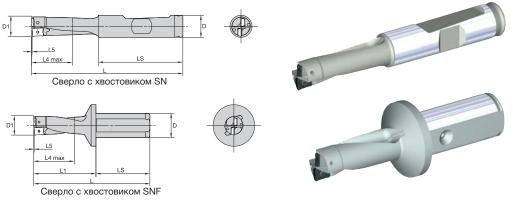
- Новая конструкция инструмента обеспечивает высокий удельный съем металла.
- Улучшенный стружкоотвод и более надежные посадочные гнезда под пластины.
- Каждая пластина обладает четырьмя эффективными режущими кромками.

B48 WWW.WIDIA.COM

Обработка отверстий • Сверла со сменными режущими пластинами

Сверла Тор Cut™	B50–B60
Корпуса сверл	
Пластины	
Рекомендации по применению	
Сверла Top Cut Plus™	B62-B78
Корпуса сверл	
Сменные кассеты с пластинами	
Рекомендации по применению	B74–B78
Сверла Тор Cut и Тор Cut Plus	
Описание марок твердых сплавов	
Рекомендации по применению	
Fazorkio volvos	R91_R9/

WWW.WIDIA.COM


Обработка отверстий • Сверла со сменными режущими пластинами

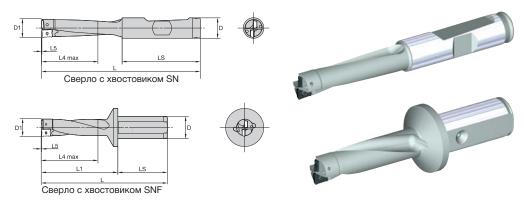
• Сверла поставляются с винтами для крепления пластин и ключом Torx.

• Информация о пластинах представлена на стр. В55.

■ 2 x D • Корпуса сверл с хвостовиками SN SNF

номер заказа ном	ер по каталогу	D1 D	L1	L4 max	L5	LS	L	эталонная пластина	винт пластины	ключ Torx	размер Torx
3895695 TC	D110R2SN12M	11,0 12,0	_	22,0	0,22	45,0	81,0	LPGX06T103	12146011800	12146010000	T5
3895696 TC	D115R2SN12M	11,5 12,0	_	23,0	0,22	45,0	82,0	LPGX06T103	12146011800	12146010000	T5
3895697 TC	D120R2SN12M	12,0 12,0	_	24,0	0,06	45,0	83,0	LPGX06T103	12146011800	12146010000	T5
3895698 TC	D125R2SN16M	12,5 16,0	_	25,0	0,06	48,0	87,0	LPGX06T103	12146011800	12146010000	T5
3895699 TC	D130R2SN16M	13,0 16,0	_	26,0	0,08	48,0	87,0	LPGX06T103	12146011800	12146010000	T5
3895700 TC	D135R2SN16M	13,5 16,0	_	27,0	0,08	48,0	88,0	LPGX06T103	12146011800	12146010000	T5
3895701 TCI	D140R2SNF25M	14,0 25,0	48,0	28,0	0,07	56,0	104,0	LPGX07T204	12146012500	12147549000	T7
3895702 TCI	D150R2SNF25M	15,0 25,0	50,0	30,0	0,05	56,0	106,0	LPGX07T204	12146012500	12147549000	T7
3895713 TCI	D160R2SNF25M	16,0 25,0	52,0	32,0	0,18	56,0	108,0	LPGX07T204	12146012500	12147549000	T7
3895714 TCI	D170R2SNF25M	17,0 25,0	53,0	34,0	0,31	56,0	109,0	LPGX07T204	12146012500	12147549000	T7
3895715 TCI	D175R2SNF25M	17,5 25,0	53,5	35,0	0,31	56,0	109,5	LPGX07T204	12146012500	12147549000	T7
3895716 TCI	D180R2SNF25M	18,0 25,0	54,0	36,0	0,31	56,0	110,0	LPGX07T204	12146012500	12147549000	T7
3895717 TCI	D190R2SNF25M	19,0 25,0	56,0	38,0	0,06	56,0	112,0	LPGX100308	12148068700	12148086600	T8
3895718 TCI	D200R2SNF25M	20,0 25,0	58,0	40,0	0,10	56,0	114,0	LPGX100308	12148068700	12148086600	T8
3895719 TCI	D210R2SNF25M	21,0 25,0	60,0	42,0	0,28	56,0	116,0	LPGX100308	12148068700	12148086600	T8
3895720 TCI	D220R2SNF25M	22,0 25,0	64,0	44,0	0,28	56,0	120,0	LPGX100308	12148068700	12148086600	T8
3895721 TCI	D230R2SNF25M	23,0 25,0	66,0	46,0	0,45	56,0	122,0	LPGX100308	12148068700	12148086600	T8
3895722 TCI	D240R2SNF25M	24,0 25,0	68,0	48,0	0,45	56,0	124,0	LPGX100308	12148068700	12148086600	T8
3895723 TCI	D250R2SNF25M	25,0 25,0	70,0	50,0	0,45	56,0	126,0	LPGX100308	12148068700	12148086600	T8

ВНИМАНИЕ!

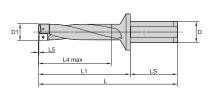

При обработке сквозных отверстий, на выходе инструмента из заготовки, возможно образование небольших металлических дисков. Когда сверло находится в стационарном положении, а заготовка вращается, эти диски под действием центробежной силы, на большой скорости вылететь из патрона. Поэтому следует предусмотреть соответствующее ограждение во избежании травм и повреждений.

- Сверла поставляются с винтами для крепления пластин и ключом Torx.
- Информация о пластинах представлена на стр. В55.

■ 3 x D • Корпуса сверл с хвостовиками SN SNF

номер заказа	номер по каталогу	D1	D	L1	L4 max	L5	LS	L	эталонная пластина	винт пластины	ключ Torx	размер Тогх
3895724	TCD110R3SN12M	11,0	12,0	_	33,0	0,22	45,0	92,0	LPGX06T103	12146011800	12146010000	T5
3895725	TCD115R3SN12M	11,5	12,0	_	34,5	0,22	45,0	93,5	LPGX06T103	12146011800	12146010000	T5
3895726	TCD120R3SN12M	12,0	12,0	_	36,0	0,06	45,0	95,0	LPGX06T103	12146011800	12146010000	T5
3895727	TCD125R3SN16M	12,5	16,0	_	37,5	0,06	48,0	99,5	LPGX06T103	12146011800	12146010000	T5
3895728	TCD130R3SN16M	13,0	16,0	_	39,0	0,08	48,0	100,0	LPGX06T103	12146011800	12146010000	T5
3895729	TCD135R3SN16M	13,5	16,0	_	40,5	0,08	48,0	101,5	LPGX06T103	12146011800	12146010000	T5
3895730	TCD140R3SNF25M	14,0	25,0	62,0	42,0	0,07	56,0	118,0	LPGX07T204	12146012500	12147549000	T7
3895731	TCD150R3SNF25M	15,0	25,0	65,0	45,0	0,05	56,0	121,0	LPGX07T204	12146012500	12147549000	T7
3895732	TCD160R3SNF25M	16,0	25,0	68,0	48,0	0,18	56,0	124,0	LPGX07T204	12146012500	12147549000	T7
3895733	TCD170R3SNF25M	17,0	25,0	70,0	51,0	0,31	56,0	126,0	LPGX07T204	12146012500	12147549000	T7
3895734	TCD175R3SNF25M	17,5	25,0	71,0	52,5	0,31	56,0	127,0	LPGX07T204	12146012500	12147549000	T7
3895735	TCD180R3SNF25M	18,0	25,0	72,0	54,0	0,31	56,0	128,0	LPGX07T204	12146012500	12147549000	T7
3895736	TCD190R3SNF25M	19,0	25,0	75,0	57,0	0,06	56,0	131,0	LPGX100308	12148068700	12148086600	T8
3895737	TCD200R3SNF25M	20,0	25,0	78,0	60,0	0,10	56,0	134,0	LPGX100308	12148068700	12148086600	T8
3895738	TCD210R3SNF25M	21,0	25,0	81,0	63,0	0,28	56,0	137,0	LPGX100308	12148068700	12148086600	T8
3895739	TCD220R3SNF25M	22,0	25,0	86,0	66,0	0,28	56,0	142,0	LPGX100308	12148068700	12148086600	T8
3895740	TCD230R3SNF25M	23,0	25,0	89,0	69,0	0,45	56,0	145,0	LPGX100308	12148068700	12148086600	T8
3895741	TCD240R3SNF25M	24,0	25,0	92,0	72,0	0,45	56,0	148,0	LPGX100308	12148068700	12148086600	Т8
3895742	TCD250R3SNF25M	25,0	25,0	95,0	75,0	0,45	56,0	151,0	LPGX100308	12148068700	12148086600	T8

ВНИМАНИЕ!


При обработке сквозных отверстий, на выходе инструмента из заготовки, возможно образование небольших металлических дисков. Когда сверло находится в стационарном положении, а заготовка вращается, эти диски под действием центробежной силы, на большой скорости вылететь из патрона. Поэтому следует предусмотреть соответствующее ограждение во избежании травм и повреждений.

Сверла Тор Cut™ • 4 x D • Хвостовик SNF

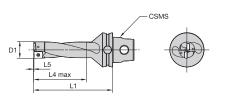
- Сверла поставляются с винтами для крепления пластин и ключом Torx.
- Информация о пластинах представлена на стр. В55.

■ 4 x D • Корпуса сверл с хвостовиком SNF

номер заказа	номер по каталогу	D1 D	L1	L4 max	L5	LS	L	эталонная пластина	винт пластины	ключ Torx	размер Torx
3895743	TCD140R4SNF25M	14,0 25,0	76,0	56,0	0,07	56,0	132,0	LPGX07T204	12146012500	12147549000	T7
3895744	TCD150R4SNF25M	15,0 25,0	80,0	60,0	0,05	56,0	136,0	LPGX07T204	12146012500	12147549000	T7
3895745	TCD160R4SNF25M	16,0 25,0	84,0	64,0	0,18	56,0	140,0	LPGX07T204	12146012500	12147549000	T7
3895746	TCD170R4SNF25M	17,0 25,0	87,0	68,0	0,31	56,0	143,0	LPGX07T204	12146012500	12147549000	T7
3895747	TCD175R4SNF25M	17,5 25,0	88,5	70,0	0,31	56,0	144,5	LPGX07T204	12146012500	12147549000	T7
3895748	TCD180R4SNF25M	18,0 25,0	90,0	72,0	0,31	56,0	146,0	LPGX07T204	12146012500	12147549000	T7
3895749	TCD190R4SNF25M	19,0 25,0	94,0	76,0	0,06	56,0	150,0	LPGX100308	12148068700	12148086600	T8
3895750	TCD200R4SNF25M	20,0 25,0	98,0	80,0	0,10	56,0	154,0	LPGX100308	12148068700	12148086600	T8
3895751	TCD210R4SNF25M	21,0 25,0	102,0	84,0	0,28	56,0	158,0	LPGX100308	12148068700	12148086600	T8
3895752	TCD220R4SNF25M	22,0 25,0	108,0	88,0	0,28	56,0	164,0	LPGX100308	12148068700	12148086600	T8
3895753	TCD230R4SNF25M	23,0 25,0	112,0	92,0	0,45	56,0	168,0	LPGX100308	12148068700	12148086600	T8
3895754	TCD240R4SNF25M	24,0 25,0	118,0	96,0	0,45	56,0	174,0	LPGX100308	12148068700	12148086600	T8
3895755	TCD250R4SNF25M	25,0 25,0	120,0	100,0	0,45	56,0	176,0	LPGX100308	12148068700	12148086600	T8

ВНИМАНИЕ!

При обработке сквозных отверстий, на выходе инструмента из заготовки, возможно образование небольших металлических дисков. Когда сверло находится в стационарном положении, а заготовка вращается, эти диски под действием центробежной силы, на большой скорости вылететь из патрона. Поэтому следует предусмотреть соответствующее ограждение во избежании травм и повреждений.



Сверла Тор Cut™ • 3 x D • Хвостовик KM40TS™

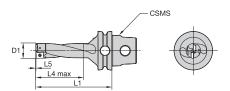
- Сверла поставляются с винтами для крепления пластин и ключом Torx.
- Информация о пластинах представлена на стр. В55.

■ 3 x D • Корпуса сверл с хвостовиком KM40TS

номер заказа	номер по каталогу	D1	L1	L4 max	L5	размер системы CSMS	эталонная пластина	винт пластины	ключ Torx	размер Тогх
3895545	KM40TSTCD110R3M	11,0 5	59,0	33,0	0,22	KM40TS	LPGX06T103	12146011800	12146010000	T5
3895546	KM40TSTCD120R3M	12,0 6	52,0	36,0	0,06	KM40TS	LPGX06T103	12146011800	12146010000	T5
3895547	KM40TSTCD130R3M	13,0 6	35,0	39,0	0,08	KM40TS	LPGX06T103	12146011800	12146010000	T5
3895548	KM40TSTCD140R3M	14,0 6	6,88	42,0	0,07	KM40TS	LPGX07T204	12146012500	12147549000	T7
3895549	KM40TSTCD150R3M	15,0 7	71,0	45,0	0,05	KM40TS	LPGX07T204	12146012500	12147549000	T7
3895550	KM40TSTCD160R3M	16,0 7	74,0	48,0	0,18	KM40TS	LPGX07T204	12146012500	12147549000	T7
3895551	KM40TSTCD170R3M	17,0 7	79,0	51,0	0,31	KM40TS	LPGX07T204	12146012500	12147549000	T7
3895552	KM40TSTCD180R3M	18,0 8	32,0	54,0	0,31	KM40TS	LPGX07T204	12146012500	12147549000	T7
3895653	KM40TSTCD190R3M	19,0 8	35,0	57,0	0,06	KM40TS	LPGX100308	12148068700	12148086600	T8
3895654	KM40TSTCD200R3M	20,0 8	38,0	60,0	0,10	KM40TS	LPGX100308	12148068700	12148086600	T8
3895655	KM40TSTCD210R3M	21,0 9	93,0	63,0	0,28	KM40TS	LPGX100308	12148068700	12148086600	T8
3895656	KM40TSTCD220R3M	22,0 9	96,0	66,0	0,28	KM40TS	LPGX100308	12148068700	12148086600	T8
3895657	KM40TSTCD230R3M	23,0 9	99,0	69,0	0,45	KM40TS	LPGX100308	12148068700	12148086600	T8
3895658	KM40TSTCD240R3M	24,0 10	02,0	72,0	0,45	KM40TS	LPGX100308	12148068700	12148086600	T8
3895659	KM40TSTCD250R3M	25,0 10	06,0	75,0	0,45	KM40TS	LPGX100308	12148068700	12148086600	T8

ВНИМАНИЕ!

При обработке сквозных отверстий, на выходе инструмента из заготовки, возможно образование небольших металлических дисков. Когда сверло находится в стационарном положении, а заготовка вращается, эти диски под действием центробежной силы, на большой скорости вылететь из патрона. Поэтому следует предусмотреть соответствующее ограждение во избежании травм и повреждений.



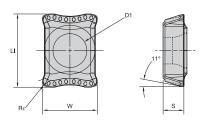
Сверла Тор Cut™ • 3 x D • Хвостовик KM50TS™

- Сверла поставляются с винтами для крепления пластин и ключом Torx.
- Информация о пластинах представлена на стр. В55.

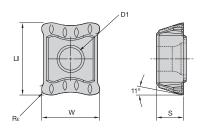
■ 3 x D • Корпуса сверл с хвостовиком KM50TS

номер заказа	номер по каталогу	D1	L1	L4 max	L5	размер системы CSWS	эталонная пластина	винт пластины	ключ Torx	размер Torx
3895660	KM50TSTCD110R3M	11,0	63,0	33,0	0,22	KM50TS	LPGX06T103	12146011800	12146010000	T5
3895661	KM50TSTCD120R3M	12,0	66,0	36,0	0,06	KM50TS	LPGX06T103	12146011800	12146010000	T5
3895662	KM50TSTCD130R3M	13,0	69,0	39,0	0,08	KM50TS	LPGX06T103	12146011800	12146010000	T5
3895663	KM50TSTCD140R3M	14,0	72,0	42,0	0,07	KM50TS	LPGX07T204	12146012500	12147549000	T7
3895664	KM50TSTCD150R3M	15,0	75,0	45,0	0,05	KM50TS	LPGX07T204	12146012500	12147549000	T7
3895665	KM50TSTCD160R3M	16,0	78,0	48,0	0,18	KM50TS	LPGX07T204	12146012500	12147549000	T7
3895666	KM50TSTCD170R3M	17,0	83,0	51,0	0,31	KM50TS	LPGX07T204	12146012500	12147549000	T7
3895667	KM50TSTCD180R3M	18,0	86,0	54,0	0,31	KM50TS	LPGX07T204	12146012500	12147549000	T7
3895668	KM50TSTCD190R3M	19,0	89,0	57,0	0,06	KM50TS	LPGX100308	12148068700	12148086600	T8
3895669	KM50TSTCD200R3M	20,0	92,0	60,0	0,10	KM50TS	LPGX100308	12148068700	12148086600	T8
3895670	KM50TSTCD210R3M	21,0	97,0	63,0	0,28	KM50TS	LPGX100308	12148068700	12148086600	T8
3895671	KM50TSTCD220R3M	22,0 1	00,0	66,0	0,28	KM50TS	LPGX100308	12148068700	12148086600	T8
3895672	KM50TSTCD230R3M	23,0 1	03,0	69,0	0,45	KM50TS	LPGX100308	12148068700	12148086600	T8
3895693	KM50TSTCD240R3M	24,0 1	06,0	72,0	0,45	KM50TS	LPGX100308	12148068700	12148086600	T8
3895694	KM50TSTCD250R3M	25,0 1	10,0	75,0	0,45	KM50TS	LPGX100308	12148068700	12148086600	T8

ВНИМАНИЕ!


При обработке сквозных отверстий, на выходе инструмента из заготовки, возможно образование небольших металлических дисков. Когда сверло находится в стационарном положении, а заготовка вращается, эти диски под действием центробежной силы, на большой скорости вылететь из патрона. Поэтому следует предусмотреть соответствующее ограждение во избежании травм и повреждений.

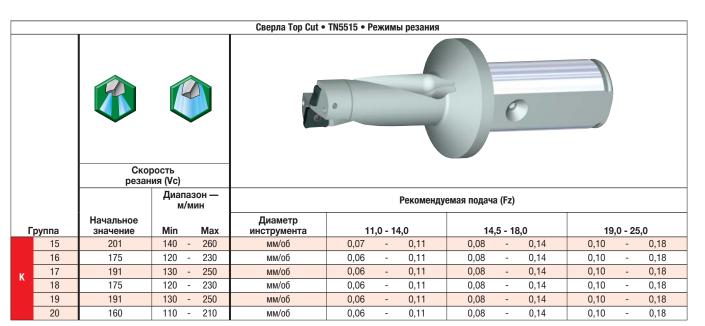
■ LPGX-34


• лучший выбор ○ альтернативный выбор

Н	OE090	N7015	C35
N S			
K	0		0
M	•		•
Р	•	•	0

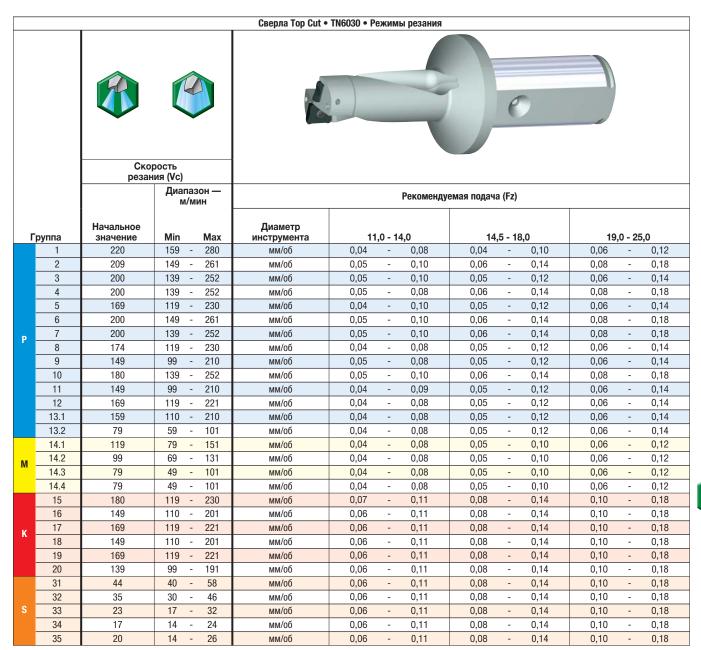
номер по каталогу	LI	W	D1	S	Rε	TN6	TN7	F	
LPGX06T10334	6,00	4,50	2,10	1,99	0,30		•	•	
LPGX07T20434	7,50	6,00	2,50	2,78	0,40	•	•	•	
LPGX10030834	10,00	8,00	2,80	3,18	0,80	•	•	•	

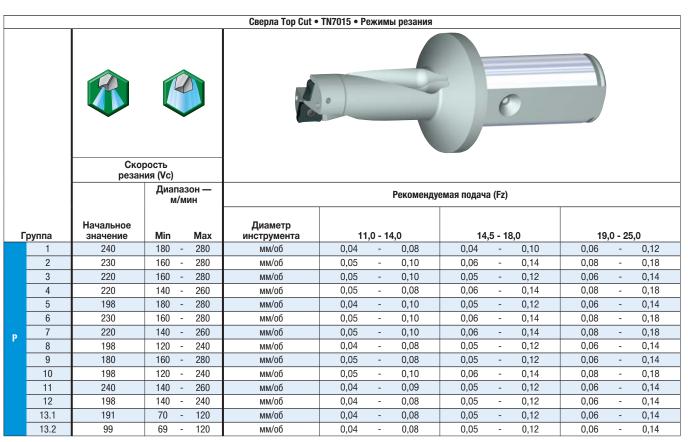
■ LPGX-36



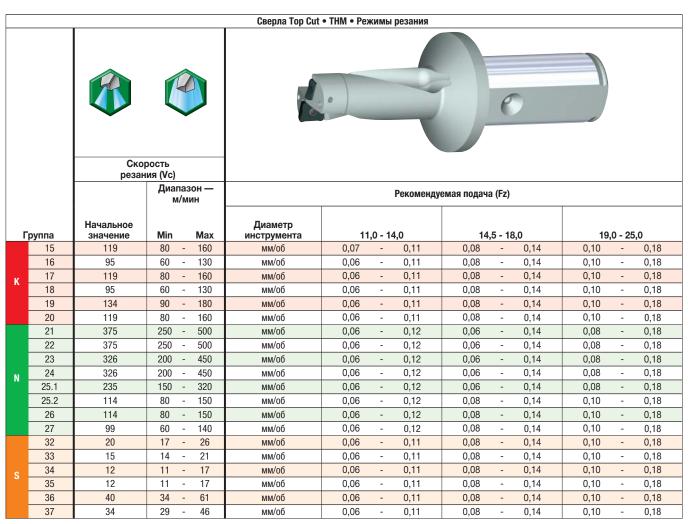
• лучший выбор ○ альтернативный выбор

:		THM	FN5515	LN6030	FN7015	TPC35
H	1					
S	3	•		0		
1	1	•				
K	(•	0		0
N	/			•		•
F	•			•	•	0


номер по каталогу	LI	W	D1	S	Rε	TH SING THE
LPGX07T20436	7,50	6,00	2,50	2,78	0,40	
LPGX10030836	10,00	8,00	2,80	3,18	0,80	



Рекомендации по применению • Сверла Тор Cut™ • TN6030



Рекомендации по применению • Сверла Тор Cut™ • TPC35

				Сверла Top Cut	ТРС35 • Режимы резания		
						0	
			оость ия (Vc)				
		pedun	Диапазон — м/мин		Рекоменду	емая подача (Fz)	
г	руппа	Начальное значение	Min Max	Диаметр инструмента	11,0 - 14,0	14,5 - 18,0	19,0 - 25,0
	1	204	150 - 260	мм/об	0,04 - 0,08	0,04 - 0,10	0,06 - 0,12
	2	186	130 - 240	мм/об	0,05 - 0,10	0,06 - 0,14	0,08 - 0,18
	3	171	120 - 220	мм/об	0,05 - 0,10	0,05 - 0,12	0,06 - 0,14
	4	171	120 - 220	мм/об	0,05 - 0,08	0,06 - 0,14	0,08 - 0,18
	5	149	100 - 200	мм/об	0,04 - 0,10	0,05 - 0,12	0,06 - 0,14
	6	185	130 - 240	мм/об	0,05 - 0,10	0,06 - 0,14	0,08 - 0,18
P	7	171	120 - 220	мм/об	0,05 - 0,10	0,06 - 0,14	0,08 - 0,18
r	8	149	100 - 200	мм/об	0,04 - 0,08	0,05 - 0,12	0,06 - 0,14
	9	130	80 - 180	мм/об	0,05 - 0,08	0,05 - 0,12	0,06 - 0,14
	10	171	120 - 220	мм/об	0,05 - 0,10	0,06 - 0,14	0,08 - 0,18
	11	130	80 - 180	мм/об	0,04 - 0,09	0,05 - 0,12	0,06 - 0,14
	12	149	100 - 200	мм/об	0,04 - 0,08	0,05 - 0,12	0,06 - 0,14
	13.1	130	80 - 180	мм/об	0,04 - 0,08	0,05 - 0,12	0,06 - 0,14
	13.2	70	40 - 90	мм/об	0,04 - 0,08	0,05 - 0,12	0,06 - 0,14
	14.1	110	70 - 150	мм/об	0,04 - 0,08	0,05 - 0,10	0,06 - 0,12
М	14.2	90	60 - 120	мм/об	0,04 - 0,08	0,05 - 0,10	0,06 - 0,12
IVI	14.3	70	45 - 90	мм/об	0,04 - 0,08	0,05 - 0,10	0,06 - 0,12
	14.4	59	40 - 80	мм/об	0,04 - 0,08	0,05 - 0,10	0,06 - 0,12
	17	149	100 - 200	мм/об	0,06 - 0,11	0,08 - 0,14	0,10 - 0,18
К	18	130	80 - 180	мм/об	0,06 - 0,11	0,08 - 0,14	0,10 - 0,18
_ K	19	169	120 - 220	мм/об	0,06 - 0,11	0,08 - 0,14	0,10 - 0,18
	20	241	100 - 200	мм/об	0,06 - 0,11	0,08 - 0,14	0,10 - 0,18

Обработка отверстий • Сверла со сменными режущими пластинами

Рекомендации по применению • Сверла Тор Cut™ • THM

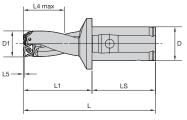
WIN WITH WIDIA

WIDIA

Серия ТСР | Серия ТСР | Серия 121679

Универсальные и экономичные сверла со сменными режущими пластинами Top Cut и Top Cut Plus, изготовленные по современной технологии, обеспечивают высокую производительность.

- Конструкция сверла обеспечивает превосходный стружкоотвод и большой удельный съем металла.
- Широкий выбор пластин с надежными режущими кромками.
- Большой срок службы инструмента и высокие подачи.

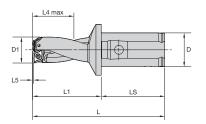

Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт www.widia.com.

• Сверла поставляются с винтами для крепления пластин и ключом Torx.

• Информация о пластинах представлена на стр. В72.

■ 2 x D • Корпуса сверл с хвостовиком SNF

HOMOD 33K333	номер по каталогу	D1	D	L1	L4 max	L5	LS	L	эталонная	винт пластины	ключ Torx	размер Тогх
номер заказа 3895299	TCP190R2SNF25M	19.0	25.0	54,0	38,0	0.70	56,0	110,0	ХОМТ070304	12148080000	12148086600	T8
3895300	TCP200R2SNF25M	20.0	25,0	56.0	40,0	0.70		112,0	XOMT070304	12148080000	12148086600	T8
3895301	TCP210R2SNF25M	21.0	25.0	58.0	42.0	0.70	56.0	114.0	XOMT070304	12148080000	12148086600	T8
3895301	TCP210R2SNF25M	22,0	- , -	60.0	42,0 44,0	0,70	, -	116.0	XOMT070304 XOMT070304	12148080000	12148086600	T8
		_ ′				-, -		-,-				
3895413	TCP230R2SNF25M	23,0	25,0	62,0	46,0	0,70	56,0	118,0	XOMT070304	12148080000	12148086600	T8
3895414	TCP240R2SNF25M	24,0	25,0	64,0	48,0	0,70	56,0	120,0	XOMT070304	12148080000	12148086600	T8
3895415	TCP250R2SNF32M	25,0	32,0	65,0	50,0	0,70	60,0	125,0	XOMT09T306	12148067200	12148086600	T8
3895416	TCP260R2SNF32M	26,0	32,0	67,0	52,0	0,70	60,0	127,0	XOMT09T306	12148067200	12148086600	T8
3895417	TCP270R2SNF32M	27,0	32,0	69,0	54,0	0,70	60,0	129,0	XOMT09T306	12148067200	12148086600	T8
3895418	TCP280R2SNF32M	28,0	32,0	70,0	56,0	0,70	60,0	130,0	XOMT09T306	12148067200	12148086600	T8
3895419	TCP290R2SNF32M	29,0	32,0	72,0	58,0	0,70	60,0	132,0	XOMT09T306	12148067200	12148086600	T8
3895420	TCP300R2SNF32M	30,0	32,0	74,0	60,0	0,70	60,0	134,0	XOMT09T306	12148067200	12148086600	T8
3895421	TCP310R2SNF32M	31.0	32.0	77.0	62.0	0.70	60.0	137.0	XOMT09T306	12148067200	12148086600	T8
3895422	TCP320R2SNF32M	32,0	- ,-	78.0	64,0	0.70	, -	138.0	XOMT09T306	12148067200	12148086600	T8
3895423	TCP330R2SNF32M	33.0		80.0	66.0	0.70	,-	140.0	XOMT09T306	12148067200	12148086600	T8
3895424	TCP340R2SNF32M	34,0	- ,-	82,0	68,0	0.70	, -	142,0	XOMT09T306 XOMT09T306	12148067200	12148086600	T8
						-, -	, -			1-110001		
3895425	TCP350R2SNF40M	35,0	40,0	92,0	70,0	0,96	70,0	162,0	XOMT12T308	12148055800	12148082400	T15
3895426	TCP360R2SNF40M	36,0	40,0	94,0	72,0	0,96		164,0	XOMT12T308	12148055800	12148082400	T15
3895427	TCP370R2SNF40M	37,0	40,0	97,0	74,0	0,96	-,-	167,0	XOMT12T308	12148055800	12148082400	T15
3895428	TCP380R2SNF40M	38,0	40,0	99,0	76,0	0,96	70,0	169,0	XOMT12T308	12148055800	12148082400	T15
3895429	TCP390R2SNF40M	39,0	40,0	101,0	78,0	0,96	70,0	171,0	XOMT12T308	12148055800	12148082400	T15
3895430	TCP400R2SNF40M	40,0	40,0	103,0	80,0	0,96	70,0	173,0	XOMT12T308	12148055800	12148082400	T15
3895431	TCP410R2SNF40M	41,0	40,0	106,0	82,0	0,96	70,0	176,0	XOMT12T308	12148055800	12148082400	T15
3895432	TCP420R2SNF40M	42,0	40,0	108,0	84,0	0,96	70,0	178,0	XOMT12T308	12148055800	12148082400	T15
3895433	TCP430R2SNF40M	43.0	40.0	110.0	86.0	0.96	70.0	180.0	XOMT12T308	12148055800	12148082400	T15
3895434	TCP440R2SNF40M	44.0	- , -	113.0	88.0	0.96	-,-	183.0	XOMT12T308	12148055800	12148082400	T15
3895435	TCP450R2SNF40M	45.0	- , -	115.0	90.0	0.96	- , -	185.0	XOMT12T308	12148055800	12148082400	T15
3895436	TCP450R2SNF40M	46.0	, -	117,0	90,0	-,	70,0	187.0	XOMT160508	12148067200	12148007500	T20
3033430	10540002311540101	40,0	40,0	117,0	92,0	1,40	10,0	107,0	VOINI 100200	12 140007 200	12 140001300	120

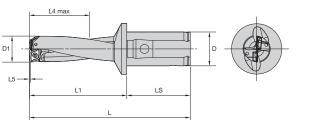

(продолжение)

Сверла Top Cut Plus™ • 2 x D • Хвостовик SNF

(продолжение)

номер заказа	номер по каталогу	D1	D	L1	L4 max	L5	LS	L	эталонная пластина	винт пластины	ключ Torx	размер Тогх
3895437	TCP470R2SNF40M	47,0	40,0	120,0	94,0	1,48	70,0	190,0	XOMT160508	12148067200	12148007500	T20
3895438	TCP480R2SNF40M	48,0	40,0	122,0	96,0	1,48	70,0	192,0	XOMT160508	12148067200	12148007500	T20
3895439	TCP490R2SNF40M	49,0	40,0	125,0	98,0	1,48	70,0	195,0	XOMT160508	12148067200	12148007500	T20
3895440	TCP500R2SNF40M	50,0	40,0	128,0	100,0	1,48	70,0	198,0	XOMT160508	12148067200	12148007500	T20
3895441	TCP510R2SNF40M	51,0	40,0	130,0	102,0	1,48	70,0	200,0	XOMT160508	12148067200	12148007500	T20
3895442	TCP520R2SNF40M	52,0	40,0	133,0	104,0	1,48	70,0	203,0	XOMT160508	12148067200	12148007500	T20
3895443	TCP530R2SNF40M	53,0	40,0	136,0	106,0	1,48	70,0	206,0	XOMT160508	12148067200	12148007500	T20
3895444	TCP540R2SNF40M	54,0	40,0	139,0	108,0	1,48	70,0	209,0	XOMT160508	12148067200	12148007500	T20
3895445	TCP550R2SNF40M	55,0	40,0	142,0	110,0	1,48	70,0	212,0	XOMT160508	12148067200	12148007500	T20
3895446	TCP560R2SNF40M	56,0	40,0	145,0	112,0	1,48	70,0	215,0	XOMT160508	12148067200	12148007500	T20
3895447	TCP570R2SNF40M	57,0	40,0	148,0	114,0	1,48	70,0	218,0	XOMT160508	12148067200	12148007500	T20
3895448	TCP580R2SNF40M	58,0	40,0	151,0	116,0	1,48	70,0	221,0	XOMT160508	12148067200	12148007500	T20
3895449	TCP590R2SNF40M	59,0	40,0	154,0	118,0	1,48	70,0	224,0	XOMT160508	12148067200	12148007500	T20
3895450	TCP600R2SNF40M	60,0	40,0	157,0	120,0	1,48	70,0	227,0	XOMT160508	12148067200	12148007500	T20

ВНИМАНИЕ!


При обработке сквозных отверстий, на выходе инструмента из заготовки, возможно образование небольших металлических дисков. Когда сверло находится в стационарном положении, а заготовка вращается, эти диски под действием центробежной силы, на большой скорости вылететь из патрона. Поэтому следует предусмотреть соответствующее ограждение во избежании травм и повреждений.

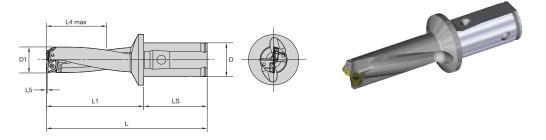
Сверла Top Cut Plus[™] • 3 x D • Хвостовик SNF

- Сверла поставляются с винтами для крепления пластин и ключом Torx.
- Информация о пластинах представлена на стр. В72.

■ 3 x D • Корпуса сверл с хвостовиком SNF

номер заказа	номер по каталогу	D1	D	L1	L4 max	L5	LS	L	эталонная пластина	винт пластины	ключ Torx	размер Тогх
3895451	TCP190R3SNF25M	19.0	25.0	75.0	57.0	0.70	56.0	131.0	XOMT070304	12148080000	12148086600	T8
3895452	TCP200R3SNF25M	20,0	25,0	78,0	60,0	0,70	56,0	134,0	XOMT070304	12148080000	12148086600	T8
3895453	TCP210R3SNF25M	21.0	25.0	81.0	63.0	0.70	56,0	137.0	XOMT070304	12148080000	12148086600	T8
3895454	TCP220R3SNF25M	22,0	- , -	84,0	66,0	0,70	,	140,0	XOMT070304	12148080000	12148086600	T8
3895455	TCP230R3SNF25M	23.0	25.0	89.0	69.0	0.70	56.0	143.0	XOMT070304	12148080000	12148086600	T8
3895456	TCP240R3SNF25M	24,0	-,-	89,0	72,0	0,70	, -	145,0	XOMT070304	12148080000	12148086600	T8
3895457	TCP250R3SNF32M	25.0	32.0	92.0	75,0	0.70	60.0	152.0	XOMT09T306	12148067200	12148086600	T8
3895458	TCP260R3SNF32M	26.0	- ,-	95.0	78,0	0.70	, -	155.0	XOMT09T306	12148067200	12148086600	T8
3895459	TCP270R3SNF32M	27.0	32.0	98.0	81.0	0.70	60,0	158.0	XOMT09T306	12148067200	12148086600	T8
3895460	TCP280R3SNF32M	28,0	32,0	101.0	84,0	0,70		161,0	XOMT09T306	12148067200	12148086600	T8
3895461	TCP290R3SNF32M	29.0	32,0	104,0	87.0	0.70	60.0	164,0	XOMT09T306	12148067200	12148086600	T8
3895462	TCP300R3SNF32M	30.0	,	107.0	90.0	0.70	,-	167.0	XOMT09T306	12148067200	12148086600	T8
3895463	TCP310R3SNF32M	31.0	32.0	110.0	93.0	0.70	60.0	170.0	XOMT09T306	12148067200	12148086600	T8
3895464	TCP320R3SNF32M	32,0	32.0	112.0	96,0	0.70	, -	172,0	XOMT09T306	12148067200	12148086600	T8
3895465	TCP330R3SNF32M	33.0	32.0	115.0	99.0	0.70	, -	175.0	XOMT09T306	12148067200	12148086600	T8
3895466	TCP340R3SNF32M	34,0	- ,-	118,0	102,0	0.70	, -	178,0	XOMT09T306	12148067200	12148086600	T8
3895467	TCP350R3SNF40M	35.0		129.0	105.0	0.96	70.0	199.0	XOMT12T308	12148055800	12148082400	T15
3895468	TCP350R3SNF40M	36.0	40,0	133.0	103,0	0,96	-,-	203.0	XOMT12T308	12148055800	12148082400	T15
3895469	TCP370R3SNF40M	, .	40,0	136.0	111.0	0.96	- , -	206.0	XOMT12T308	12148055800	12148082400	T15
3895469 3895470	TCP370R3SNF40M	37,0	40,0	136,0	111,0	0,96	,-	200,0	XOMT121308 XOMT12T308	12148055800	12148082400	T15
			- , -					, -	XOMT12T308		12148082400	
3895471 3895472	TCP390R3SNF40M TCP400R3SNF40M	39,0	40,0 40,0	142,0 146.0	117,0 120,0	0,96 0,96	70,0 70.0	212,0 216.0	XOM1121308 XOMT12T308	12148055800 12148055800	12148082400	T15 T15
		- , -		- , -				- / -				
3895473	TCP410R3SNF40M	41,0	40,0	149,0	123,0	0,96	-,-	219,0	XOMT12T308	12148055800	12148082400	T15
3895474	TCP420R3SNF40M	42,0	40,0	152,0	126,0	0,96		222,0	XOMT12T308	12148055800	12148082400	T15
3895475	TCP430R3SNF40M	43,0	40,0	156,0	129,0	0,96	70,0	226,0	XOMT12T308	12148055800	12148082400	T15
3895476	TCP440R3SNF40M	44,0	40,0	159,0	132,0	0,96	-,-	229,0	XOMT12T308	12148055800	12148082400	T15
3895477	TCP450R3SNF40M	45,0	,-	163,0	135,0	0,96	,-	233,0	XOMT12T308	12148055800	12148082400	T15
3895478	TCP460R3SNF40M	46,0	40,0	166,0	138,0	1,48	70,0	236,0	XOMT160508	12148007200	12148007500	T20

(продолжение)



B65

Сверла Top Cut Plus™ • 3 x D • Хвостовик SNF

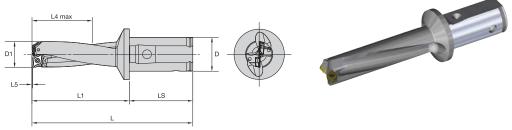
(продолжение)

номер заказа	номер по каталогу	D1	D	L1	L4 max	L5	LS	L	эталонная пластина	винт пластины	ключ Torx	размер Тогх
3895479	TCP470R3SNF40M	47,0	40,0	170,0	141,0	1,48	70,0	240,0	XOMT160508	12148007200	12148007500	T20
3895480	TCP480R3SNF40M	48,0	40,0	173,0	144,0	1,48	70,0	243,0	XOMT160508	12148007200	12148007500	T20
3895481	TCP490R3SNF40M	49,0	40,0	177,0	147,0	1,48	70,0	247,0	XOMT160508	12148007200	12148007500	T20
3895482	TCP500R3SNF40M	50,0	40,0	181,0	150,0	1,48	70,0	251,0	XOMT160508	12148007200	12148007500	T20
3895483	TCP510R3SNF40M	51,0	40,0	184,0	153,0	1,48	70,0	254,0	XOMT160508	12148007200	12148007500	T20
3895484	TCP520R3SNF40M	52,0	40,0	188,0	156,0	1,48	70,0	258,0	XOMT160508	12148007200	12148007500	T20
3895485	TCP530R3SNF40M	53,0	40,0	192,0	159,0	1,48	70,0	262,0	XOMT160508	12148007200	12148007500	T20
3895486	TCP540R3SNF40M	54,0	40,0	196,0	162,0	1,48	70,0	266,0	XOMT160508	12148007200	12148007500	T20
3895487	TCP550R3SNF40M	55,0	40,0	200,0	165,0	1,48	70,0	270,0	XOMT160508	12148007200	12148007500	T20
3895488	TCP560R3SNF40M	56,0	40,0	204,0	168,0	1,48	70,0	274,0	XOMT160508	12148007200	12148007500	T20
3895489	TCP570R3SNF40M	57,0	40,0	208,0	171,0	1,48	70,0	278,0	XOMT160508	12148007200	12148007500	T20
3895490	TCP580R3SNF40M	58,0	40,0	212,0	174,0	1,48	70,0	282,0	XOMT160508	12148007200	12148007500	T20
3895491	TCP590R3SNF40M	59,0	40,0	216,0	177,0	1,48	70,0	286,0	XOMT160508	12148007200	12148007500	T20
3895492	TCP600R3SNF40M	60,0	40,0	221,0	180,0	1,48	70,0	291,0	XOMT160508	12148007200	12148007500	T20

ВНИМАНИЕ!

При обработке сквозных отверстий, на выходе инструмента из заготовки, возможно образование небольших металлических дисков. Когда сверло находится в стационарном положении, а заготовка вращается, эти диски под действием центробежной силы, на большой скорости вылететь из патрона. Поэтому следует предусмотреть соответствующее ограждение во избежании травм и повреждений.

Сверла со сменными режущими пластинами



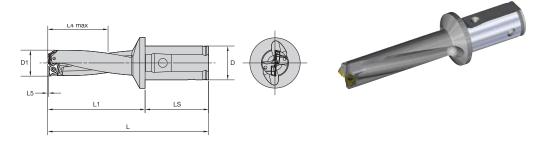
• Сверла поставляются с винтами для крепления пластин и ключом Torx.

Сверла Тор Cut Plus™ • 4 x D • Хвостовик SNF

■ 4 x D • Корпуса сверл с хвостовиком SNF

								эталонная		_	размер
номер заказа	номер по каталогу		D L			LS	L 454.0	пластина	винт пластины	ключ Тогх	Torx
3895493	TCP190R4SNF25M	. , .		76,0	0,70	, -	151,0	XOMT070304	12148080000	12148086600	T8
3895494	TCP200R4SNF25M	20,0	25 99	,0 80,0	0,70	56,0	155,0	XOMT070304	12148080000	12148086600	T8
3895495	TCP210R4SNF25M	21,0	25 10	3,0 84,0	0,70	56,0	159,0	XOMT070304	12148080000	12148086600	T8
3895496	TCP220R4SNF25M	22,0	25 10	7,0 88,0	0,70	56,0	163,0	XOMT070304	12148080000	12148086600	T8
3895497	TCP230R4SNF25M	23,0	25 11	,0 92,0	0,70	56,0	167,0	XOMT070304	12148080000	12148086600	T8
3895498	TCP240R4SNF25M	24,0	25 11	5,0 96,0	0,70	56,0	171,0	XOMT070304	12148080000	12148086600	T8
3895499	TCP250R4SNF32M	25,0	32 11	0,0 100,0	0,70	60,0	179,0	XOMT09T306	12148067200	12148086600	T8
3895500	TCP260R4SNF32M	26.0	32 12	3,0 104,0	0,70	60.0	183,0	XOMT09T306	12148067200	12148086600	T8
3895501	TCP270R4SNF32M		32 12	<u> </u>	0.70		187.0	XOMT09T306	12148067200	12148086600	T8
3895502	TCP280R4SNF32M	, , ,	32 13	, , -	0,70	,	191,0	XOMT09T306	12148067200	12148086600	T8
		-,-		<u> </u>							
3895513	TCP290R4SNF32M	.,.	32 13		0,70	, -	195,0	XOMT09T306	12148067200	12148086600	T8
3895514	TCP300R4SNF32M	30,0	32 13	9,0 120,0	0,70	60,0	199,0	XOMT09T306	12148067200	12148086600	T8
3895515	TCP310R4SNF32M	31,0	32 14	3,0 124,0	0,70	60,0	203,0	XOMT09T306	12148067200	12148086600	T8
3895516	TCP320R4SNF32M	32,0	32 14	7,0 128,0	0,70	60,0	207,0	XOMT09T306	12148067200	12148086600	T8
3895517	TCP330R4SNF32M	33,0	32 15	,0 132,0	0,70	60,0	211,0	XOMT09T306	12148067200	12148086600	T8
3895518	TCP340R4SNF32M	34,0	32 15	5,0 136,0	0,70	60,0	215,0	XOMT09T306	12148067200	12148086600	T8
3895519	TCP350R4SNF40M	35,0	40 16	3,0 140,0	0,96	70,0	236,0	XOMT12T308	12148055800	12148082400	T15
3895520	TCP360R4SNF40M	36,0	40 17),0 144,0	0,96	70,0	240,0	XOMT12T308	12148055800	12148082400	T15
3895521	TCP370R4SNF40M	37.0	40 17	1.0 148.0	0.96	70.0	244.0	XOMT12T308	12148055800	12148082400	T15
3895522	TCP380R4SNF40M	38.0	40 17		0,96	70,0	249,0	XOMT12T308	12148055800	12148082400	T15
3895523	TCP390R4SNF40M	39.0	40 18	3,0 156,0	0,96	70.0	253,0	XOMT12T308	12148055800	12148082400	T15
3895524	TCP400R4SNF40M	, .	40 18	, ,-	0,96	,	257,0	XOMT12T308	12148055800	12148082400	T15
		- , -		<u> </u>					1211000000		
3895525	TCP410R4SNF40M	, -	40 19	,- ,-	0,96	- , -	262,0	XOMT12T308	12148055800	12148082400	T15
3895526	TCP420R4SNF40M	, -	40 19	<u> </u>	0,96		266,0	XOMT12T308	12148055800	12148082400	T15
3895527	TCP430R4SNF40M	- , -	40 20	,- ,-	0,96	-,-	271,0	XOMT12T308	12148055800	12148082400	T15
3895528	TCP440R4SNF40M	44,0	40 20	5,0 176,0	0,96	70,0	275,0	XOMT12T308	12148055800	12148082400	T15
3895529	TCP450R4SNF40M	45,0	40 21),0 180,0	0,96	70,0	280,0	XOMT12T308	12148055800	12148082400	T15
3895530	TCP460R4SNF40M	46,0	40 21	1,0 184,0	1,48	70,0	284,0	XOMT160508	12148067200	12148007500	T20

(продолжение)

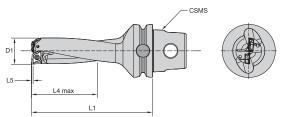


B67

Сверла Тор Cut Plus™ • 4 x D • Хвостовик SNF

(продолжение)

номер заказа	номер по каталогу	D1	D	L1	L4 max	L5	LS	L	эталонная пластина	винт пластины	ключ Torx	размер Тогх
3895531	TCP470R4SNF40M	47,0	40	219,0	188,0	1,48	70,0	289,0	XOMT160508	12148067200	12148007500	T20
3895532	TCP480R4SNF40M	48,0	40	223,0	192,0	1,48	70,0	293,0	XOMT160508	12148067200	12148007500	T20
3895533	TCP490R4SNF40M	49,0	40	228,0	196,0	1,48	70,0	298,0	XOMT160508	12148067200	12148007500	T20
3895534	TCP500R4SNF40M	50,0	40	233,0	200,0	1,48	70,0	303,0	XOMT160508	12148067200	12148007500	T20
3895535	TCP510R4SNF40M	51,0	40	237,0	204,0	1,48	70,0	307,0	XOMT160508	12148067200	12148007500	T20
3895536	TCP520R4SNF40M	52,0	40	242,0	208,0	1,48	70,0	312,0	XOMT160508	12148067200	12148007500	T20
3895537	TCP530R4SNF40M	53,0	40	247,0	212,0	1,48	70,0	317,0	XOMT160508	12148067200	12148007500	T20
3895538	TCP540R4SNF40M	54,0	40	252,0	216,0	1,48	70,0	322,0	XOMT160508	12148067200	12148007500	T20
3895539	TCP550R4SNF40M	55,0	40	257,0	220,0	1,48	70,0	327,0	XOMT160508	12148067200	12148007500	T20
3895540	TCP560R4SNF40M	56,0	40	262,0	224,0	1,48	70,0	332,0	XOMT160508	12148067200	12148007500	T20
3895541	TCP570R4SNF40M	57,0	40	267,0	228,0	1,48	70,0	337,0	XOMT160508	12148067200	12148007500	T20
3895542	TCP580R4SNF40M	58,0	40	272,0	232,0	1,48	70,0	342,0	XOMT160508	12148067200	12148007500	T20
3895543	TCP590R4SNF40M	59,0	40	278,0	236,0	1,48	70,0	348,0	XOMT160508	12148067200	12148007500	T20
3895544	TCP600R4SNF40M	60,0	40	283,0	240,0	1,48	70,0	353,0	XOMT160508	12148067200	12148007500	T20


ВНИМАНИЕ!

При обработке сквозных отверстий, на выходе инструмента из заготовки, возможно образование небольших металлических дисков. Когда сверло находится в стационарном положении, а заготовка вращается, эти диски под действием центробежной силы, на большой скорости вылететь из патрона. Поэтому следует предусмотреть соответствующее ограждение во избежании травм и повреждений.

Сверла Top Cut Plus™ • 3 x D • Хвостовик KM50TS™

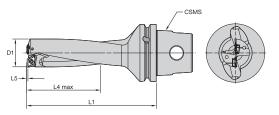
- Сверла поставляются с винтами для крепления пластин и ключом Torx.
- Информация о пластинах представлена на стр. В72.

■ 3 x D • Корпуса сверл с хвостовиком KM50TS

номер заказа	номер по каталогу	D1	L1	L4 max	L5	размер системы CSWS	эталонная пластина	винт пластины	ключ Torx	размер Тогх
3898290	KM50TSTCP250R3M	25,0	112,0	75,0	0,70	KM50TS	XOMT09T306	12148067200	12148086600	T8
3898291	KM50TSTCP260R3M	26,0	116,0	78,0	0,70	KM50TS	XOMT09T306	12148067200	12148086600	T8
3898292	KM50TSTCP270R3M	27,0	120,0	81,0	0,70	KM50TS	XOMT09T306	12148067200	12148086600	T8
3898383	KM50TSTCP280R3M	28,0	123,0	84,0	0,70	KM50TS	XOMT09T306	12148067200	12148086600	T8
3898384	KM50TSTCP290R3M	29,0	127,0	87,0	0,70	KM50TS	XOMT09T306	12148067200	12148086600	T8
3898385	KM50TSTCP300R3M	30,0	131,0	90,0	0,70	KM50TS	XOMT09T306	12148067200	12148086600	T8
3898386	KM50TSTCP310R3M	31,0	135,0	93,0	0,70	KM50TS	XOMT09T306	12148067200	12148086600	T8
3898387	KM50TSTCP320R3M	32,0	138,0	96,0	0,70	KM50TS	XOMT09T306	12148067200	12148086600	T8
3898388	KM50TSTCP330R3M	33,0	142,0	99,0	0,70	KM50TS	XOMT09T306	12148067200	12148086600	T8
3898389	KM50TSTCP340R3M	34,0	146,0	102,0	0,70	KM50TS	XOMT09T306	12148067200	12148086600	T8
3898390	KM50TSTCP350R3M	35,0	150,0	105,0	0,96	KM50TS	XOMT12T308	12148055800	12148082400	T15
3898391	KM50TSTCP360R3M	36,0	153,0	108,0	0,96	KM50TS	XOMT12T308	12148055800	12148082400	T15
3898392	KM50TSTCP370R3M	37,0	157,0	111,0	0,96	KM50TS	XOMT12T308	12148055800	12148082400	T15
3898393	KM50TSTCP380R3M	38,0	160,0	114,0	0,96	KM50TS	XOMT12T308	12148055800	12148082400	T15
3898394	KM50TSTCP390R3M	39,0	165,0	117,0	0,96	KM50TS	XOMT12T308	12148055800	12148082400	T15
3898395	KM50TSTCP400R3M	40,0	168,0	120,0	0,96	KM50TS	XOMT12T308	12148055800	12148082400	T15
3898396	KM50TSTCP410R3M	41,0	172,0	123,0	0,96	KM50TS	XOMT12T308	12148055800	12148082400	T15
3898397	KM50TSTCP420R3M	42,0	176,0	126,0	0,96	KM50TS	XOMT12T308	12148055800	12148082400	T15
3898398	KM50TSTCP430R3M	43,0	180,0	129,0	0,96	KM50TS	XOMT12T308	12148055800	12148082400	T15
3898399	KM50TSTCP440R3M	44,0	183,0	132,0	0,96	KM50TS	XOMT12T308	12148055800	12148082400	T15
3898400	KM50TSTCP450R3M	45,0	187,0	135,0	0,96	KM50TS	XOMT12T308	12148055800	12148082400	T15

ВНИМАНИЕ!

При обработке сквозных отверстий, на выходе инструмента из заготовки, возможно образование небольших металлических дисков. Когда сверло находится в стационарном положении, а заготовка вращается, эти диски под действием центробежной силы, на большой скорости вылететь из патрона. Поэтому следует предусмотреть соответствующее ограждение во избежании травм и повреждений.



Сверла со сменными режущими пластинами

Сверла Top Cut Plus™ • 3 x D • Хвостовик KM63XMZ™

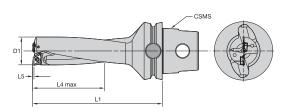
- Сверла поставляются с винтами для крепления пластин и ключом Torx.
- Информация о пластинах представлена на стр. В72.

■ 3 x D • Корпуса сверл с хвостовиком KM63XMZ

номер заказа	номер по каталогу	D1	L1	L4 max	L5	размер системы CSWS	эталонная пластина	винт пластины	ключ Torx	размер Тогх
3898401	KM63XMZTCP350R3YM	35,0	154,0	105,0	0,96	KM63XMZ	XOMT12T308	12148055800	12148082400	T15
3898402	KM63XMZTCP360R3YM	36,0	157,0	108,0	0,96	KM63XMZ	XOMT12T308	12148055800	12148082400	T15
3898403	KM63XMZTCP370R3YM	37,0	161,0	111,0	0,96	KM63XMZ	XOMT12T308	12148055800	12148082400	T15
3898404	KM63XMZTCP380R3YM	38,0	165,0	114,0	0,96	KM63XMZ	XOMT12T308	12148055800	12148082400	T15
3898405	KM63XMZTCP390R3YM	39,0	169,0	117,0	0,96	KM63XMZ	XOMT12T308	12148055800	12148082400	T15
3898406	KM63XMZTCP400R3YM	40,0	172,0	120,0	0,96	KM63XMZ	XOMT12T308	12148055800	12148082400	T15
3898407	KM63XMZTCP410R3YM	41,0	176,0	123,0	0,96	KM63XMZ	XOMT12T308	12148055800	12148082400	T15
3898408	KM63XMZTCP420R3YM	42,0	180,0	126,0	0,96	KM63XMZ	XOMT12T308	12148055800	12148082400	T15
3898409	KM63XMZTCP430R3YM	43,0	184,0	129,0	0,96	KM63XMZ	XOMT12T308	12148055800	12148082400	T15
3898410	KM63XMZTCP440R3YM	44,0	190,0	132,0	0,96	KM63XMZ	XOMT12T308	12148055800	12148082400	T15
3898411	KM63XMZTCP450R3YM	45,0	191,0	135,0	0,96	KM63XMZ	XOMT12T308	12148055800	12148082400	T15
3898412	KM63XMZTCP460R3YM	46,0	195,0	138,0	1,48	KM63XMZ	XOMT160508	12148067200	12148007500	T20
3898413	KM63XMZTCP470R3YM	47,0	199,0	141,0	1,48	KM63XMZ	XOMT160508	12148067200	12148007500	T20
3898414	KM63XMZTCP480R3YM	48,0	202,0	144,0	1,48	KM63XMZ	XOMT160508	12148067200	12148007500	T20
3898415	KM63XMZTCP490R3YM	49,0	206,0	147,0	1,48	KM63XMZ	XOMT160508	12148067200	12148007500	T20
3898416	KM63XMZTCP500R3YM	50,0	210,0	150,0	1,48	KM63XMZ	XOMT160508	12148067200	12148007500	T20

ВНИМАНИЕ!

При обработке сквозных отверстий, на выходе инструмента из заготовки, возможно образование небольших металлических дисков. Когда сверло находится в стационарном положении, а заготовка вращается, эти диски под действием центробежной силы, на большой скорости вылететь из патрона. Поэтому следует предусмотреть соответствующее ограждение во избежании травм и повреждений.

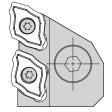


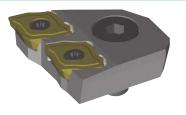
Сверла Top Cut Plus™ • 3 x D • Хвостовик KM63TS™

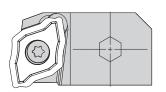
- Сверла поставляются с винтами для крепления пластин и ключом Torx.
- Информация о пластинах представлена на стр. В72.

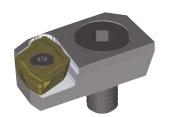
■ 3 x D • Корпуса сверл с хвостовиком KM63TS

номер заказа	номер по каталогу	D1	L1	L4 max	L5	размер системы CSWS	эталонная пластина	винт пластины	ключ Torx	размер Тогх
3898417	KM63TSTCP350R3M	35,0	154,0	105,0	0,96	KM63TS	XOMT12T308	12148055800	12148082400	T15
3898418	KM63TSTCP360R3M	36,0	157,0	108,0	0,96	KM63TS	XOMT12T308	12148055800	12148082400	T15
3898419	KM63TSTCP370R3M	37,0	161,0	111,0	0,96	KM63TS	XOMT12T308	12148055800	12148082400	T15
3898420	KM63TSTCP380R3M	38,0	165,0	114,0	0,96	KM63TS	XOMT12T308	12148055800	12148082400	T15
3898421	KM63TSTCP390R3M	39,0	169,0	117,0	0,96	KM63TS	XOMT12T308	12148055800	12148082400	T15
3898423	KM63TSTCP400R3M	40,0	172,0	120,0	0,96	KM63TS	XOMT12T308	12148055800	12148082400	T15
3898424	KM63TSTCP410R3M	41,0	176,0	123,0	0,96	KM63TS	XOMT12T308	12148055800	12148082400	T15
3898425	KM63TSTCP420R3M	42,0	180,0	126,0	0,96	KM63TS	XOMT12T308	12148055800	12148082400	T15
3898426	KM63TSTCP430R3M	43,0	184,0	129,0	0,96	KM63TS	XOMT12T308	12148055800	12148082400	T15
3898427	KM63TSTCP440R3M	44,0	187,0	132,0	0,96	KM63TS	XOMT12T308	12148055800	12148082400	T15
3898428	KM63TSTCP450R3M	45,0	191,0	135,0	0,96	KM63TS	XOMT12T308	12148055800	12148082400	T15
3898429	KM63TSTCP460R3M	46,0	195,0	138,0	1,48	KM63TS	XOMT160508	12148067200	12148007500	T20
3898430	KM63TSTCP470R3M	47,0	199,0	141,0	1,48	KM63TS	XOMT160508	12148067200	12148007500	T20
3898431	KM63TSTCP480R3M	48,0	202,0	144,0	1,48	KM63TS	XOMT160508	12148067200	12148007500	T20
3898432	KM63TSTCP490R3M	49,0	206,0	147,0	1,48	KM63TS	XOMT160508	12148067200	12148007500	T20
3898433	KM63TSTCP500R3M	50,0	210,0	150,0	1,48	KM63TS	XOMT160508	12148067200	12148007500	T20

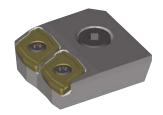

ВНИМАНИЕ!


При обработке сквозных отверстий, на выходе инструмента из заготовки, возможно образование небольших металлических дисков. Когда сверло находится в стационарном положении, а заготовка вращается, эти диски под действием центробежной силы, на большой скорости вылететь из патрона. Поэтому следует предусмотреть соответствующее ограждение во избежании травм и повреждений.


- Сменные кассеты для сверл Top Cut Plus™
- Предназначены для использования со сверлами, изготовленными по специальному заказу.
- Сменные кассеты поставляются с винтами и ключами.






■ Сменные кассеты • Внутренняя обработка

номер заказа	номер по каталогу	D min	D max	пластина 1	винт пластины	ключ	шести- гранник	винт пластины	ключ Torx	размер Torx
2223017	12167920000	61,0	64,0	XOMT09T306	12148037200	12148041200	4 мм	12148067200	12148086600	T8
2223018	12167920200	64,0	67,0	XOMT09T306	12148037200	12148041200	4 мм	12148067200	12148086600	T8
2207898	12167920400	67,0	76,0	XOMT12T308	12147670800	12148041200	4 мм	12148038800	12148082400	T15
2223019	12167920600	76,0	81,0	XOMT12T308	12147670800	12148041200	4 мм	12148038800	12148082400	T15
2223020	12167920800	81,0	86,0	XOMT12T308	12147670800	12148041200	4 мм	12148038800	12148082400	T15
2223021	12167921000	86,0	99,0	XOMT160508	12147670800	12148041200	4 мм	12148007200	12148007500	T20
2223022	12167921200	99,0	106,0	XOMT160508	12147670800	12148041200	4 мм	12148007200	12148007500	T20
2223053	12167921400	107,0	110,0	XOMT160508	12147670800	12148041200	4 мм	12148007200	12148007500	T20

■ Сменные кассеты • Наружная обработка

					винт		шести-	винт	ключ	размер
номер заказа	номер по каталогу	D min	D max	пластина 1	пластины	ключ	гранник	пластины	Torx	Torx
2223054	12167920100	61,0	67,0	XOMT09T306	12148037200	12148041200	4 MM	12148067200	12148086600	T8
2207899	12167920500	67,0	76,0	XOMT12T308	12147670800	12148041200	4 MM	12148038800	12148082400	T15
2223055	12167920700	76,0	86,0	XOMT12T308	12147670800	12148041200	4 мм	12148038800	12148082400	T15
2223056	12167921100	86,0	100,0	XOMT160508	12147670800	12148041200	4 мм	12148007200	12148007500	T20
2223057	12167921300	99,0	110,0	XOMT160508	12147670800	12148041200	4 мм	12148007200	12148007500	T20

ВНИМАНИЕ!

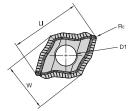
При обработке сквозных отверстий, на выходе инструмента из заготовки, возможно образование небольших металлических дисков. Когда сверло находится в стационарном положении, а заготовка вращается, эти диски под действием центробежной силы, на большой скорости вылететь из патрона. Поэтому следует предусмотреть соответствующее ограждение во избежании травм и повреждений.



Пластины для сверл Top Cut Plus™

■ XOMT-34

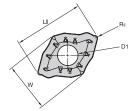
• лучший выбор


○ альтернативный выбор

M			_	5515	3030	7015	335
N a	Н						
N a	S		•		0		
M • • • K	N		•				
M • •	K			•	0		0
P • •	М	1			•		•
	Р				•	•	0

номер по каталогу	LI	W	D1	S	Rε	F			ž	필
XOMT04T10334	6,91	4,53	2,10	1,98	0,30				•	•
XOMT05020434	8,76	5,75	2,50	2,78	0,40				•	•
XOMT07030434	10,58	6,96	2,80	3,18	0,40	•			•	•
XOMT09T30634	15,43	9,92	3,40	3,97	0,60	•	•	•	•	•
XOMT12T30834	20,09	12,94	4,40	3,97	0,80				•	
XOMT16050834	25,84	16,84	5,50	5,56	0,80					

■ XOMT-35

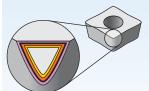

лучший выборальтернативный выбор

		515	030	015	35
Н					
	•		0		
N S	•				
K		•	0		0
M			•		•
Р			•	•	0

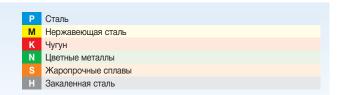
				_	ъ.	≥	S 2	9	Š	2
номер по каталогу	LI	W	D1	S	Rε		-		\vdash	-
XOMT04T10335	6,91	4,53	2,10	1,98	0,30	•				
XOMT05020435	8,76	5,75	2,50	2,78	0,40	•				
XOMT07030435	10,58	6,96	2,80	3,18	0,40	•	•	•	•	•
XOMT09T30635	15,43	9,92	3,40	3,97	0,60	•		•	•	•
XOMT12T30835	20,09	12,94	4,40	3,97	0,80	•			•	
XOMT16050835	25,84	16,84	5,50	5,56	0,80	•				

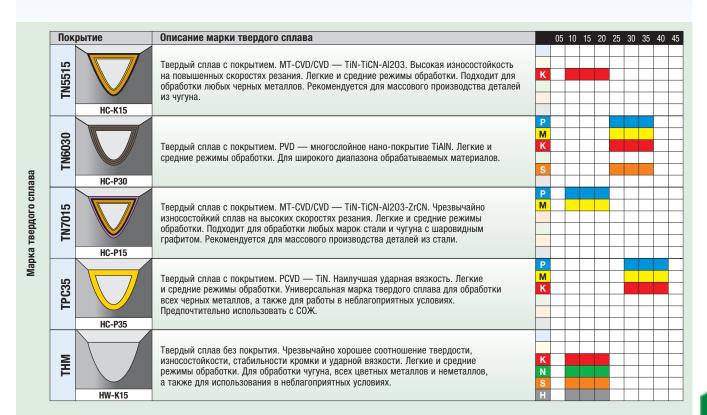
■ XOMT-36

лучший выборальтернативный выбор


K O O	S H	0030	015	335
	K	0		0
	Р	•	•	0

номер по каталогу	LI	W	D1	S	Rε	Ĭ	Ž	F
XOMT05020436	8,76	5,75	2,50	2,78	0,40	•		
XOMT07030436	10,58	6,96	2,80	3,18	0,40			
XOMT09T30636	15,43	9,92	3,40	3,97	0,60	•	•	
XOMT12T30836	20,09	12,94	4,40	3,97	0,80		•	
XOMT16050836	25,84	16,84	5,50	5,56	0,80	•		





Пластины для сверл Тор Cut™и Top Cut Plus™

Покрытия разработаны для обеспечения возможности выполнения высокоскоростной чистовой и получистовой обработки.

Геометрии пластин для сверл Top Cut и Top Cut Plus

Κ

XOMT...-34, LPGX...-34

Универсальная геометрия с высокой надежностью режущих кромок для операций общего назначения, а также для использования в неблагоприятных условиях.

 Для обработки стали и чугуна.

XOMT...-35

Положительная геометрия, обеспечивающая низкие усилия резания. Предназначена для использования на высоких скоростях и подачах. Минимизирует образование заусенцев и сколов.

K

N

- Для обработки высоколегированной и нержавеющей стали.
- Для обработки чугуна и цветных металлов.

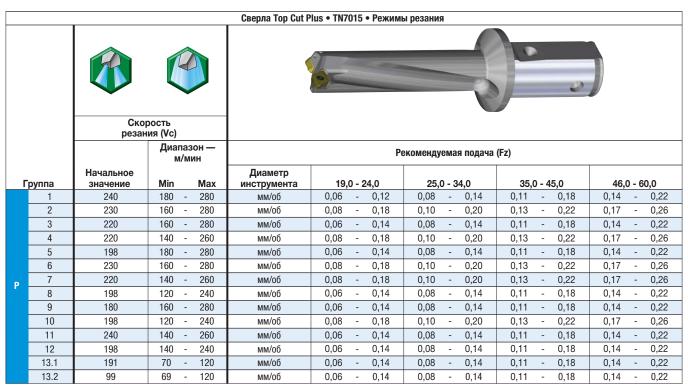
XOMT...-36, LPGX...-36

Сверхположительная геометрия с острыми режущими кромками для плавного резания и надежного стружкоотвода при обработке вязких материалов.

 Для обработки низколегированной и нержавеющей стали. Рекомендации по применению • Сверла Тор Cut Plus™ • TN5515

Сверла Top Cut Plus • TN5515 • Режимы резания Скорость резания (Vc) Диапазон — Рекомендуемая подача (Fz) м/мин Начальное Диаметр Группа Min Max 19,0 - 24,0 25,0 - 34,0 35,0 - 45,0 46,0 - 60,0 инструмента значение 201 140 260 мм/об 0,10 0,18 0,10 0,22 0,14 0,25 0,20 0,30 175 120 230 мм/об 0,10 0,18 0,10 0,14 0,25 0,20 0,30 16 0,22 17 191 130 мм/об 0,10 0,18 0,10 0,22 0,14 0,25 0,20 0,30 250 18 175 120 230 мм/об 0,10 0,18 0,10 0,20 0,14 0,25 0,20 0,30 19 191 130 250 мм/об 0,10 0,18 0,10 0,20 0,14 0,25 0,20 0,30 20 160 110 210 мм/об 0,10 0,18 0,10 0,20 0,14 0,25 0,20 0,30

B75



Рекомендации по применению • Сверла Тор Cut Plus™ • TN6030

				Сверла Top Cut F	Plus • TN6030 • Режимі	ы резания		
			оость ия (Vc)	1				
			Диапазон — м/мин		Po	екомендуемая подача	(Fz)	
Г	руппа	Начальное значение	Min Max	Диаметр инструмента	19,0 - 24,0	25,0 - 34,0	35,0 - 45,0	46,0 - 60,0
	1	220	159 - 280	мм/об	0,06 - 0,12	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22
	2	209	149 - 261	мм/об	0,08 - 0,18	0,10 - 0,20	0,13 - 0,22	0,17 - 0,26
	3	200	139 - 252	мм/об	0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22
	4	200	139 - 252	мм/об	0,08 - 0,18	0,10 - 0,20	0,13 - 0,22	0,17 - 0,26
	5	169	119 - 230	мм/об	0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22
	6	200	149 - 261	мм/об	0,08 - 0,18	0,10 - 0,20	0,13 - 0,22	0,17 - 0,26
P	7	200	139 - 252	мм/об	0,08 - 0,18	0,10 - 0,20	0,13 - 0,22	0,17 - 0,26
Р	8	174	119 - 230	мм/об	0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22
	9	149	99 - 210	мм/об	0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22
	10	180	139 - 252	мм/об	0,08 - 0,18	0,10 - 0,20	0,13 - 0,22	0,17 - 0,26
	11	149	99 - 210	мм/об	0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22
	12	169	119 - 221	мм/об	0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22
	13.1	159	110 - 210	мм/об	0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22
	13.2	79	59 - 101	мм/об	0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22
	14.1	119	79 - 151	мм/об	0,06 - 0,12	0,08 - 0,12	0,10 - 0,15	0,12 - 0,19
	14.2	99	69 - 131	мм/об	0,06 - 0,12	0,08 - 0,12	0,10 - 0,15	0,12 - 0,19
M	14.3	79	49 - 101	мм/об	0,06 - 0,12	0,08 - 0,12	0,10 - 0,15	0,12 - 0,19
	14.4	79	49 - 101	мм/об	0,06 - 0,12	0,08 - 0,12	0,10 - 0,15	0,12 - 0,19
	15	180	119 - 230	мм/об	0,10 - 0,18	0,10 - 0,22	0,14 - 0,25	0,20 - 0,30
	16	149	110 - 201	мм/об	0,10 - 0,18	0,10 - 0,22	0,14 - 0,25	0,20 - 0,30
V	17	169	119 - 221	мм/об	0,10 - 0,18	0,10 - 0,22	0,14 - 0,25	0,20 - 0,30
K	18	149	110 - 201	мм/об	0,10 - 0,18	0,10 - 0,20	0,14 - 0,25	0,20 - 0,30
	19	169	119 - 221	мм/об	0,10 - 0,18	0,10 - 0,20	0,14 - 0,25	0,20 - 0,30
	20	139	99 - 191	мм/об	0,10 - 0,18	0,10 - 0,20	0,14 - 0,25	0,20 - 0,30
	31	44	40 - 58	мм/об	0,10 - 0,18	0,10 - 0,22	0,14 - 0,25	0,20 - 0,30
	32	35	30 - 46	мм/об	0,10 - 0,18	0,10 - 0,22	0,14 - 0,25	0,20 - 0,30
S	33	23	17 - 32	мм/об	0,10 - 0,18	0,10 - 0,22	0,14 - 0,25	0,20 - 0,30
	34	17	14 - 24	мм/об	0,10 - 0,18	0,10 - 0,22	0,14 - 0,25	0,20 - 0,30
	35	20	14 - 26	мм/об	0,10 - 0,18	0,10 - 0,22	0,14 - 0,25	0,20 - 0,30

Рекомендации по применению • Сверла Тор Cut Plus™ • TN7015

Рекомендации по применению • Сверла Тор Cut Plus™ • TPC35

				Сверла Top Cut I	Plus • TPC35 • Режимь	і резания								
			рость											
Диапазон — м/мин				Рекомендуемая подача (Fz)										
Г	руппа	Начальное значение	Min Max	Диаметр инструмента	19,0 - 24,0	25,0 - 34,0	35,0 - 45,0	46,0 - 60,0						
	1	204	150 - 260	мм/об	0,06 - 0,12	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22						
	2	186	130 - 240	мм/об	0,08 - 0,18	0,10 - 0,20	0,13 - 0,22	0,17 - 0,26						
	3	171	120 - 220	мм/об	0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22						
	4	171	120 - 220	мм/об	0,08 - 0,18	0,10 - 0,20	0,13 - 0,22	0,17 - 0,26						
	5	149	100 - 200	мм/об	0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22						
	6	185	130 - 240	мм/об	0,08 - 0,18	0,10 - 0,20	0,13 - 0,22	0,17 - 0,26						
Р	7	171	120 - 220	мм/об	0,08 - 0,18	0,10 - 0,20	0,13 - 0,22	0,17 - 0,26						
	8	149	100 - 200	мм/об	0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22						
	9 10	130	80 - 180 120 - 220	мм/об	0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22						
	11	171 130	120 - 220 80 - 180	мм/об мм/об	0,08 - 0,18 0,06 - 0,14	0,10 - 0,20 0,08 - 0,14	0,13 - 0,22 0,11 - 0,18	0,17 - 0,26 0,14 - 0,22						
	12	149	100 - 200	мм/об	0,06 - 0,14 0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22						
	13.1	130	80 - 180	мм/об	0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22						
	13.2	70	40 - 90	мм/об	0,06 - 0,14	0,08 - 0,14	0,11 - 0,18	0,14 - 0,22						
	14.1	110	70 - 150	мм/об	0,06 - 0,12	0,08 - 0,12	0,10 - 0,15	0,12 - 0,19						
	14.2	90	60 - 120	мм/об	0,06 - 0,12	0,08 - 0,12	0,10 - 0,15	0,12 - 0,19						
M	14.3	70	45 - 90	мм/об	0,06 - 0,12	0,08 - 0,12	0,10 - 0,15	0,12 - 0,19						
	14.4	59	40 - 80	мм/об	0,06 - 0,12	0,08 - 0,12	0,10 - 0,15	0,12 - 0,19						
	17	149	100 - 200	мм/об	0,10 - 0,18	0,10 - 0,22	0,14 - 0,25	0,20 - 0,30						
K	18	130	80 - 180	мм/об	0,10 - 0,18	0,10 - 0,20	0,14 - 0,25	0,20 - 0,30						
_ ^	19	169	120 - 220	мм/об	0,10 - 0,18	0,10 - 0,20	0,14 - 0,25	0,20 - 0,30						
	20	241	100 - 200	мм/об	0,10 - 0,18	0,10 - 0,20	0,14 - 0,25	0,20 - 0,30						

Сверла Top Cut Plus • THM • Режимы резания Скорость резания (Vc) Диапазон — Рекомендуемая подача (Fz) м/мин Начальное Диаметр 19,0 - 24,0 Min 35,0 - 45,0 46,0 - 60,0 Группа Max 25,0 - 34,0 значение инструмента 119 80 160 0,10 0,18 0,10 0,22 0,14 0,25 0,20 0,30 мм/об 16 95 60 130 мм/об 0,10 0,18 0,10 0,22 0,14 0,25 0,20 0,30 0,14 17 119 80 160 мм/об 0,10 0,18 0,10 0,22 0,25 0,20 0,30 95 мм/об 0,14 0,25 0,30 18 60 130 0,10 0,18 0,10 0,20 0,20 134 90 180 мм/об 0,14 0,25 0,30 19 0,10 0,18 0,10 0,20 0,20 20 119 80 160 мм/об 0,10 0,18 0,10 0,20 0,14 0,25 0,20 0,30 21 375 250 мм/об 0,08 0,18 0,10 0,22 0,14 0,25 0,20 0,30 500 22 375 250 500 мм/об 0,08 0,18 0,10 0,22 0,14 0,25 0,20 0,30 23 326 200 450 мм/об 0,08 0,18 0,10 0,22 0,14 0,25 0,20 0,30 24 326 200 мм/об 0,08 0,18 0,10 0,22 0,14 0,25 0,20 0,30 450 25.1 235 150 320 мм/об 0,08 0,18 0,10 0,22 0,14 0,25 0,20 0,30 25.2 114 80 150 мм/об 0,10 0,18 0,10 0,24 0,15 0,28 0,21 0,31 26 114 80 150 мм/об 0,10 0,18 0,10 0,24 0,15 0,28 0,21 0,31 27 99 60 140 мм/об 0,10 0,18 0,10 0,24 0,15 0,28 0,21 0,31 32 20 17 26 мм/об 0,10 0,18 0,10 0,22 0,14 0,25 0,20 0,30 33 15 14 21 мм/об 0,10 0,18 0,10 0,22 0,14 0,25 0,20 0,30 34 12 11 17 мм/об 0,10 0,18 0,10 0,22 0,14 0,25 0,20 0,30 35 12 11 17 мм/об 0,10 0,18 0,10 0,22 0,14 0,25 0,20 0,30 36 40 34 мм/об 0,10 0,18 0,10 0,22 0,14 0,25 0,20 0,30 61 37 34 29 46 мм/об 0,10 0,18 0,10 0,22 0,14 0,25 0,20 0,30

МОЩНОСТЬ СПЕЦИАЛЬНОГО **ИНСТРУМЕНТА**

- Сопротивление абразивному износу увеличивается в 500 раз по сравнению со стандартными твердосплавными развертками.
- Отвод тепла от режущих кромок во избежание их преждевременного износа и увеличения срока службы инструмента.
- Ассортимент включает развертки с мелким, средним и крупным шагом зубьев.
- Увеличение срока службы инструмента между переточками и сокращение инструментальных затрат.

Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт www.widia.com.

Хвостовики сверл

Прочность хвостовика сверла и жесткость его закрепления на станке играют важную роль в успешном использовании сверл. Предпочтительным вариантом для закрепления сверла является цилиндрический хвостовик с прямолинейной лыской и коническим отверстием с фаской (рис. 1). Используемый в сочетании с соответствующими патронами, данный тип крепления обеспечивает осевое закрепление вплотную к большому установочному фланцу, что гарантирует максимальную стабильность и безопасность работы на всех современных станках. Все цилиндрические хвостовики, изготовленные по DIN 6595/ISO 9766, имеют направляющую канавку для облегчения позиционирования сверла.

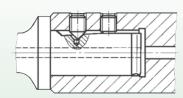


Рис. 1. Хвостовик сверла по DIN 6595/ISO 9766 и крепление с помощью винтов с коническим и плоским торцем.

Сверла с хвостовиками по DIN 6595 или ISO 9766 могут также быть установлены в стандартные патроны для фрез (рис. 2) с соединительными размерами в соответствии с DIN 1835/2 или ISO 5414/1 (Weldon $^{\circ}$ и Whistle Notch $^{\infty}$).

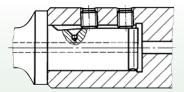
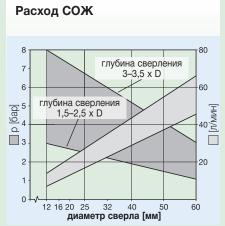


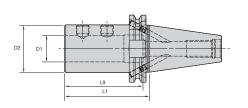
Рис. 2. Хвостовик сверла по DIN 6595/ISO 9766 и крепление с помощью двух винтов с плоским торцем.

Сверла Тор Cut диаметром D = 11-16 с цилиндрическими хвостовиками устанавливаются в стандартные патроны для сверл и фрез, а также в цанговые патроны (рис. 3).

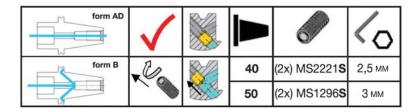

Рис. 3. Комбинированный хвостовик по DIN 1835 B/E и DIN 6535.

Основные зависимости для сверл Top Cut Plus™ и Top Cut™

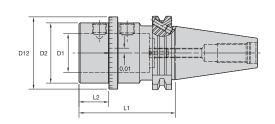
Диаграммы используются для определения силы подачи, мощности привода и расхода СОЖ. Графики построены на основе данных, полученных при обработке низколегированной стали с $R_{\rm m}$ = 800 МПа и $v_{\rm C}$ = 100 м/мин.



Сверла Тор Cut™ и Тор Cut Plus™ • Базовые конуса

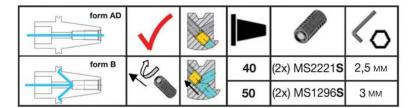


■ TC/TCP • DV форма B/AD


номер заказа	номер по каталогу	D1	D2	L1	L9	зажимной винт с коническим торцем	зажимной винт	ключ	Нм
2030779	12168344100	25	45	80	59	12166903700	12166903900	12148041400	40
2030782	12168345100	25	45	80	59	12166903700	12166903900	12148041400	40
2030795	12168354100	32	52	90	63	12166903700	12166903900	12148041400	40
2030800	12168355100	32	52	80	63	12166903700	12166903900	12148041400	40
2030813	12168364100	40	60	95	73	12166903800	12166904000	12148079000	50
2030816	12168365100	40	60	90	73	12166903800	12166904000	12148079000	50

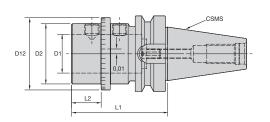
ПРИМЕЧАНИЕ: Затяжной болт заказывается отдельно.

Сверла Тор Cut™ и Тор Cut Plus™ • Базовые конуса • Регулируемые

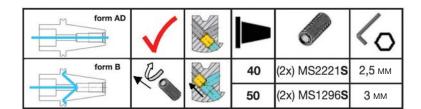


■ TC/TCP • DV форма B/AD

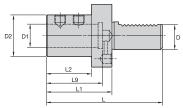
							зажимной винт с	зажимной		
номер заказа	номер по каталогу	D1	D2	D12	L1	L2	коническим торцем	винт	ключ	Нм
2030780	12168344300	25	50	64	80	61	12147775500	12147775300	12148041400	40
2030793	12168345300	25	50	64	80	61	12147775500	12147775300	12148041400	40
2030797	12168354300	32	55	71	90	71	12147775500	12147775300	12148041400	40
2030801	12168355300	32	55	71	90	71	12147775500	12147775300	12148041400	40
2030814	12168364300	40	65	80	110	91	12147775600	12147775400	12148079000	50
2030818	12168365300	40	65	80	90	71	12147775600	12147775400	12148079000	50


ПРИМЕЧАНИЕ: Затяжной болт заказывается отдельно.

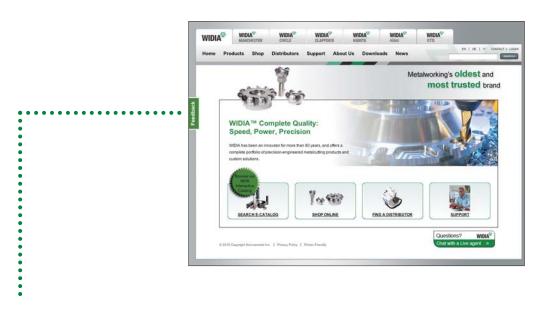
Сверла Тор Cut™ и Тор Cut Plus™ • Базовые конуса • Регулируемые



■ TC/TCP • BT форма B/AD


номер заказа	номер по каталогу	D1 I	D2	D12	L1	L2	размер системы CSMS	зажимной винт с коническим торцем	зажимной винт	ключ	Нм
2030781	12168344400	25	50	64	80	53	BT40	12147775600	12147775400	12148079000	40
2030794	12168345400	25	50	64	80	42	BT50	12147775500	12147775300	12148041400	40
2030798	12168354400	32	55	71	90	63	BT40	12147775500	12147775300	12148041400	40
2030802	12168355400	32	55	71	90	52	BT50	12147775500	12147775300	12148041400	40
2030815	12168364400	40 (65	80	110	83	BT40	12147775600	12147775400	12148079000	50
2030819	12168365400	40 (65	80	95	57	BT50	12147775600	12147775400	12148079000	50

ПРИМЕЧАНИЕ: Затяжной болт заказывается отдельно.


■ TC/TCP • Базовые держатели VDI

									зажимной винт с	зажимной		
номер заказа	номер по каталогу	D1	D2	D	L1	L2	L9	L	коническим торцем	винт	ключ	Нм
2029719	12168243000	25	45	30	71	49	65	126	12166903700	12166903900	12148041400	40
2029720	12168244000	25	45	40	75	53	59	138	12166903700	12166903900	12148041400	40
2029721	12168245000	25	45	50	80	55	59	158	12166903700	12166903900	12148041400	40
2029722	12168253000	32	52	30	75	53	69	130	12166903700	12166903900	12148041400	40
2029723	12168254000	32	52	40	75	53	69	138	12166903700	12166903900	12148041400	40
2029724	12168255000	32	52	50	80	56	63	158	12166903700	12166903900	12148041400	40
2029726	12168265000	40	60	50	90	65	73	168	12166903800	12166904000	12148079000	50
2029725	12168264000	40	65	40	90	65	73	153	12166903800	12166904000	12148079000	50

Интернет

Быстрота и простота регистрации

Вы можете легко зарегистрироваться на www.widia.com для получения полного доступа ко всем разделам сайта.

Выберите ближайшего к Вам регионального официального дистрибьютора WIDIA

WIDIA Products Group предлагает изделия мирового класса и глобальное сервисное обслуживание. Наши дистрибьюторы хорошо знакомы с нашей продукцией, но еще лучше они знают Ваши потребности. Они в состоянии найти грамотное применение глобальным ресурсам компании WIDIA в Ваших конкретных условиях — на Вашем производстве, в Вашем регионе, способствуя развитию Вашего бизнеса.

Свяжитесь с нами

Наши клиенты— наша главная ценность. Поэтому мы стремимся предложить Вам сервис и техническую поддержку самого высокого уровня. Мы открыты для диалога и готовы ответить на все Ваши вопросы и замечания в течение 24 часов.

Продукция WIDIA

Чем бы Вы ни занимались, точением, фрезерованием или сверлением компания WIDIA предоставит Вам высокопроизводительный инструмент, отвечающий Вашим конкретным условиям. Наш ассортимент объединяет широкую программу стандартного инструмента и возможности изготовления специальной продукции для большинства производственных областей.

Линейка инструментов WIDIA для чистовой обработки прецизионных отверстий гарантирует снижение вибрации, рост производительности и увеличение интервалов между проведением планового технического обслуживания. Вы можете рассчитывать на получение соответствующих диаметров отверстий, высокую подачу и скорость, а также на высокое качество обработанной поверхности и отличную цену.

- Простота регулировки и низкие затраты.
- В наличии имеются головки для черновой и чистовой высокоточной обработки.
- Подходит для операций черновой и чистовой обработки в широком диапазоне диаметров.

ROTAFLEX

Инновационные и усовершенствованные системы для высокопроизводительной чистовой обработки отверстий основываются на многолетнем успешном опыте использования на различных металлообрабатывающих предприятиях, а также на недавно разработанном соединении RFX, обеспечивающим простую сборку/разборку и высокую стабильность обработки.

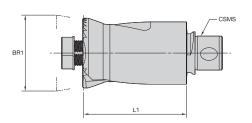
- Рост подачи при выполнении операций черновой обработки до 20%.
- Рост производительности и снижение вибрации.
- Стандартные кассеты с микрорегулировкой для операций чистовой обработки.
- Внутренний подвод СОЖ и широкие стружечные канавки.

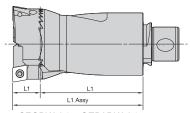
B86 WWW.WIDIA.COM

Обработка отверстий • Инструмент для обработки прецизионных отверстий

ROTAFLEX [™]	B88–B11
Расточные оправки	B88-B89
Ползуны мостового типа	B90-B90
Кассеты под пластины и микрорегулируемые картриджи	B94-B96
Прецизионные чистовые расточные головки с расточным резцом (ГВНВВ)	B97-B98
Расточные резцы для прецизионных чистовых расточных головок (FBHBB)	
Прецизионные чистовые расточные головки (FBH) с державками под пластину	B100-B10
Державки под пластину для прецизионных чистовых расточных головок (FBH)	
Базовые конусы RFX	B103-B106
Рекомендации по применению расточных систем	B107-B109
Описание марок твердых сплавов	B110

WWW.WIDIA.COM B87


ROTAFLEX™ • Расточные оправки TCHS для черновой обработки с двумя режущими кромками • Хвостовик RFX


- Оправка поставляется без кассет под пластины.
- Кассеты заказываются отдельно.

СБОРКА L1 = ОПРАВКА L1 + KACCETA С ПЛАСТИНОЙ L1

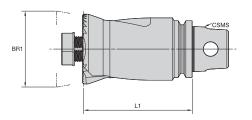
■ TCHS • Хвостовик серии RFX

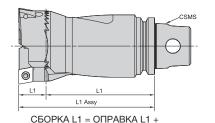
номер заказа	номер по каталогу	диапазон диаметров BR1	L1	размер системы CSMS	КГ
3861179	RFX185TCHS022030	22,500–30,000	27,7	RFX185	0,20
3861180	RFX245TCHS030039	30,000–39,000	37,7	RFX245	0,20
3861181	RFX320TCHS039050	39,000–50,000	48,7	RFX320	0,50
3861182	RFX420TCHS050067	50,000–67,000	68,2	RFX420	1,00
3861183	RFX550TCHS067088	67,000–88,000	90,7	RFX550	2,00
3861184	RFX720TCHS088115	88,000–115,000	113,7	RFX720	4,00

номер по каталогу	фиксирующий винт	дисковая шайба	ключ для винта
RFX185TCHS022030	12147602700	12147600100	12148099300
RFX245TCHS030039	12147602300	12147603900	12147615000
RFX320TCHS039050	12147602400	12147600200	12147615200
RFX420TCHS050067	12147602500	12147604000	12147615300
RFX550TCHS067088	12147602600	12147600300	12147615400
RFX720TCHS088115	12147602800	12147600400	12147615500

______ ROTAFLEX™ • Расточные оправки TCHS для черновой обработки с двумя режущими кромками • Хвостовик KM-TS™

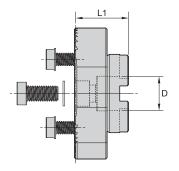
- Оправка поставляется без кассет под пластины.
- Кассеты заказываются отдельно.

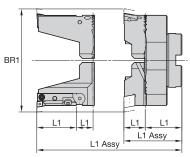




кассета с пластиной L1
■ TCHS • Хвостовик серии КМ™

номер заказа	номер по каталогу	диапазон диаметров BR1	L1	размер системы CSMS	КГ
3861149	KM32TSTCHS022030	22,000–30,000	52,7	KM32TS	0,30
3861150	KM32TSTCHS030039	30,000–39,000	67,7	KM32TS	0,50
3861151	KM32TSTCHS039050	39,000–50,000	63,7	KM32TS	0,70
3861152	KM40TSTCHS030039	30,000–39,000	87,7	KM40TS	0,60
3861173	KM40TSTCHS039050	39,000–50,000	83,7	KM40TS	1,00
3861174	KM40TSTCHS050067	50,000–67,000	78,2	KM40TS	1,10
3861175	KM50TSTCHS050067	50,000-67,000	88,2	KM50TS	1,20
3861176	KM50TSTCHS067088	67,000–88,000	95,7	KM50TS	1,40
3861177	KM63TSTCHS067088	67,000–88,000	95,7	KM63TS	1,80
3861178	KM63TSTCHS088115	88,000–115,000	93,7	KM63TS	2,40


номер по каталогу	фиксирующий винт	дисковая шайба	ключ для винта
KM32TSTCHS022030	12147602700	12147600100	12148099300
KM32TSTCHS030039	12147602300	12147603900	12147615000
KM32TSTCHS039050	12147602400	12147600200	12147615200
KM40TSTCHS030039	12147602300	12147603900	12147615000
KM40TSTCHS039050	12147602400	12147600200	12147615200
KM40TSTCHS050067	12147602500	12147604000	12147615300
KM50TSTCHS050067	12147602500	12147604000	12147615300
KM50TSTCHS067088	12147602600	12147600300	12147615400
KM63TSTCHS067088	12147602600	12147600300	12147615400
KM63TSTCHS088115	12147602800	12147600400	12147615500


ROTAFLEX™ • Ползуны мостового типа • Малый размер

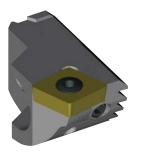
- Для использования с оправками для насадных фрез заказывайте отдельно.
- Ползуны мостового типа поставляются без кассет и вставок под пластины или картриджей с микрорегулировкой.
- Кассеты под пластины для чернового растачивания и вставки для чистового растачивания заказываются отдельно.
- Картриджи с микрорегулировкой для чистового растачивания заказываются отдельно.

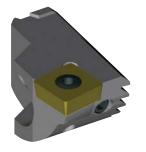
■ Ползуны мостового типа • Малый размер

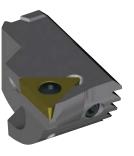
номер заказа	номер по каталогу	диапазон диаметров BR1	D	L1	КГ
2006019	12600208800	87,000–110,000	27,0	40,3	1,70
2005500	12600210900	109,000–133,000	27,0	40,3	1,90
2005553	12600213200	132,000–156,000	27,0	40,3	2,10
2005556	12600215500	155,000–179,000	27,0	40,3	2,30
2005560	12600217800	178,000–202,000	27,0	40,3	2,50

■ Комплектующие

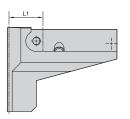
номер по каталогу	фиксирующий винт	фиксирующий винт	дисковая шайба	дисковая шайба	ключ для винта
12600208800	12147613500	12147604500	12147600300	12147740200	12147615500
12600210900	12147613500	12147604500	12147600300	12147740200	12147615500
12600213200	12147613500	12147604500	12147600300	12147740200	12147615500
12600215500	12147613500	12147604500	12147600300	12147740200	12147615500
12600217800	12147613500	12147604500	12147600300	12147740200	12147615500

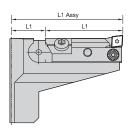

(продолжение)




ROTAFLEX[™] • Ползуны мостового типа • Малый размер

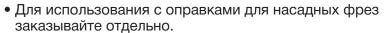
(продолжение)





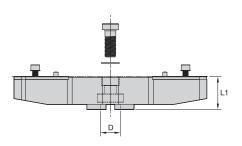
■ Кассеты с разными типами пластин

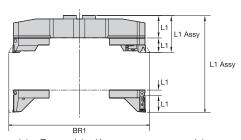
С-тип 70°	С-тип 90°	S-тип 80°	Т-тип 90°
12625906700	12625706700	12626006700	12625806800

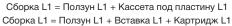


■ Вставка для микрорегулируемых картриджей

номер заказа	номер по каталогу	L1	винт	винт	ключ	ключ
3864647	SMAC087	19,2	12147665000	12147519100	12148041100	12148079000


ROTAFLEX™ • Ползуны мостового типа • Большой размер





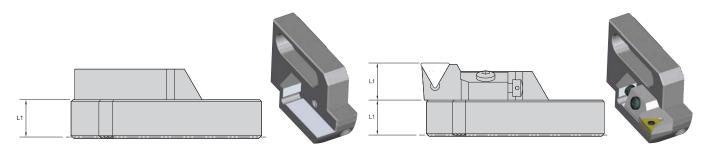
- Ползуны мостового типа поставляются без кассет по ISO, вставок под пластины или картриджей с микрорегулировкой.
- Кассеты по ISO под пластины для чернового растачивания заказываются отдельно.
- Картриджи с микрорегулировкой для чистового растачивания заказываются отдельно.

■ Ползуны мостового типа • Большие

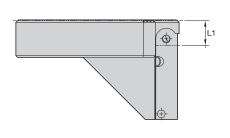
номер заказа	номер по каталогу	диапазон диаметров BR1	D	L1	кг
2005574	12600020000	200,000–280,000	40,0	50,6	4,40
2005602	12600027800	278,000–360,000	40,0	50,6	6,20
2005656	12600035800	358,000–440,000	40,0	61,6	5,50
2005722	12600043800	438,000–520,000	40,0	61,6	7,70

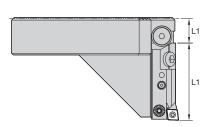
■ Комплектующие

номер по каталогу	фиксирующий винт	фиксирующий винт	дисковая шайба	дисковая шайба	ключ для винта
12600020000	12147739900	12147604500	12147600300	12147740100	12147666700
12600027800	12147739900	12147604500	12147600300	12147740100	12147666700
12600035800	12147739900	12147604500	12147600300	12147740100	12147666700
12600043800	12147739900	12147604500	12147600300	12147740100	12147666700


(продолжение)

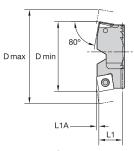
ROTAFLEX™ • Ползуны мостового типа • Большой размер

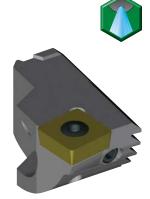

(продолжение)


■ Вставка для картриджей по ISO

			фиксирующий	ключ	регулировочный	ключ
номер заказа	номер по каталогу	L1	винт	для винта	винт	для винта
2005576	12614020100	19,4	12147625200	12148041300	12147739800	12148041200

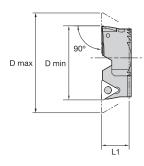
ПРИМЕЧАНИЕ: Рекомендуется использовать картриджи SCLCL12CA12, STGCL12CA16 или SSRCL12CA12 по ISO.

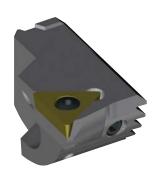




■ Вставка для микрорегулируемых картриджей

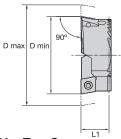
			фиксирующий	ключ	регулировочный	ключ
номер заказа	номер по каталогу	L1	винт	для винта	винт	для винта
3860905	SMAC200	13,1	12147519100	12148079000	12147665000	12148041100

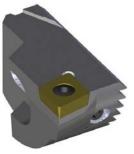


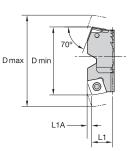


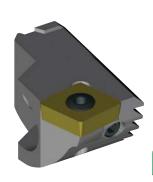
■ Кассеты под пластины с углом в плане 80° • Тип S

						эталонная	зажимной	ключ		регулировочный	ключ
номер заказа	номер по каталогу	D min	D max	L1	L1A	пластина	винт	Torx	Нм	винт	для винта
2005620	12626003000	30,00	39,00	12,35	1,30	SP0703	12148067200	12148086600	1,0	12148069600	12148040900
2005676	12626004000	39,00	50,00	16,30	1,50	SC/SP09T3	12148038800	12148082400	3,0	12148069600	12148040900
2005814	12626005000	50,00	67,00	21,80	2,10	SC/SP1204	12148007200	12148099400	3,5	12147602200	12148041000
2005941	12626006700	67,00	88,00	24,30	2,10	SC/SP1204	12148007200	12148099400	3,5	12147665000	12148041100


■ Кассеты под пластины с углом в плане 90° • Тип Т

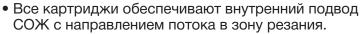

					эталонная	зажимной	ключ		регулировочный	ключ
номер заказа	номер по каталогу	D min	D max	L1	пластина	винт	Torx	Нм	винт	для винта
2005674	12625804000	39,00	50,00	16,30	TC/TP1102	12148068700	12148086600	1,0	12148069600	12148040900
2005802	12625805100	50,00	67,00	21,80	TC/TP16T3	12148038800	12148082400	3,0	12147602200	12148041000
2005939	12625806800	67,00	88,00	24,30	TC/TP16T3	12148038800	12148082400	3,5	12147665000	12148041100

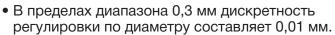




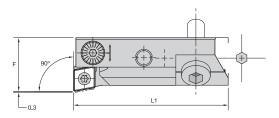
■ Кассеты под пластины с углом в плане 90° • Тип С

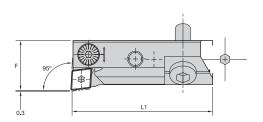
номер заказа	номер по каталогу	D min	D max	L1	эталонная пластина	зажимной винт	ключ Torx	Нм	регулировочный винт	ключ для винта
2005580	12625702200	22,50	30,00	12,05	CC/CP0602	12148068700	12148086600	1,0	12147579300	12148046000
2005618	12625703000	30,00	39,00	12,35	CC/CP0602	12148068700	12148086600	1,0	12148069600	12148040900
2005673	12625704000	39,00	50,00	16,30	CC/CP09T3	12148038800	12148082400	3,0	12148069600	12148040900
2005801	12625705000	50,00	67,00	21,80	CC/CP1204	12148007200	12148099400	3,5	12147602200	12148041000
2005938	12625706700	67,00	88,00	24,30	CC/CP1204	12148007200	12148099400	3,5	12147665000	12148041100
2006041	12625708900	88,00	115,00	36,30	CC/CP1204	12148007300	12148099400	3,5	12148541600	12148041100



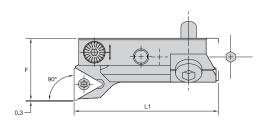

■ Кассеты под пластины с углом в плане 70° • Тип С

							эталонная	зажимной	ключ	регулировочный		й ключ
	номер заказа	номер по каталогу	D min	D max	L1	L1A	пластина	винт	Torx	Нм	винт	для винта
	2005581	12625902200	22,50	30,00	12,35	1,60	CC/CP0602	12148068700	12148086600	1,0	12147579300	12148046000
	2005619	12625903000	30,00	39,00	12,35	1,60	CC/CP0602	12148068700	12148086600	1,0	12148069600	12148040900
_	2005675	12625904000	39,00	50,00	16,30	2,30	CC/CP09T3	12148038800	12148082400	3,0	12148069600	12148040900
	2005813	12625905000	50,00	67,00	21,80	3,10	CC/CP1204	12148007200	12148099400	3,5	12147602200	12148041000
	2005940	12625906700	67,00	88,00	24,30	3,10	CC/CP1204	12148007200	12148099400	3,5	12147665000	12148041100
	2006054	12625908900	88,00	115,00	36,30	3,10	CC/CP1204	12148007300	12148099400	3,5	12148541600	12148041100


ROTAFLEX™ • Микрорегулируемые картриджи


- Радиальная регулировка не влияет на осевое положение.
- Осевая регулировка производится в диапазоне 1 мм.

■ Микрорегулируемый картридж с углом в плане 90° • Пластины типа С

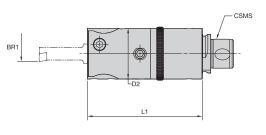

				эталонная	зажимной		регулировочный	ĺ
номер заказа	номер по каталогу	F	L1	пластина	винт пластины	ключ Torx	винт	Нм
3860908	MASCFCR09CA06F	16,00	45,50	CC0602	12148068700	12148086600	12147629800	1,0

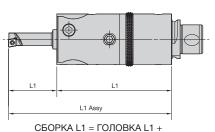
■ Микрорегулируемый картридж с углом в плане 95° • Пластины типа С

				эталонная	зажимной		регулировочный	
номер заказа	номер по каталогу	F	L1	пластина	винт пластины	ключ Torx	винт	Нм
3860909	MASCLCR09CA06F	16,00	45,50	CC0602	12148068700	12148086600	12147629800	1,0

■ Микрорегулируемый картридж с углом в плане 90° • Пластины типа Т

				эталонная	зажимной		регулировочный	
номер заказа	номер по каталогу	F	L1	пластина	винт пластины	ключ Torx	винт	Нм
3860910	MASTFCR09CA11F	20,00	45,50	TC1102	12148068700	12148086600	12147629800	1,0




ROTAFLEX™ • Прецизионные чистовые расточные головки с расточным резцом (FBHBB)

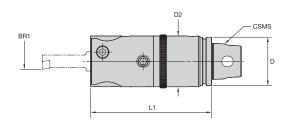
• Дискретность регулировки по диаметру составляет 0,01 мм.

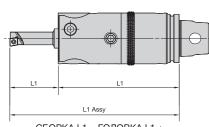
РАСТОЧНОЙ РЕЗЕЦ L1

■ FBHBB • Хвостовик типа RFX

номер заказа	номер по каталогу	диапазон диаметров BR1	L1	D2	размер системы CSMS	КГ	
3860906	RFX420FBHBB006022	6,000–22,000	95,00	42,00	RFX420	1,1	

		зажимной	регулировочный	ключ
номер по каталогу	зажимной винт 1	винт 2	стопорный винт	для винта
REX420ERHBB006022	12147617400	12148042400	12147680500	12148041300




ROTAFLEX™ • Прецизионные чистовые расточные головки с расточным резцом (FBHBB)

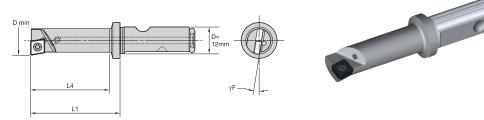
• Дискретность регулировки по диаметру составляет 0,01 мм.

СБОРКА L1 = ГОЛОВКА L1 + РАСТОЧНОЙ РЕЗЕЦ L1

■ Хвостовик серии FBHBB KM-TS™

номер заказа	номер по каталогу	диапазон диаметров BR1	D2	L1	размер системы CSMS	КГ
3860907	KM40TSFBHBB006022	6,000–22,000	42,00	105,00	KM40TS	1,1

		зажимной	регулировочный	ключ
номер по каталогу	зажимной винт 1	винт 2	стопорный винт	для винта
KM40TSFBHBB006022	12147617400	12148042400	12147680500	12148041300

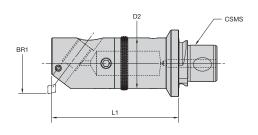


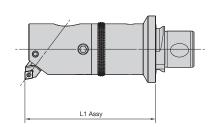
ROTAFLEX™ • Расточные резцы для прецизионных чистовых расточных головок (FBHBB)

• Все расточные резцы обеспечивают внутренний подвод СОЖ с направлением в зону резания.

■ Расточные резцы для прецизионных чистовых расточных головок (FBHBB)

номер заказа	номер по каталогу	D min	D max	L1	L4	γF°	КГ
2005954	12627006200	6,00	8,00	30,00	24,00	-5.00	0,1
2006015	12627008200	8,00	10,00	30,00	25,00	-3.00	0,1
2005499	12627010200	10,00	13,00	35,00	30,00	-11.00	0,1
2005542	12627013200	13,00	16,00	40,00	35,00	-9.00	0,1
2005558	12627016200	16,00	19,00	45,00	40,00	-6.00	0,2
2005573	12627019300	19,00	22,00	55,00	50,00	-6.00	0,2


номер по каталогу	эталонная пластина	зажимной винт	ключ Torx	Нм
12627006200	CP04T1	12148005800	12148005900	0,3
12627008200	CP04T1	12148005800	12148005900	0,3
12627010200	CC/CP0602	12148068700	12148086600	1,0
12627013200	CC/CP0602	12148068700	12148086600	1,0
12627016200	CC/CP0602	12148068700	12148086600	1,0
12627019300	CC/CP0602	12148068700	12148086600	1,0



ROTAFLEX™ • Прецизионные чистовые расточные головки (FBH) с державками под пластину

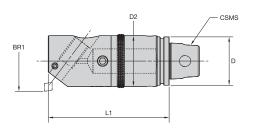
- Дискретность регулировки по диаметру составляет 0,01 мм.
- Головки поставляются без державок.

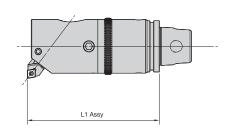
■ FBH • Хвостовик типа RFX

номер заказа	номер по каталогу	диапазон диаметров BR1	D2	L1	L1 (сборки)	размер системы CSMS	КГ
3861143	RFX185FBH022029	22,000–29,000	18,5	55,0	56,0	RFX185	0,2
3861144	RFX245FBH029038	29,000–38,000	24,5	60,0	62,0	RFX245	0,2
3861145	RFX320FBH038050	38,000-50,000	32,0	75,0	77,0	RFX320	0,5
3861146	RFX420FBH050065	50,000-65,000	42,0	95,0	98,0	RFX420	1,1
3861147	RFX550FBH065088	65,000-88,000	55,0	115,0	120,0	RFX550	2,1
3861148	RFX720FBH088115	88,000–115,000	72,0	155,0	160,0	RFX720	4,9

	винт для грубой	регулировочный	фиксирующий	
номер по каталогу	регулировки	стопорный винт	винт державки	клин
RFX185FBH022029	12147620000	12147680200	12147622100	12147621100
RFX245FBH029038	12147620000	12147680300	12148577000	12147621200
RFX320FBH038050	12147620300	12147680400	12147622300	12147621300
RFX420FBH050065	12147620400	12147680500	12148575900	12147621400
RFX550FBH065088	12147620500	12147680600	12148087100	12147621500
RFX720FBH088115	12147620600	12147680700	12148087100	12147621600

	ключ	ключ
номер по каталогу	для винта	для винта
RFX185FBH022029	12148041100	12148040900
RFX245FBH029038	12148041100	12148040900
RFX320FBH038050	12148041200	12148041000
RFX420FBH050065	12148041100	12148041300
RFX550FBH065088	12148041200	12148041400
RFX720FBH088115	12148041200	12148079000



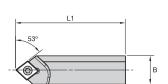


ROTAFLEX™ • Прецизионные чистовые расточные головки (FBH) с державками под пластину

- Дискретность регулировки по диаметру составляет 0,01 мм.
- Головки поставляются без державок.

■ FBH • Хвостовик типа КМ™

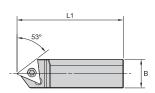
номер заказа	номер по каталогу	диапазон диаметров BR1	D2	L1	L1 (сборки)	размер системы CSMS	КГ
3861123	KM32TSFBH022029	22,000–29,000	18,5	60,0	62,0	KM32TS	0,2
3861124	KM32TSFBH029038	29,000–38,000	24,5	70,0	72,0	KM32TS	0,2
3861125	KM32TSFBH038050	38,000-50,000	32,0	80,0	82,0	KM32TS	0,5
3861126	KM40TSFBH029038	29,000–38,000	24,5	90,0	92,0	KM40TS	0,5
3861127	KM40TSFBH038050	38,000–50,000	32,0	100,0	103,0	KM40TS	0,9
3861128	KM40TSFBH050065	50,000-65,000	42,0	105,0	108,0	KM40TS	1,1
3861129	KM50TSFBH050065	50,000-65,000	42,0	110,0	115,0	KM50TS	1,2
3861130	KM50TSFBH065088	65,000–88,000	55,0	125,0	130,0	KM50TS	1,7
3861131	KM63TSFBH065088	65,000–88,000	55,0	130,0	135,0	KM63TS	2,0
3861132	KM63TSFBH088115	88,000–115,000	63,0	130,0	135,0	KM63TS	2,5


номер по каталогу	винт для грубой регулировки	регулировочный стопорный винт	фиксирующий винт державки	клин
KM32TSFBH022029	12147620000	12147680200	12147622100	12147621100
KM32TSFBH029038	12147620000	12147680300	12148577000	12147621200
KM32TSFBH038050	12147620300	12147680400	12147622300	12147621300
KM40TSFBH029038	12147620000	12147680300	12148577000	12147621200
KM40TSFBH038050	12147620300	12147680400	12147622300	12147621300
KM40TSFBH050065	12147620400	12147680500	12148575900	12147621400
KM50TSFBH050065	12147620400	12147680500	12148575900	12147621400
KM50TSFBH065088	12147620500	12147680600	12148087100	12147621500
KM63TSFBH065088	12147620500	12147680600	12148087100	12147621500
KM63TSFBH088115	12147620600	12147680700	12148087100	12147621600

	ключ	ключ
номер по каталогу	для винта	для винта
KM32TSFBH022029	12148041100	12148040900
KM32TSFBH029038	12148041100	12148040900
KM32TSFBH038050	12148041200	12148041000
KM40TSFBH029038	12148041100	12148040900
KM40TSFBH038050	12148041200	12148041000
KM40TSFBH050065	12148041100	12148041300
KM50TSFBH050065	12148041100	12148041300
KM50TSFBH065088	12148041200	12148041400
KM63TSFBH065088	12148041200	12148041400
KM63TSFBH088115	12148041200	12148079000

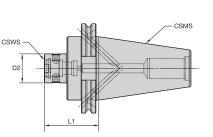
WIDI

ROTAFLEX™ • Державки под пластину для прецизионных чистовых расточных головок (FBH)



■ Державка под пластину прецизионной головки • Тип С

номер заказа	номер по каталогу	D min	D max	L1	н	H1	В	эталонная пластина	зажимной винт	ключ Torx	Нм
2004781	12627270300	22,00	29,00	19,0	8,0	4,5	8,0	CC/CP0602	12148068700	12148086600	1,0
2004782	12627275300	29,00	38,00	27,0	8,0	4,5	8,0	CC/CP0602	12148068700	12148086600	1,0
2004133	12627270700	38,00	50,00	35,0	10,0	5,5	10,0	CC/CP0602	12148068700	12148086600	1,0
2004140	12627276500	50,00	65,00	46,0	12,0	6,5	12,0	CC/CP0602	12148068700	12148086600	1,0
2004161	12627277700	65,00	88,00	60,0	16,0	8,0	16,0	CC/CP09T3	12148038800	12148082400	3,0
2004177	12627278700	88,00	115,00	84,0	16,0	8,0	16,0	CC/CP09T3	12148038800	12148082400	3,0



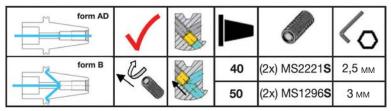
■ Державка под пластину прецизионной головки • Тип Т

								эталонная	зажимной	ключ	
номер заказа	номер по каталогу	D min	D max	L1	Н	H1	В	пластина	винт	Torx	Нм
2004134	12627270800	38,00	50,00	35,0	10,0	5,5	10,0	TC/TP1102	12148068700	12148086600	1,0
2004141	12627276800	50,00	65,00	46,0	12,0	6,5	12,0	TC/TP1102	12148068700	12148086600	1,0
2004162	12627277800	65,00	88,00	60,0	16,0	8,0	16,0	TC/TP1102	12148038800	12148082400	3,0
2004178	12627278800	86,00	115,00	84,0	16,0	8,0	16,0	TC/TP1102	12148038800	12148082400	3,0

■ RFX • Базовые конуса CV40, форма B/AD

номер заказа	номер по каталогу	размер системы CSMS	размер системы CSWS	D2	L1	КГ	стопорный винт	ключ	Нм
3860896	CV40BRFX185236	CV40	RFX185	18,5	60,0	1,1	RFX185LS	12148041100	6,0
3860897	CV40BRFX245236	CV40	RFX245	24,5	60,0	1,1	RFX245LS	12148041100	8,0
3860898	CV40BRFX320236	CV40	RFX320	32,0	60,0	1,1	RFX320LS	12148041200	14,0
3860899	CV40BRFX420236	CV40	RFX420	42,0	60,0	1,1	RFX420LS	12148041300	16,0
3860900	CV40BRFX550256	CV40	RFX550	55,0	65,0	1,2	RFX550LS	12148041400	20,0

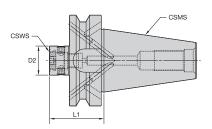
■ RFX • Базовые конуса CV50, форма B/AD


		размер	размер				стопорный		
номер заказа	номер по каталогу	системы CSMS	системы CSWS	D2	L1	ΚΓ	винт	ключ	Нм
3860901	CV50BRFX320236	CV50	RFX320	32,0	60,0	3,1	RFX320LS	12148041200	14,0
3860902	CV50BRFX420236	CV50	RFX420	42,0	60,0	3,2	RFX420LS	12148041300	16,0
3860903	CV50BRFX550236	CV50	RFX550	55,0	60,0	3,4	RFX550LS	12148041400	20,0
3860904	CV50BRFX720276	CV50	RFX720	72.0	70.0	3.6	RFX720LS	12148041400	20.0

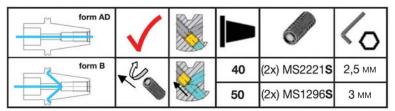
■ RFX • Базовые конуса DV40, форма B/AD

номер заказа	номер по каталогу	размер системы CSMS	размер системы CSWS	D2	L1	КГ	стопорный винт	ключ	Нм
3860696	DV40BRFX185060M	DV40	RFX185	18,5	60,0	1,1	RFX185LS	12148041100	6,0
3860697	DV40BRFX245060M	DV40	RFX245	24,5	60,0	1,1	RFX245LS	12148041100	8,0
3860698	DV40BRFX320060M	DV40	RFX320	32,0	60,0	1,1	RFX320LS	12148041200	14,0
3860699	DV40BRFX420060M	DV40	RFX420	42,0	60,0	1,1	RFX420LS	12148041300	16,0
3860700	DV40BRFX550065M	DV40	RFX550	55,0	65,0	1,2	RFX550LS	12148041400	20,0

■ RFX • Базовые конуса DV50, форма B/AD


номер заказа	номер по каталогу	размер системы CSMS	размер системы CSWS	D2	L1	КГ	стопорный винт	ключ	Нм
3860701	DV50BRFX320060M	DV50	RFX320	32,0	60,0	3,1	RFX320LS	12148041200	14,0
3860702	DV50BRFX420060M	DV50	RFX420	42,0	60,0	3,2	RFX420LS	12148041300	16,0
3860853	DV50BRFX550060M	DV50	RFX550	55,0	60,0	3,4	RFX550LS	12148041400	20,0
3860854	DV50BRFX720065M	DV50	RFX720	72 N	65.0	3.6	RFX720LS	12148041400	20.0

ПРИМЕЧАНИЕ: Крепежные винты поставляются с базовыми конусами. Затяжные болты заказываются отдельно.

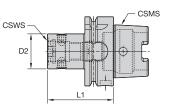


■ RFX • Базовые конуса ВТ40, форма В/AD

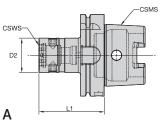
номер заказа	номер по каталогу	размер системы CSMS	размер системы CSWS	D2	L1	КГ	стопорный винт	ключ	Нм
3860676	BT40BRFX185060M	BT40	RFX185	18,5	60,0	1,0	RFX185LS	12148041100	6,0
3860677	BT40BRFX245060M	BT40	RFX245	24,5	60,0	1,1	RFX245LS	12148041100	8,0
3860678	BT40BRFX320060M	BT40	RFX320	32,0	60,0	1,1	RFX320LS	12148041200	14,0
3860679	BT40BRFX420060M	BT40	RFX420	42,0	60,0	1,2	RFX420LS	12148041300	16,0
3860680	BT40BRFX550065M	BT40	RFX550	55,0	65,0	1,3	RFX550LS	12148041400	20,0

■ RFX • Базовые конуса ВТ50, форма В/AD

		размер	размер						
номер заказа	номер по каталогу	системы CSMS	системы CSWS	D2	L1	КГ	стопорный винт	ключ	Нм
3860681	BT50BRFX320060M	BT50	RFX320	32,0	60,0	3,5	RFX320LS	12148041200	14,0
3860682	BT50BRFX420060M	BT50	RFX420	42,0	60,0	3,9	RFX420LS	12148041300	16,0
3860693	BT50BRFX550065M	BT50	RFX550	55,0	60,0	4,2	RFX550LS	12148041400	20,0
3860694	BT50BRFX720070M	BT50	RFX720	72,0	70,0	4,5	RFX720LS	12148041400	20,0



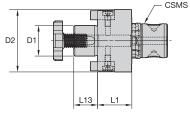
ПРИМЕЧАНИЕ: Крепежные винты поставляются с базовыми конусами. Затяжные болты заказываются отдельно.



■ RFX • Базовые конуса HSK63, форма А

номер заказа	номер по каталогу	размер системы CSMS	размер системы CSWS	D2	L1	кг	стопорный винт	ключ	Нм
3860549	HSK63ARFX185060M	HSK63A	RFX185	18,5	60,0	0,7	RFX185LS	12148041100	6,0
3860550	HSK63ARFX245060M	HSK63A	RFX245	24,5	60,0	0,7	RFX245LS	12148041100	8,0
3860551	HSK63ARFX320060M	HSK63A	RFX320	32,0	60,0	0,8	RFX320LS	12148041200	14,0
3860552	HSK63ARFX420070M	HSK63A	RFX420	42,0	70,0	1,0	RFX420LS	12148041300	16,0
3860623	HSK63ARFX550080M	HSK63A	RFX550	55,0	80,0	1,4	RFX550LS	12148041400	20,0
3860624	HSK63ARFX720095M	HSK63A	RFX720	72,0	95,0	2,0	RFX720LS	12148041400	20,0

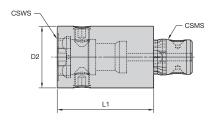
ПРИМЕЧАНИЕ: Крепежные винты поставляются с базовыми конусами. Принадлежности для подвода СОЖ и ключ заказываются отдельно.



■ RFX • Базовые конуса HSK100, форма А

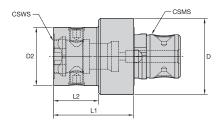
номер заказа	номер по каталогу	размер системы CSMS	размер системы CSWS	D2	L1	КГ	стопорный винт	ключ	Нм
3881208	HSK100ARFX420080M	HSK100A	RFX420	42,0	80,0	1,0	RFX420LS	12148041300	20,0
3881209	HSK100ARFX550090M	HSK100A	RFX550	55,0	90,0	2,2	RFX550LS	12148041400	25,0
3881210	HSK100ARFX720105M	HSK100A	RFX720	72,0	105,0	2,5	RFX720LS	12148041400	25,0

ПРИМЕЧАНИЕ: Крепежные винты поставляются с базовыми конусами. Принадлежности для подвода СОЖ и ключ заказываются отдельно.



■ Адаптер CS-RFX • С торцевым креплением винтом

номер заказа	номер по каталогу	размер системы CSMS	D1	D2	L1	L13	КГ
3860547	RFX550CS27030M	RFX550	27,0	55,0	30,0	21,0	0,9
3860548	RFX720CS40035M	RFX720	40,0	72,0	35,0	27,0	1,8



■ RFX • Удлинители RFX

номер заказа	номер по каталогу	размер системы CSMS	размер системы CSWS	D2	L1	ΚΓ	стопорный винт	ключ	Нм
3860450	RFX185RFX185030M	RFX185	RFX185	18,5	30,0	0,1	RFX185LS	12148041100	6,0
3860451	RFX245RFX245035M	RFX245	RFX245	24,5	35,0	0,2	RFX245LS	12148041100	8,0
3860452	RFX320RFX320050M	RFX320	RFX320	32,0	50,0	0,3	RFX320LS	12148041200	14,0
3860473	RFX420RFX420060M	RFX420	RFX420	42,0	60,0	0,8	RFX420LS	12148041300	16,0
3860474	RFX550RFX550090M	RFX550	RFX550	55,0	90,0	1,6	RFX550LS	12148041400	20,0
3860475	RFX720RFX720100M	RFX720	RFX720	72,0	100,0	3,1	RFX720LS	12148041400	25,0

ПРИМЕЧАНИЕ: Стопорные винты входят в комплект.

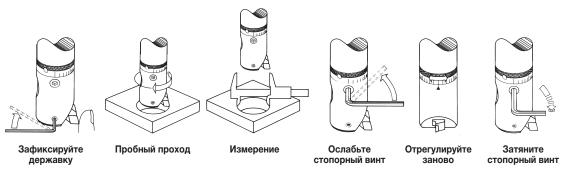
■ RFX • Переходник RFX

номер заказа	номер по каталогу	размер системы CSMS	размер системы CSWS	D	D2	L1	L2	ΚΓ	стопорный винт	ключ	Нм
3860420	RFX320RFX245040M	RFX320	RFX245	32,0	24,5	40,0	25,0	0,2	RFX245LS	12148041100	8,0
3860419	RFX320RFX185030M	RFX320	RFX185	32,0	18,5	30,0	15,0	0,2	RFX185LS	12148041100	6,0
3860443	RFX420RFX320045M	RFX420	RFX320	42,0	32,0	45,0	25,0	0,6	RFX320LS	12148041200	14,0
3860422	RFX420RFX245045M	RFX420	RFX245	42,0	24,5	45,0	25,0	0,4	RFX245LS	12148041100	8,0
3860421	RFX420RFX185035M	RFX420	RFX185	42,0	18,5	35,0	15,0	0,4	RFX185LS	12148041100	6,0
3860444	RFX550RFX185040M	RFX550	RFX185	55,0	18,5	40,0	15,0	0,7	RFX185LS	12148041100	6,0
3860446	RFX550RFX320050M	RFX550	RFX320	55,0	32,0	50,0	25,0	0,8	RFX320LS	12148041200	14,0
3860445	RFX550RFX245050M	RFX550	RFX245	55,0	24,5	50,0	25,0	0,8	RFX245LS	12148041100	8,0
3860447	RFX550RFX420055M	RFX550	RFX420	55,0	42,0	55,0	30,0	0,9	RFX420LS	12148041300	16,0
3860448	RFX720RFX420060M	RFX720	RFX420	72,0	42,0	60,0	30,0	1,6	RFX420LS	12148041300	16,0
3860449	RFX720RFX550060M	RFX720	RFX550	72,0	55,0	60,0	30,0	1,8	RFX550LS	12148041400	20,0

ПРИМЕЧАНИЕ: Стопорные винты входят в комплект.

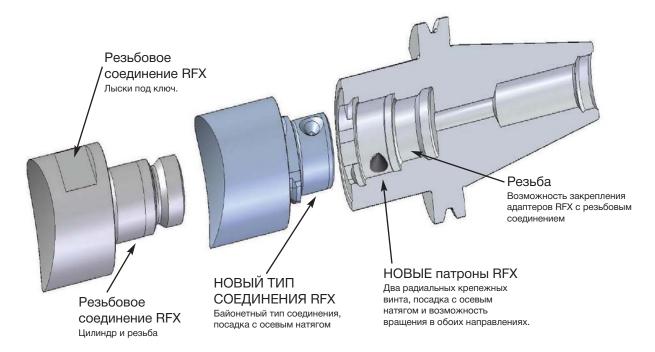
■ Принцип конструкции

Эксцентриковая втулка для точной регулировки


Регулировка по диаметру у стандартных расточных головок осуществляется посредством винтового механизма. При этом люфт в винтовом соединении негативно сказывается на точности настройки. Эксцентриковая втулка ROTAFLEX гарантирует регулировку без люфтов и равномерное распределение нагрузки в процессе обработки по всей контактной поверхности, обеспечивая высокую размерную точность полученных отверстий.

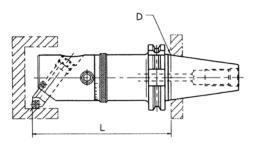
После грубой регулировки державки с пластиной осуществляется окончательная настройка на размер посредством вращения лимба на расточной головке. Данный метод не имеет погрешности.

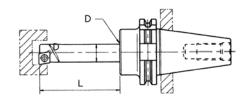
Регулировка



Рекомендации по применению • Микрорегулируемые картриджи

■ Рекомендации по применению • Соединение RFX
 Оснастка RFX с резьбовым типом соединения совместима с новыми адаптерами RFX байонетного типа.





■ Общие рекомендации по применению

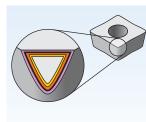
- Определите критический диаметр (D).
- Определите максимальный вылет инструмента (L).

Ниже приведены несколько примеров:

Рекомендации по выбору системы инструмента для растачивания:

Тип инструмента	Стабильные условия	Нестабильные условия	Необходимы пробные проходы
Цельные оправки с двумя режущими кромками	<3,5 x D	3,5–6,5 x D	>6,5 x D
Ползуны мостового типа с двумя режущими кромками	<3,5 x D	3,5–6,5 x D	>6,5 x D
Чистовые расточные головки с расточным резцом (FBHBB)	<3,5 x D	3,5–5,0 x D	>5,0 x D
Чистовые расточные головки (FBH)	<3,5 x D	3,5–5,0 x D	>5,0 x D
Оправки мостового типа для чистовой обработки	<3,5 x D	3,5–5,0 x D	>5,0 x D
	Обработка с рекомендованными в каталоге значениями режимов резания	Обработка с пониженными подачей и/или скоростью резания по отношению к рекомендованным значениям режимов резания.	Режимы резания определяются экспериментальным методом.

■ Решение проблем при черновом и чистовом растачивании


Предполагается, что сборка инструмента осуществлена в соответствии с техническими рекомендациями, данными в этом каталоге.

Проблема	Причина	Возможный способ устранения
Тенденция	Чрезмерный вылет	Отрегулируйте отношение L/D
к вибрации	Неверно выбрана пластина	Выберите расточной инструмент для черновой обработки с углом в плане 90° Выберите пластины с положительной геометрией Выберите пластины с меньшим радиусом при вершине
	Некорректные режимы резания	Уменьшите глубину резания Увеличьте подачу
Дефекты на обработанной поверхности	Неверно выбрана пластина	Выберите угол в плане 90° Выберите шлифованные пластины с незначительной подготовкой кромки Выберите пластины с меньшим радиусом при вершине
	Некорректные режимы резания	Увеличьте подачу
	Недостаточный подвод СОЖ	Увеличьте подвод СОЖ
Отверстия	Неверно выбрана пластина	Выберите более износостойкую марку твердого сплава пластины
конической формы	Некорректные режимы резания	Увеличьте скорость резания
формы	Недостаточный подвод СОЖ	Проверьте, все ли винты были затянуты с рекомендованным моментом затяжки

Описание марок твердых сплавов

Чистовые токарные пластины для обработки отверстий

Покрытия разработаны для обеспечения возможности выполнения высокоскоростной чистовой и получистовой обработки.

Р Сталь
М Нержавеющая сталь
К Чугун
N Цветные металлы
S Жаропрочные сплавы
H Закаленная сталь

Покрытие											
	Пок	рытие	Описание марки твердого сплава		05 1	10 15	20	25	30	35	40 45
	TN6010	HC-S10	Твердый сплав с покрытием. PVD — многослойное нано-покрытие TiAlN. Легкие режимы резания. Для обработки труднообрабатываемых сплавов.	S							
	TN6025	HC-S25	Твердый сплав с покрытием. PVD — многослойное нано-покрытие TiAlN. Легкие и средние режимы обработки. Для обработки труднообрабатываемых сплавов.	S							
(A!	TN7110	HC-P10	Твердый сплав с покрытием. MT-CVD/CVD — TiN-TiCN-Al₂O₃-TiN. Высокая износостойкость. Легкие и средние режимы обработки. Для обработки стали.	P							
(A!	TN7115	HC-P15	Твердый сплав с покрытием. MT-CVD/CVD — TiN-TiCN-Al ₂ O ₃ -TiN. Хорошее соотношение износостойкости и ударной вязкости. Легкие и средние режимы обработки. Для обработки стали.	P							
(A!	TN7125	HC-P25	Твердый сплав с покрытием. MT-CVD/CVD — TiN-TiCN-AI ₂ O ₃ -TiN. Хорошая ударная вязкость. Средние и тяжелые режимы обработки. Для обработки стали.	PM							
	TN8025	HC-M25	Твердый сплав с покрытием. MT-CVD/CVD — TiN-TiCN-Al ₂ O ₃ -ZrCN. Хорошее соотношение износостойкости и ударной вязкости. Легкие и средние режимы обработки. Для обработки аустенитной нержавеющей стали серии AISI 300.	M							
(A!	TN5120	HC-K20	Твердый сплав с покрытием. MT-CVD/CVD — TiN-TiCN-Al₂O₃. Легкие и средние режимы обработки. Для обработки чугуна.	K							

	Геометрия	Применение	Номер по каталогу	Универсальные		P			M	K
				TN6010	TN6025	TN7110	TN7115	TN7125	TN8025	TN5120
Обзорная таблица пластин		ССМТ -2 • Суперфинишная	CCGT0602022						•	
		обработка f = 0,06-0,25 мм ар = 0,1-0,4 мм	CCMT0602042			•	•		•	
			CCMT09T3042			•	•		•	
	0	ССМТ -MU • Чистовая обработка	CCGT060202MU				•		•	•
		f = 0,08-0,25 mm ap = 0,1-1,6 mm	CCMT060204MU			•	•	•	•	•
			CCMT060208MU			•	•	•	•	•
			CCMT09T304MU	•	•	•	•	•	•	•
			CCMT09T308MU	•	•	•	•	•	•	•
			CCMT120404MU	•			•	•	•	•
			CCMT120408MU	•	•	•	•	•	•	•
			CCMT120412MU	•					•	•
		ССМТ • Черновая обработка	CCMT060202			•	•		•	•
		f = 0,1-0,3 MM	CCMT060204			•	•	•	•	•
		ap = 0.3-3.0 MM	CCMT060208			•	•	•	•	•
			CCMT09T304			•	•	•	•	•
			CCMT09T308			•	•	•	•	•
			CCMT09T312			•	•	•	•	•
			CCMT120408			•	•	•	•	•
B110			CCMT120412			•	•	•	•	•

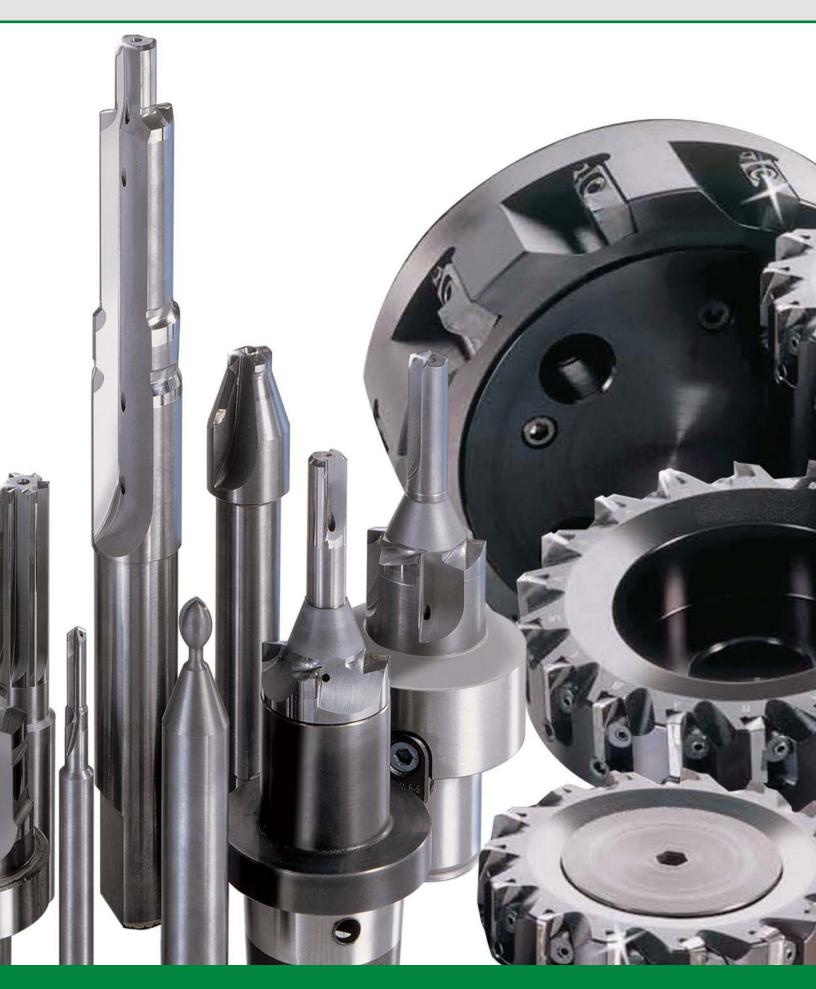
Марка твердого сплава

новинки

новинки

WINWITH WIDLA

WIDIA[♥]


Высокопроизводительные инструменты для чистовой обработки прецизионных отверстий ROTAFLEX являются превосходным выбором для любого металлообрабатывающей отрасли. Эти инструменты обладают исключительной универсальностью, устойчивостью и простотой использования.

- Простота сборки и разборки способствует повышению производительности.
- Высокая стабильность; увеличение подачи до 20%.
- Широкие стружечные канавки позволяют улучшить стружкоотвод.

Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт **www.widia.com**.

Специальный инструмент

Специальные фрезы со сменными режущими пластинами	C2-C3
Специальный инструмент для обработки отверстий	C4-C5
Специальные цельные твердосплавные сверла	C6
Специальный инструмент для развертывания	C7
Специальный инструмент с напаянными пластинами из поликристаллического алмаза	C8
Инструмент с режушими пластинами со вставками из поликристаллинеского алмаза	C

Специальные фрезы со сменными режущими пластинами

Быстрая обработка заказа и гарантированно высокие результаты работы.

Специалисты WIDIA Products Group готовы изготовить для Вас инструмент по индивидуальному заказу и дать рекомендации по его применению. Разработка специнструмента осуществляется на основании чертежа готовой детали, чертежа или эскиза будущего инструмента. Мы будем рады помочь Вам в процессе проектирования требуемого инструмента, а также окажем грамотную техническую поддержку при разработке стратегий обработки. Наша глобальная служба технической поддержки всегда готова прийти к Вам на помощь.

На наших специализированных заводах, расположенных по всему миру, существуют отдельные инженерные подразделения, усилиями которых ведутся разработка и внедрение инновационных технологических решений. Изготовление нашей продукции осуществляется на предприятиях, сертифицированных в соответствии со стандартами ISO и оснащенных ультрасовременным оборудованием с ЧПУ, с возможностью трехмерного моделирования и обработки в системе CAD/CAM. Все это гарантирует наивысшее качество предлагаемого нами инструмента, и, как следствие, стабильно высокие результаты его работы.

Услуги по специальным решениям:

- Копии чертежей специнструмента
- Разработка индивидуальных режущих геометрий
- Сложнопрофильный инструмент
- Модификация стандартного инструмента
- Оптимизация и разработка техпроцесса
- Конструирование инструмента
- Разработка проекта

Для получения дополнительной информации обращайтесь к вашему местному дистрибьютору.

МОЩНОСТЬ СПЕЦИАЛЬНОГО ИНСТРУМЕНТА

- Возможность работы с большими подачами благодаря мелкому шагу зубьев.
- Отвод тепла от режущих кромок во избежание их преждевременного износа.
- Пластины со вставками из поликристаллического алмаза обеспечивают увеличенный удельный съем металла.
- Жесткая система крепления пластины посредством клина исключает ее смещение в гнезде корпуса.
- Увеличенный срок службы инструмента.

Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт **www.widia.com**.

МОЩНОСТЬ СПЕЦИАЛЬНОГО ИНСТРУМЕНТА

- сегмент, спеченный на твердосплавной основе, припаянной в твердосплавный или стальной корпус.
- Сопротивление абразивному износу увеличивается в 500 раз по сравнению со стандартными твердосплавными развертками.
- Отвод тепла от режущих кромок во избежание их преждевременного износа и увеличения срока службы инструмента.
- Ассортимент включает развертки с мелким, средним и сокращение инструментальных затрат.
- Увеличение срока службы инструмента между переточками и рост экономии затрат на его приобретение.

Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт **www.widia.com**.

Специальный инструмент для обработки отверстий

Мы специализируемся на разработке и изготовлении высокоточных сверл, удовлетворяющих всем вашим потребностям.

- Разработка, проектирование и изготовление различных видов режущих инструментов для обработки отверстий, включая сверла со сменными режущими пластинами, цельные твердосплавные сверла, развертки, зенковки и т.д.
- Услуга выполняется в пределах одного инженерного подразделения, которое взаимодействует со всеми специализированными заводами WIDIA.
- Возможность использования всех существующих инструментальных материалов, таких как твердый сплав, напайные твердосплавные пластины, кермет, поликристаллический алмаз и кубический нитрид бора, а также изготовление инструмента с внутренним подводом СОЖ или без него.
- Изготовление инструмента диаметром от 3 мм до 500 мм, в том числе специальной длины.
- Весь спектр выполняемых услуг в компетенции одного поставщика: от проектирования по условиям заказчика, разработки и изготовления, вплоть до переточки инструмента.
- Постоянство качества и полное соответствие техническим условиям и характеристикам инструмента.

Специальные цельные твердосплавные сверла

Выбирайте специальный инструмент WIDIA, подтвердивший свою эффективность десятилетиями безупречной работы

По Вашему индивидуальному заказу возможно изготовление сверл WIDIA с напаянными твердосплавными пластинами, с пластинами из поликристаллического алмаза, а также цельных сверл из твердого сплава или кермета. Инструменты могут быть изготовлены с внутренней подачей СОЖ или без, с любыми типами покрытий, такими как TiN, TiCN, TiAIN, AITiN, включая алмазное. И не важно будет ли это сверло с прямолинейной или винтовой канавкой, цилиндрическое или ступенчатое, оно полностью оправдает Ваши самые высокие ожидания.

Специальный инструмент для развертывания

Приобретайте специальный инструмент WIDIA, подтвердивший свою эффективность безупречной работой

Благодаря имеющемуся у нас высокотехнологичному оборудованию и ультрасовременным методам проектирования, мы можем изготовить инструмент с самыми сложными геометрическими элементами для выполнения операций развертывания и зенкования. Использование зенковок специальной формы для предварительной и чистовой обработки отверстий минимизирует время обработки и повышает эффективность производства. Наши развертки, спроектированные по индивидуальным требованиям клиента, обеспечивают высочайшее качество поверхности, размерную и геометрическую точность, а также демонстрируют высокую стойкость.

Специальный инструмент с напаянными пластинами из поликристаллического алмаза

За счет применения поликристаллического алмаза стойкость инструмента в расчете на одну деталь увеличивается до 300 раз!

Наши инструменты с режущими пластинами из поликристаллического алмаза идеально подходят для обработки алюминия и магниевых сплавов, меди и латуни, а также пластмасс, армированных стекловолокном и углеродным волокном. Скорость резания при этом находится в пределах от 250 до 3000 м/мин.

Применение инструментов с режущими пластинами из поликристаллического алмаза (PCD) за последние 10 лет получает все большее распространение в различных отраслях промышленности. Эти инструменты с успехом заменяют традиционные типы инструментов из твердого сплава и из быстрорежущей стали. Экономическую целесообразность использования инструмента с вставками из PCD для обработки цветных металлов можно сформулировать пятью пунктами:

- Увеличенная стойкость инструмента обеспечивает более эффективное использование станка и, в целом, рост объемов производства.
- Повышенная производительность благодаря увеличению удельного съема металла.
- Превосходное качество обработанной поверхности.
- Высокая размерная точность.
- Высокая стойкость к абразивному износу даже на предельно высоких скоростях резания.

В большинстве случаев при сравнении инструментов с PCD с твердосплавными инструментами наблюдается значительное увеличение срока службы инструмента – до 300 раз в расчете на деталь. Это впечатляющее увеличение стойкости инструмента позволяет существенно сократить время простоя оборудования и, тем самым, увеличить производительность и, в целом, снизить себестоимость изготовления единицы продукции.

Глобальные возможности и доступный сервис

Инструмент с режущими пластинами со вставками из поликристаллического алмаза (PCD) оказывает существенное влияние на развитие промышленности

Автомобильная промышленность

Отрасль промышленности, в которой инструмент с поликристаллическим алмазом и кубическим нитридом бора находит широкое применение при обработке алюминия, порошковых металлов, закаленной стали и чугуна.

Телекоммуникации

Интенсивно развивающаяся отрасль, в которой инструмент с PCD используют при обработке пластмасс, оргалита, бронзы, латуни и цинка.

Электроника

Растущая и конкурентоспособная отрасль, в которой инструмент с PCD используют для обработки пластмасс, алюминия, стекла и меди.

Аэрокосмическая промышленность

Отрасль, недавно открывшая экономический потенциал инструмента с режущими пластинами из PCD и PCBN при обработке специализированных материалов, таких как графитовые композиты и алюминий.

Для получения дополнительной информации обращайтесь к вашему региональному официальному дистрибьютору.

WWW.WIDIA.COM C9

Высочайший уровень обслуживания и технической поддержки оставляет инструмент WIDIA вне конкуренции

В дополнение к высокой производительности, обеспечиваемой нашими превосходными инструментами, мы предлагаем всестороннюю техническую поддержку при использовании нашей продукции.

- По мнению дистрибьюторов, наши подразделения технической поддержки по праву заслуживают звание лучших в отрасли. Инженеры, задействованные в них, обладают профессиональными навыками и необходимым опытом для оказания помощи при оформлении заказов, формировании предложений, контроле сроков поставок, обработке запросов по специальному инструменту, а также поддерживают взаимодействие всех заинтересованных сторон.
- Наши отделы технической поддержки клиента (CAS) доступны круглосуточно семь дней в неделю во многих частях мира. Они помогут правильно подобрать инструмент, условия обработки, назначить режимы резания, а также при необходимости выполнят замену инструмента конкурентов на соответствующие позиции WIDIA.
- Инженеры отдела специального инструмента, занимающиеся проектированием фрез, сверл и разверток по индивидуальным требованиям, сотрудничают с нашими клиентами с целью оптимизации отдельных операций за счет применения на них специнструмента.
- Также Вам предлагаются услуги наших специалистов технологов, работающих в тесном контакте с нашими дистрибьюторами. Они готовы оказать клиентам содействие при выборе инструмента, провести обучение по продукту, организовать проведение испытаний на заводе заказчика, а также произвести расчет возможного экономического эффекта.
- Наша компания предлагает услугу по переточке износившегося инструмента, гарантирующую полное восстановление режущей геометрии в соответствии со стандартами производителя.
- Благодаря нашему сервису по переработке отходов, Ваш отработанный твердосплавный инструмент превращается в наличные деньги.

...и это только начало.

Мы понимаем, что заслужить доверие клиента труднее, чем изготовить высококачественный продукт. Именно поэтому, мы выбрали своей приоритетной задачей предоставление грамотной технической поддержки мирового уровня, способствующей развитию и увеличению прибыли Вашего бизнеса.



- Высококвалифицированные команды сервисного обслуживания и технической поддержки (CAS) помогают клиентам познакомиться с преимуществами нашего инструмента и получить всю необходимую информацию по его использованию.
- Наши конструктора, специализируются по группам инструмента, что позволяет максимально эффективно оптимизировать производительность той или иной операции.
- Специалисты-технологи, работающие в тесном контакте с нашими дистрибьюторами, готовы рекомендовать наилучший инструмент, провести обучение и оказать всестороннюю техническую поддержку.

Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт **www.widia.com**.

Техническая поддержка и сервис

WIDIA ToolBOSS™	D2–D3
Современное программное обеспечение для управления инструментальным хозяйством	D4–D5
Переточка и повторное использование инструмента WIDIA	D6–D7
Проектирование с учетом экологической безопасности	D 8
WIDIA в Интернете	D9
Техническая поллержка клиента	D10-D11

Надежные и вместительные

28-ЯРУСНЫЙ шкаф имеет большую вместительность при той же площади основания, что у существующего 20-ЯРУСНОГО шкафа WIDIA ToolBOSS. 28-ЯРУСНЫЙ шкаф WIDIA ToolBOSS является последним достижением в надежном управлении запасами и имеет большое количество конструктивных особенностей.

В сочетании с нашим современным программным обеспечением для управления инструментальным хозяйством WIDIA ToolBOSS, 28-ЯРУСНЫЙ шкаф представляет собой универсальное решение по преодолению непрогнозируемых проблем логистики и управлению потоками инструментальных поставок.

Разнообразие ящиков В настоящее время в наличии имеются ящики 19 различных размеров для размещения большого числа позиций.

Совместимость Полная совместимость со всеми существующими компонентами WIDIA ToolBOSS.

Диагностика Встроенный в ящик порт диагностики делает более совершенной дистанционную систему технической поддержки, диагностики и ремонта.

Эффективность Ящики имеют много отделений и могут быть укомплектованы по отдельным операций, минимизируя время, необходимое для управления большим количеством инструментов.

Порт с отложенным исполнением USB интерфейс, а также порт расширения DCS для использования с RFID и другим дополнительным оборудованием.

Высокоскоростной доступ Дополнительным средством увеличения скорости поиска и выбора инструментов с помощью программного обеспечения является светодиодная система идентификации, которая указывает пользователю на необходимый ящик.

Возможность оперативного контроля Программное обеспечение комплектуется журналом регистрации событий, позволяющим следить за тем, кто использовал инструмент, хранящийся в системе, а также - когда, где и с какой целью.

Возможность расширения Каждая система может быть расширена до 10 единиц, обеспечивая 1121 безопасное место хранения.

шкафы **WIDIA ToolBOSS**™

- Сокращение складских запасов инструментов и оснастки
- Круглосуточная обеспеченность запасами
- Уникальная перестраиваемая система
- Сокращение расхода инструментальной оснастки
- Сокращение административных расходов
- Возможность учета
- Сокращение затрат на хранение

Для получения дополнительной информации о наших инновационных инструментах обратитесь к Вашему региональному официальному дистрибьютору или посетите сайт **www.widia.com**.

Максимизация полезного времени. Увеличение объемов выпускаемой продукции.

ATMS (Современное программное обеспечение для управления инструментальным хозяйством) — это мощный, экономически выгодный программный продукт для управления и контроля всеми видами инструмента. Данный пакет объединяет полное управление инструментальным хозяйством со складским учетом, снабжением и журналом регистрации событий.

Увеличение Вашей производительности:

- Исключение простоев из-за недостаточных запасов инструмента.
- Сокращение наладочного времени достигает 66%.

Увеличение Вашей чистой прибыли:

- Сокращение наличных запасов до 50% за полугодие.
- Снижение расхода инструмента до 30%.
- Сокращение удельных затрат до 90%.

Совершенствование результатов Вашей деятельности.

Стандартный и специальный отчет

Расширенная подсистема ориентированных на пользователя стандартного и настраиваемого отчетов.

Подача заявки и закупка

Закупка облегчается возможностью составления и отправки заявки в электронном виде по внутренней информационной системе.

Контроль за вторичной обработкой

Управление полным циклом восстановления, включая собственные и сторонние ремонтные мастерские.

Организация приемочного контроля

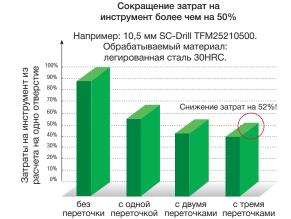
Информация о маршруте и динамические данные позволяют идентифицировать инструмент и определить необходимость в текущем ремонте.

Сообщение результатов без ограничений

Доступ к полному отчету, выдача заказа и управление данными путем определения местонахождения и сообщения результата.

Распределительная ЭВМ для консолидации и контроля за движением заказов

Ускорение процесса ввода данных позволяет консолидировать неограниченный объем данных в распределительном автомате.


Многие могут выполнить переточку Ваших инструментов, но в точности восстановить их можем только мы

Зачем восстанавливать?

Наши услуги по восстановлению режущих свойств инструмента позволяют минимизировать суммарные затраты на режущий инструмент на протяжении его полного жизненного цикла. В процессе переточки и нанесения покрытия инструмент приобретает эксплуатационные характеристики, полностью соответствующие новому изделию. Сервис по переточке оптимизирован таким образом, что необходимые инструменты всегда будут у Вас под рукой.

Отправляя изношенные сверла и концевые фрезы на переточку, Вы получаете:

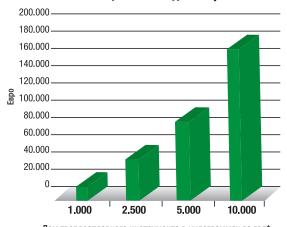
- Фирменную геометрию.
- Сертифицированные покрытия.
- Превосходное качество.
- Эксплуатационные характеристики, сравнимые с характеристиками нового инструмента.
- Быстрое выполнение заказа.
- Техническую поддержку на всем протяжении жизненного цикла инструмента.

В большинстве случаев инструменты могут быть переточены до пяти раз.

Услуги по восстановлению инструмента полностью оправдывают себя

Наши услуги по восстановлению инструмента обеспечивают значительную экономию на протяжении всего срока службы ваших режущих инструментов и могут уменьшить ваши общие затраты на инструмент более чем на 50%.

Для начала обратитесь к вашему официальному дистрибьютору.


Информация о предоставляемых услугах и поиск ближайшего дистрибьютора на нашем сайте www.widia.com.

Получите наличные или в кредит за использованный твердосплавный инструмент

Ваша потенциальная годовая прибыль*

Лом твердосплавного инструмента в килограммах за год*

*Фактическая выручка может варьироваться в зависимости
от текущей рыночной стоимости лома твердосплавных материалов.

Зачем перерабатывать?

Это того стоит!

Посредством нашей программы повторного использования твердосплавного инструмента Ваша компания сможет выполнить требования стандартов по защите окружающей среды.

Направляя нам использованный твердосплавный инструмент, Вы тем самым помогаете сохранить и защитить окружающую среду и обеспечиваете возможность повторного использования инструмента.

Это выгодно!

Мы не только помогаем Вашей компании стать экологически безопасной, но и предлагаем дополнительный стимул — это выгодно.

Благодаря нашей программе повторного использования твердосплавного инструмента, Вы можете в полном объеме возвратить свои средства, вложенные в металлорежущий инструмент, увеличить рентабельность производства и сократить общие расходы на технологическую оснастку. Отправив нам использованный твердосплавный инструмент, Вы получите денежное вознаграждение наличными или посредством кредита. (Кредитное предложение действует только в США).

Это ПРОСТО!

Программа по распределению потоков отработанного твердосплавного инструмента доступна в сети Интернет и проста в использовании. С ее помощью Вы можете запросить коммерческое предложение, оформить отправку нам Вашего использованного твердосплавного инструмента и проверить состояние Вашей текущей отгрузки. Для получения дополнительных сведений, пожалуйста, обратитесь к Вашему официальному дистрибьютору.

«Зеленые ящики» для «зеленых» компаний

Программа Green Box™ обеспечивает безопасный и эффективный способ упаковки и доставки Вашего использованного инструмента в официальный пункт переработки.

На переработку принимаются отработанные твердосплавные инструменты с покрытием и без него, очищенные от стружки, масла и примесей стали. Материал должен быть без припоя.

Проектирование с учетом экологической безопасности

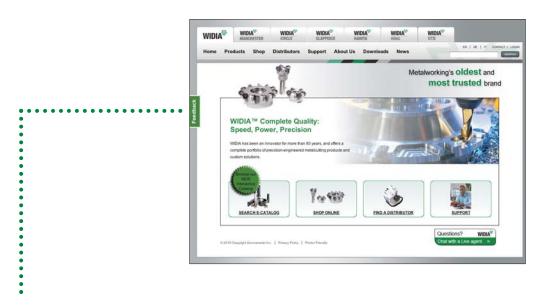
Экологическая ответственность

Мы считаем своим долгом проектировать и производить продукцию на основе принципов экологической ответственности, что позволяет выпускать изделия высокого качества и признанной ценности. Десятилетиями накапливая опыт в инструментальном оснащении механообрабатывающих производств, основываясь на тщательных инженерных разработках, передовых технологиях и специальных решениях, мы предлагаем Вам самые эффективные решения, обеспечивающие стабильность и эффективность производственных процессов. Наш широкий ассортимент и превосходное обслуживание клиентов делают нас вашим надежным поставщиком стабильных решений в области инструментальной оснастки.

Проектирование с учетом экологической безопасности

Лидерство в области инновационных инженерных разработок как в отношении стандартного, так и специального инструмента. Признанные стратегии и надежное партнерство.

Основными предпосылками успешной реализации проекта являются грамотное планирование, четкое взаимодействие всех служб и соблюдение сроков выполнения работ. На базе нашего богатого опыта по разработке и внедрению технологических ноу-хау, мы первыми создали специальную методику, позволяющую изготовлять новые изделия и быстро выводить их на рынок. Перед началом проектирования внимательно описываются и согласовываются условия разработки документации в соответствии с техническим заданием. Мы тщательно отслеживаем этапы выполнения проекта и результаты проектирования, находясь в постоянном контакте с нашими заказчиками посредством наших систем управления процессом.


Мы работаем в тесном контакте с производителями металлорежущего оборудования и оказываем своим клиентам всестороннюю техническую поддержку, включая помощь в разработке технологии обработки детали. Благодаря нашей уникальной методике, Вы станете свидетелем ускоренного внедрения нового изделия, добьетесь снижения совокупных расходов и уменьшения рисков в процессе реализации новых технологий.

Интернет

Быстрота и простота регистрации

Вы можете легко зарегистрироваться на www.widia.com для получения полного доступа ко всем разделам сайта.

Выберите ближайшего к Вам регионального официального дистрибьютора WIDIA

WIDIA Products Group предлагает изделия мирового класса и глобальное сервисное обслуживание. Наши дистрибьюторы хорошо знакомы с нашей продукцией, но еще лучше они знают Ваши потребности. Они в состоянии найти грамотное применение глобальным ресурсам компании WIDIA в Ваших конкретных условиях — на Вашем производстве, в Вашем регионе, способствуя развитию Вашего бизнеса.

Свяжитесь с нами

Наши клиенты — наша главная ценность. Поэтому мы стремимся предложить Вам сервис и техническую поддержку самого высокого уровня. Мы открыты для диалога и готовы ответить на все Ваши вопросы и замечания в течение 24 часов.

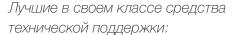
Продукция WIDIA

Чем бы вы ни занимались, точением, фрезерованием или сверлением, компания WIDIA предоставит Вам высокопроизводительный инструмент, отвечающий Вашим конкретным условиям. Наш ассортимент объединяет широкую программу стандартного инструмента и возможности изготовления специальной продукции для большинства производственных областей.

Техническая поддержка клиента

Получите быстрые и точные ответы на интересующие Вас вопросы по обработке металлов резанием

Наша команда технической поддержки клиента (CAS) занимает лидирующее положение в металлообрабатывающей промышленности по имеющимся средствам технического сопровождения пользователей металлорежущего инструмента!


- Легкий доступ к проверенной технической информации.
- Высокий уровень технического обслуживания.
- Лучшие в своем классе средства технической поддержки.

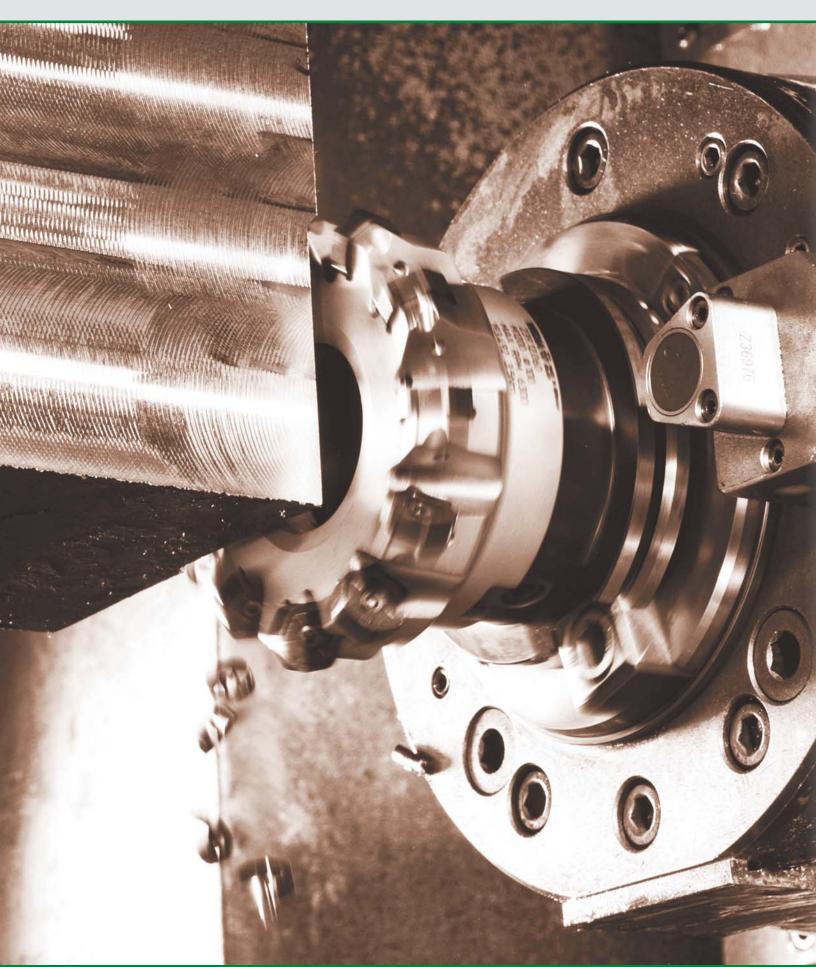
Высокий уровень технического обслуживания:


- Быстрый ответ по телефону.
- Быстрый поиск грамотных решений.
- Квалифицированное сопровождение клиентов.

- Подбор инструмента.
- Выбор режимов резания.
- Выявление и устранение неисправностей.
- Оптимизация технологического процесса.
- Программное обеспечение.

- Эксперты в области стратегий обработки.
- База данных обрабатываемых материалов.
- Вычисления на основе реальных данных.

Техническая поддержка клиента


Легкий доступ к проверенной технической информации!

Технические специалисты компании WIDIA, имеющей представительства по всему миру, оказывают клиентам помощь в выборе инструмента и обеспечивают всеми необходимыми рекомендациями по его применению.

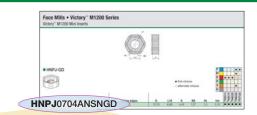
Региональные представительства:

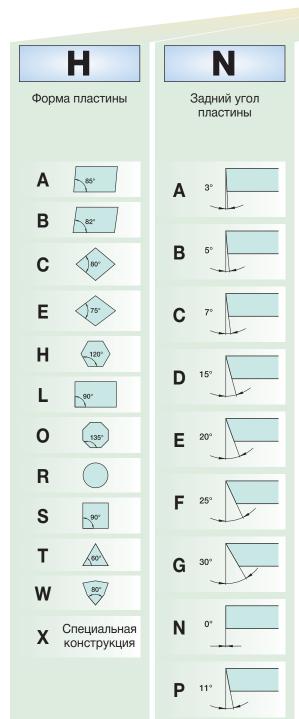
Страна происхождения	Язык	Телефон	Факс	Электронная почта
Австралия	Английский	001-724-539-6921	001-724-539-6830	ap.techsupport@widia.com
Австрия	Немецкий	0800 291630	0800 291631	eu.techsupport@widia.com
Бельгия	Английский/ Французский	0800 80410	0800 80411	eu.techsupport@widia.com
Китай	Английский	400 889 2136	001-724-539-6830	ap.techsupport@widia.com
Дания	Английский	808 89295	808 89297	na.techsupport@widia.com
Финляндия	Английский	0800 919413	0800 919415	na.techsupport@widia.com
Франция	Французский	080 5540 379	080 5540 029	eu.techsupport@widia.com
Германия	Немецкий	0800 1015774	0800 0007531	eu.techsupport@widia.com
Индия	Английский	001-724-539-6921	001-724-539-6830	ap.techsupport@widia.com
Израиль	Английский	1809 449907	1809 439845	na.techsupport@widia.com
Италия	Итальянский	800 916568	800 917749	eu.techsupport@widia.com
Япония	Английский	001-724-539-6921	001-724-539-6830	ap.techsupport@widia.com
Корея (Южная)	Английский	001-724-539-6921	001-724-539-6830	ap.techsupport@widia.com
Малайзия	Английский	001-724-539-6921	001-724-539-6830	ap.techsupport@widia.com
Нидерланды	Английский	0800 0201131	0800 0201135	na.techsupport@widia.com
Новая Зеландия	Английский	001-724-539-6921	001-724-539-6830	ap.techsupport@widia.com
Норвегия	Английский	800 10081	800 10001	na.techsupport@widia.com
Польша	Польский	00800 4411943	00800 4411940	eu.techsupport@widia.com
Сингапур	Английский	001-724-539-6921	001-724-539-6830	ap.techsupport@widia.com
Южная Африка	Английский	0800 981644	0800 981645	na.techsupport@widia.com
Швеция	Английский	020798794	020790477	na.techsupport@widia.com
Тайвань	Английский	001-724-539-6921	001-724-539-6830	ap.techsupport@widia.com
Таиланд	Английский	001-724-539-6921	001-724-539-6830	ap.techsupport@widia.com
Великобритания	Английский	0800 028 2996	0800 028 5721	na.techsupport@widia.com
США	Английский	888-539-5145	724-539-6830	na.techsupport@widia.com

Техническая информация

Техническая информация о фрезах со сменными режущими пластинами	E2–E19
Пластины для фрез	
Корпуса фрез	
Перекрестные ссылки на перечень корпусов фрез	
Общая информация и краткое описание по маркам твердых сплавов	
Формулы и основные принципы	
Рекомендации по обнаружению и устранению недостатков	
Техническая информация о сверлах	E20–E2
Конструктивные элементы сверла	
Цельные твердосплавные сверла • Общие рекомендации по применению	
Цельные твердосплавные сверла • Рекомендации по решению проблем	E25–E2
Таблицы обрабатываемых материалов	E28–E33
Класомфикация обрабатираемих материалер до DIN	Ea

Система обозначения




Что означают номера по каталогу?

Каждый символ в номере по каталогу отражает характерные особенности данного изделия. Используйте следующие ключевые колонки и соответствующие изображения для упрощения идентификации применяемых символов.

Класс

точности

СИМВОЛ	отверстие	форма отверстия	стружколом	форма сечения пластины
N			без	
R	без		односторонний	
F			двусторонний	
Α			без	
M	С	цилиндрическое отверстие	односторонний	
G			двусторонний	
W		цилиндрическое отверстие	без	HH
T	С	с фаской 40–60°	односторонний	HH
Q		цилиндрическое отверстие	без	
U	С	с двумя фасками 40-60°	двусторонний	
В		цилиндрическое отверстие	без	HH
Н	С	с фаской 70–90°	односторонний	HH

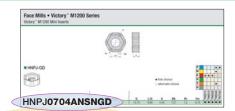
без

Геометрия и тип закрепления

цилиндрическое отверстие

с двумя фасками 70-90°

IC	КЛ	ассы J, K, L, M,	N (½)	класс U (½)	классы М и	классы M и N (½)	
4,76–10,0	0	0,051	0,051		0,076		0,127
11,11–14,2	29	0,076		0,127	0,127	,	0,203
15,00-20,6	64	0,102		0,178	0,152	2	0,279
22,00-31,1	16	0,127		0,254	0,178	}	0,381
31,75-35,0	00	0,152		0,254	0,203		0,381
	IC (†/-)	M (½)	T (†/-)	IC (†/-)	M (†/-)	T (†/-)
Α	0,025	0,005	0,02	5 J	*0,05-0,15	0,005	0,025
В	0,025	0,005	0,13	K	*0,05-0,15	0,013	0,025
C	0,025	0,013	0,02	5 L	*0,05-0,15	0,025	0,025
D	0,025	0,013	0,13	M	*0,05-0,15	*0,08-0,	20 0,13
E	0,025	0,025	0,02	5 N	*0,05-0,15	*0,08-0,	20 0,025
F	0,013	0,005	0,025	5 ** P	0,038	0,038	0,038
G	0,025	0,025	0,13	U	*0,08-0,25	*0,13-0,	30 0,13
Н	0,013	0,013	0,02		0,00-0,23	0,13-0,	0,13


*Допуски в зависимости от размера пластины и класса представлены в таблице выше. **Только по стандарту WIDIA.

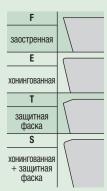
Геометрия

режущей кромки

Воспользовавшись представленной информацией о системе обозначения, Вы с легкостью выберите нужный Вам инструмент.

Размер (длина режущей кромки)

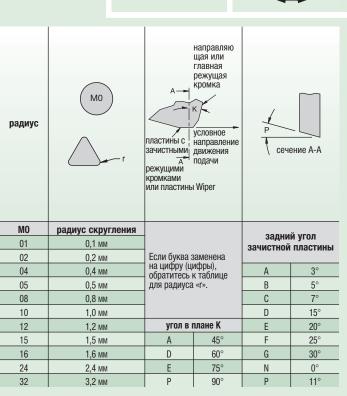
Толщина пластины


T1	1,98
02	2,38
03	3,18
T3	3,97
04	4,76
05	5,56
06	6,35
07	7,94

Конфигурация вершины

Форма режущей кромки

Исполнение



вписанная окружность «IC» по отношению к длине режущей кромки «L»

Для форм A, L и X см. поз. №1; используйте длину направляющей режущей кромки.

		«L» для форм					
IC	S	T	R	0	C	Н	Е
6,00	_	_	06	_	_	_	_
6,35	06	11	06	02	06	03	06
8,00	_		08		_	l	_
9,52	09	16	09	04	09	05	09
10,00	_	_	10		_		_
12,00	_	_	12	_	_	_	_
12,70	12	22	12	05	12	07	13
15,88	15	27	15	06	16	09	16
16,00	_	_	16	_	_		_
19,05	19	33	19	07	19	11	19
20,00	-		20		_		_
25,00	_	_	25	_	_	_	_
25,40	25	44	25	10	25	14	26

Система обозначения

Что означают номера по каталогу?

Каждый символ в номере по каталогу отражает характерные особенности данного изделия. Используйте следующие ключевые колонки и соответствующие изображения для упрощения идентификации применяемых символов.

Корпуса фрез со сменными режущими пластинами

Серия фрез

M1200HF M680

M6800M M270T M6800LX M100

M1200

M640

M660

M690

M68 M6800S

M680+

M16 M94

M170

M25

M270B

025

Диаметр резания

03

Число зубьев

Z = число рабочих зубьев

Форма хвостовика

А (цилиндрический) B (Weldon®) М (модульный)

Корпуса фрез со сменными режущими пластинами и винтовым расположением зубьев

M300 +M300 M390

НЕ = Концевая фреза с винтовым расположением зубьев

HS = Насадная фреза с винтовым расположением зубьев

НМ = Фреза с базовым конусом с винтовым расположением зубьев

Z = число рабочих зубьев

А (цилиндрический) B (Weldon) М (модульный) HSK ISO (DIN69871) CAT

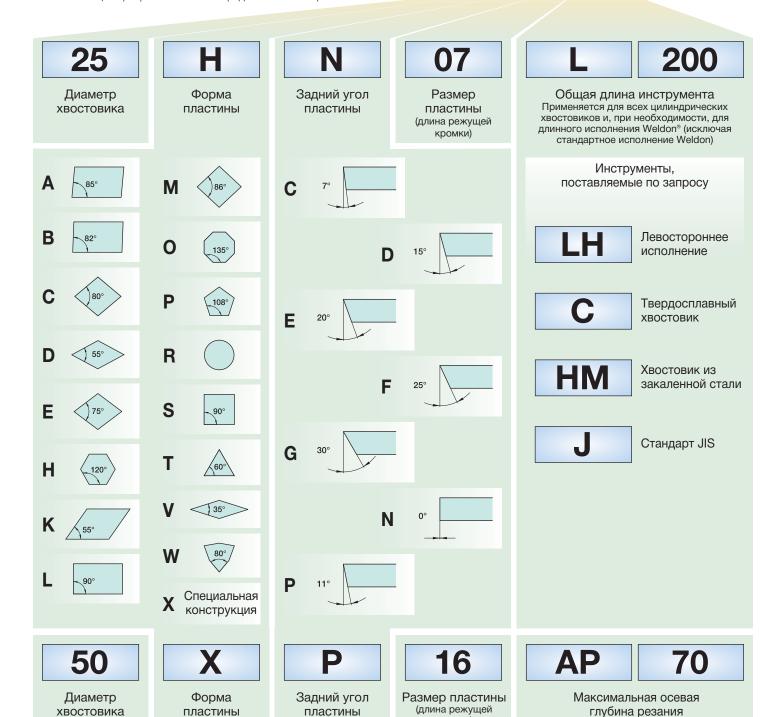
M300

Серия фрез

Тип хвостовика

Диаметр резания

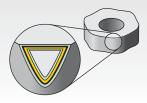
Число зубьев


Форма хвостовика

Для фрез WIDIA со сменными режущими пластинами была разработана новая простая система обозначения. Система содержит некоторые изменения, внесенные для обеспечения дальнейшего расширения ассортимента:

- Для всех новых позиций будет использоваться новая система обозначения.
- Для выбора серии сохранятся традиционные номера по каталогу.
- Номера заказов не изменены, поэтому Вы можете произвести заказ, используя старую или новую систему.
- Таблица перекрестных ссылок представлена на стр. Е6.

кромки)


Корпуса фрез М1200

предыдущая	номенклатура	новая номенклатура
MM#	номер по каталогу	номер по каталогу
3325310	12391210400	M1200D040Z03B25HN09
3325311	12391215400	M1200D040Z04B25HN09
3325312	12391200400	M1200D050Z04HN09
3325693	12391205400	M1200D050Z05HN09
3650535	12391203600	M1200D063Z04HN09
3093594	12391200600	M1200D063Z06HN09
3025376	12391205600	M1200D063Z07HN09
3650536	12391203800	M1200D080Z05HN09
3081507	12391200800	M1200D080Z06HN09
3025377	12391205800	M1200D080Z09HN09
3650537	12391204000	M1200D100Z06HN09
3325694	12391201000	M1200D100Z08HN09
3025378	12391206000	M1200D100Z11HN09
3650538	12391204200	M1200D125Z08HN09
3081508	12391201200	M1200D125Z10HN09
3093593	12391206200	M1200D125Z14HN09
3066118	12391201400	M1200D160Z12HN09
3066119	12391206400	M1200D160Z16HN09

Корпуса и пластины фрез М270

предыдущая	номенклатура	новая номенклатура					
ММ#	номер по каталогу	номер по каталогу					
	Корпуса фрез М						
2243613	12392724600	M270BD010A12L140					
2424550	12392710000	M270BD010A12L140C					
2243618	8 12392734600 M270BD010B12L90						
2243624	12392754600	M270BD010M08					
2243614	12392725000	M270BD012A12L145					
2424587	12392710200	M270BD012A12L145C					
2243619	12392735000	M270BD012B12L95					
2243625	12392755000	M270BD012M08					
2067470	12392725400	M270BD016A16L155					
2424634	12392710400	M270BD016A16L155C					
2243620	12392735400	M270BD016B16L105					
2243626	12392755400	M270BD016M08					
2243615	12392725800	M270BD020A20L170					
2639257	12392710600	M270BD020A20L170C					
2243621	12392735800	M270BD020B20L120					
2243627	12392755800	M270BD020M10					
2243616	12392726200	M270BD025A25L195					
2243622	12392736200	M270BD025B25L145					
2243628	12392756200	M270BD025M12					
2243617	12392726600	M270BD032A32L205					
2243623	12392736600	M270BD032B32L155					
2243629	12392756600	M270BD032M16					
2424586	12392712000	M270TD010A12L140C					
2424589	12392712200	M270TD010A12L145C					
2424590	12392712400	M270TD016A16L155C					
2639262	12392712400	M270TD010A10L133C					
2039202	Пластины фрез М	-					
Bce	RG10	M270BR10					
Bce	RG12	M270BR12					
Bce	RG16	M270BR16					
Bce	RG20	M270BR20					
Bce	RG25	M270BR25					
Bce	RG32	M270BR32					
Bce	RH10	M270BF10					
Bce	RH12	M270BF12					
Bce	RH16	M270BF16					
Bce	RH20	M270BF20					
Bce	RH25	M270BF25					
Bce	RH32	M270BF32					
Bce	BP10R03	M270TF10R03					
Bce	BP10R05	M270TF10R05					
Bce	BP10R1	M270TF10R1					
Bce	BP12R03	M270TF12R03					
Bce	BP12R05	M270TF12R05					
Bce	BP12R1	M270TF12R03					
Bce	BP12R2	M270TF12R1					
Bce	BP16R03	M270TF12R2 M270TF16R03					
Bce	BP16R05	M270TF16R05					
_		M270TF16R1					
Bce	BP16R1						
Bce	BP16R2	M270TF16R2					
Bce	BP16R3	M270TF16R3					
Bce	BP20R03	M270TF20R03					
Bce	BP20R05	M270TF20R05					
Bce	BP20R1	M270TF20R1					
Bce	BP20R2	M270TF20R2					
Bce	BP20R4	M270TF20R4					

Современные технологии покрытия обеспечивают возможность повышения скорости, увеличения производительности и срока службы инструмента.

Следующие таблицы предоставляют ясное руководство по выбору оптимальной марки твердого сплава в зависимости от типа операции и вида обрабатываемого материала.

Марка твердого сплава	Р	М	K	N	S	Н	без СОЖ	с СОЖ
TN2505	$\forall \forall \forall$		***			***	•	
HC-H05 • PVD-TiAIN								
TN2510			**			**		
HC-H10 • MT-CVD/CVD-TiN-TiCN- (ZrO ₂ -Al ₂ O ₃ -TiOx)			**			**	•	
TN2525	**		$\nabla\nabla$			**	•	
HC-H20 ◆ PVD-TiAIN								
TN5505			***				•	
HC-K05 • MT-CVD/CVD-TiN-TiCN-Al ₂ O ₃								
TN5515			**				•	
HC-K15 • MT-CVD/CVD-TiN-TiCN-Al ₂ O ₃								
TN5520			**				•	
HC-K20 • MT-CVD/CVD-TiN-TiCN-Al ₂ O ₃								
TN6405			**		$\nabla\nabla$		•	•
HC-K10 • PVD-TiAIN								
TN6425	$\nabla \nabla$	**			▼▼		•	•
HC-M25 • PVD-TiCN								
TN6430	•		∇				•	•
HC-P30 ◆ PVD-TiAIN-TiN								

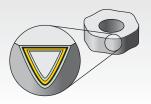
	основное использование	аль:	тернативное использование
**	Легкие режимы (чистовая обработка)	$\nabla\nabla\nabla$	Легкие режимы (чистовая обработка)
▼▼	Средние режимы	$\nabla\nabla$	Средние режимы
▼	Тяжелые режимы (черновая обработка)	∇	Тяжелые режимы (черновая обработка)

Техническая информация

Техническая информация

Обзор марок твердых сплавов

Выбор покрытия твердого сплава в зависимости от обрабатываемого материала:


Для каждой марки твердого сплава в графе материалов указаны основная и альтернативная области применения, а также может ли обработка проводиться с СОЖ или без.

Сталь
Нержавеющая сталь
Чугун
Цветные металлы
Жаропрочные сплавы
Закаленная сталь

Марка твердого сплава	P	M	K	N	S	Н	без СОЖ	с СОЖ
TN6501				***			•	•
HC-N03 ● PVD-TiB ₂								
TN6502				▼▼			•	•
HC-N05 ◆ PVD-TiB ₂								
TN6505	***		$\nabla\nabla\nabla$				•	
HC-P05 ● PVD-TiAIN-TiN Нано-слой								
TN6510			▼▼				•	
HC-K10 ● PVD-TiAIN Нано-слой								
TN6520			**				•	•
HC-K20 • PVD-TiAIN Нано-слой								
TN6525	••	$\nabla\nabla$	$\nabla\nabla$				•	
HC-P25 ● PVD-TiAIN Нано-слой								
TN6540	•	•	∇		**		•	•
HC-P40 ● PVD-TiAIN Нано-слой								
TN7525	▼▼	$\nabla\nabla$					•	
HC-P25 • MT-CVD/CVD-TiN-TiCN-Al ₂ O ₃ -TiN								
TN7535	•	∇	∇				•	
HC-P35 • MT-CVD/CVD-TiN-TiCN-Al ₂ O ₃								

	основное использование	альтернативное использование		
**	Легкие режимы (чистовая обработка)	$\nabla\nabla\nabla$	Легкие режимы (чистовая обработка)	
▼▼	Средние режимы	$\nabla\nabla$	Средние режимы	
▼	Тяжелые режимы (черновая обработка)	∇	Тяжелые режимы (черновая обработка)	

Современные технологии нанесения покрытия обеспечивают возможность повышения скорости, увеличения производительности и стойкости инструмента.

Представленные таблицы служат четким руководством по выбору оптимальной марки твердого сплава в зависимости от типа операции и группы обрабатываемого материала.

Марка твердого сплава	Р	М	K	N	S	Н	без СОЖ	с СОЖ
TTI25	***	$\nabla\nabla\nabla$					•	•
НТ-Р15 • Кермет								
ТНМ			∇	•	∇		•	•
HW-K15 • Без покрытия								
ТНМ-F			**	**	$\nabla\nabla$	$\nabla\nabla$	•	•
HF-N10 • Без покрытия								
тнм-и				***			•	•
HF-N05 • Без покрытия								
THR			•	∇	∇		•	•
HW-K25 • Без покрытия								
THR-S				**			•	•
HF-K25 • Без покрытия								
ТТМ	**	$\nabla\nabla$	$\nabla\nabla$				•	•
HW-P25 • Без покрытия								
TTR	•	∇					•	•
HW-P35 • Без покрытия								

P	Сталь
M	Нержавеющая сталь
K	Чугун
N	Цветные металлы
S	Жаропрочные сплавы
Н	Закаленная сталь

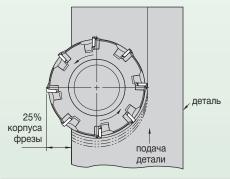
(основное использование	альтернативное использование		
***	Легкие режимы (чистовая обработка)	$\nabla\nabla\nabla$	Легкие режимы (чистовая обработка)	
~	Средние режимы	$\nabla\nabla$	Средние режимы	
▼	Тяжелые режимы (черновая обработка)	∇	Тяжелые режимы (черновая обработка)	

Техническая информация

Выбор диаметра фрезы

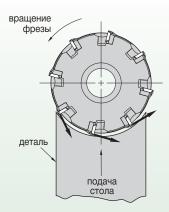
Выбор оптимального диаметра торцевой фрезы определяется размером детали

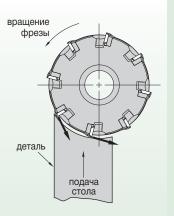
Отношение диаметра режущей части фрезы к ширине резания должно составлять 3:2 или, другими словами, диаметр фрезы должен в 1,5 раза превышать ширину резания. Например, если ширина резания составляет 100 мм, выбирайте фрезу диаметром 160 мм. Если ширина слишком большая, выберите диаметр фрезы, который подходит под размер шпинделя и сделайте несколько проходов. Например, ширина резания составляет 610 мм, а станок имеет стандартный базовый конус 50. В зависимости от мощности и жесткости станка, Вы можете использовать фрезу диаметром 200 мм и сделать пять проходов с шириной одного прохода чуть меньше, чем 125 мм, или четыре прохода с шириной одного прохода 160 мм.


Нежелательной является ситуация, когда диаметр фрезы равен ширине резания. При этом на входе и выходе фрезы образуется очень тонкая стружка. Тонкая стружка отводит тепло менее эффективно, по сравнению с более толстой стружкой, что приводит к увеличению температуры в зоне резания, что, вызывая преждевременное разрушение кромок. Также в зонах входа и выхода фрезы происходит упрочнение обрабатываемого материала.

Если фрезы диаметром, соответствующим ширине обработки, нет в наличии, поверхность можно фрезеровать за несколько проходов.

- Расположите фрезу таким образом, чтобы 25% ее корпуса находилось за пределами детали, и выполните два прохода.
- По возможности обеспечьте врезание пластины в материал заготовки не кромкой, а плоскостью передней поверхности.
- Возможный результат увеличение срока службы инструмента.




Желательно

Положение фрезы

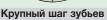
Расположение фрезы/усилия резания

Усилия резания постоянно изменяются по мере движения пластин в направлении резания. Мы можем управлять направлением усилий резания посредством изменения положения фрезы по отношению к детали. Гарантия безопасности данной операции основана на способе закрепления, конструкции детали и других факторах.

Шаг зубьев фрезы

Шаг зубьев или плотность их распределения по диаметру связано с числом пластин фрезы. Фрезы классифицируются на имеющие крупный, средний и мелкий шаг зубьев. В процессе проектирования фрезы учитываются глубина резания и подача на зуб, а также предусматривается возможность беспрепятственной эвакуации стружки. Именно поэтому, фрезы, разработанные для съема большого объема металла, имеют максимальные стружечные канавки. Данная необходимость ограничивает количество пластин, определяя крупный шаг зубьев фрезы.

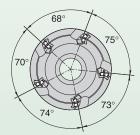
Для фрез со средним шагом зубьев зона отвода стружки в корпусе обычно немного меньше, чем для фрез с крупным шагом зубьев. Для фрез с мелким шагом зубьев, зона отвода стружки значительно меньше.


Крупный шаг зубьев рекомендуется для операций фрезерования общего назначения, когда имеется достаточная мощность и требуется максимальная глубина резания.

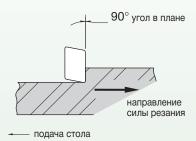
Средний шаг зубьев рекомендуется выбирать при необходимости обеспечить умеренную подачу на зуб и в случаях, когда в резании одновременно должно находиться более одного зуба. При среднем шаге зубьев также снижается удар при входе в резание без потери подачи.

Мелкий шаг зубьев идеально подходит для фрезерования сильно прерывистой поверхности, как например, у коллектора гидросистемы. Фрезы с мелким шагом зубьев допускают более высокую подачу, чем фрезы со средним или большим шагом зубьев. Они также характеризуются более высокими усилиями резания и потребляют большую мощность, чем фрезы с со средним или большим шагом зубьев.

Пластины у фрез с **неравномерным шагом зубьев** располагаются по диаметру несимметрично, что препятствует возникновению гармонических колебаний, характерных для равномерного расположения зубьев. Низкая склонность к вибрациям фрез подобного типа делает их предпочтительным выбором вне зависимости от шага зубьев.



Средний шаг зубьев


Мелкий шаг зубьев

Неравномерный шаг зубьев

Углы в плане/усилия резания на детали и зажимном приспособлении

Усилия резания, возникающие в процессе фрезерования, постоянно меняют свое направление по мере перемещения инструмента. Понимание взаимосвязей этих усилий поможет обеспечить безопасную работу, предотвращая перемещение детали в процессе резания. Не менее важным является влияние угла в плане на направление силы резания, фактическую толщину стружки и стойкость инструмента.

Угол в плане 90°

преимущества:

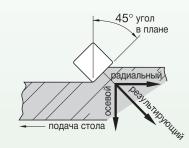
Обработка уступа с углом 90°

 Возможное решение для обработки тонкостенных деталей.

недостатки

Наибольшие радиальные силы резания

- Высокая ударная нагрузка при входе.
- Высокая вероятность задира на пластине в зоне выхода из резания.


Угол в плане 75° и 70°

преимущества:

- Для операций фрезерования общего назначения и относительно жестком закреплении.
- Хорошее соответствие размера пластины и максимальной глубины резания.
- Сниженная ударная нагрузка при входе.

недостатки:

 Высокие радиальные силы могут привести к потере устойчивости станка и ослаблению крепления детали.

Угол в плане 45°

преимущества:

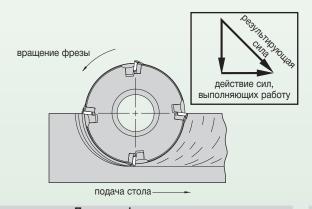
- Хороший баланс осевой и радиальной сил резания.
- Меньшее разрушение угла детали.
- Минимальный удар при входе.
- Меньшие радиальные силы, направленные на подшипники шпинделя.
- Возможность более высокой подачи.

недостатки:

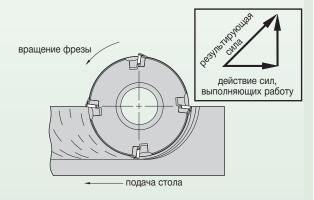
- Небольшая максимальная глубина резания.
- Диаметр резания меньше фактического диаметра корпуса фрезы, что может стать причиной столкновения с элементами крепления.

Позиционирование фрезы

Попутное фрезерование (предпочтительно)


Пластина входит в материал детали с некоторой силой резания и образует стружку, которая утончается на выходе резания. Это снижает количество образующегося тепла за счет его поглощения стружкой. Упрочнение обрабатываемой поверхности минимально.

Усилия попутного фрезерования направлены на проталкивание детали в сторону зажимного приспособления и по направлению подачи. Попутное фрезерование является предпочтительным методом для большинства случаев фрезерной обработки.


Фрезерование против подачи

Метод фрезерования в направлении противоположном подаче находил широкое применения в связи с использованием высокоскоростных стальных фрез и отсутствием механизма по ограничению свободного хода. Данный способ также известен как встречное фрезерование.

Во время фрезеровании против подачи при вхождении пластины в резание возникает сильное трение, что приводит к свариванию стружки и передаче тепла на пластину и обрабатываемую деталь. Результирующие силы направлены против подачи. Существует вероятность упрочнения обрабатываемой поверхности.

Попутное фрезерование

Встречное фрезерование

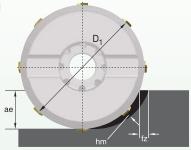
Определения обозначений

условные обозначения				
VC	скорость резания			
n	частота вращения (об/мин)			
D ₁	диаметр фрезы			
vf	минутная подача			
fz	подача на зуб			
Z	число рабочих зубьев или пластин на фрезе			
р	3.1416			

	условные обозначения				
Ap1	глубина резания				
ae	радиальная ширина резания				
D	диаметр по пластинам (по окружности)				
hm	средняя толщина стружки				
h	толщина стружки				

Расчет скорости и подачи

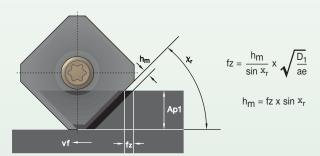
найти	дано	формула
VC	D ₁ n	$vc = \frac{p \times D_1 \times n}{}$
n	D ₁ vc	$n = \frac{1000 \times vc}{p \times D_1}$
vf	fz n Z	vf = fz x Z x n
fz	Z vf n	$fz = \frac{vf}{Z \times n}$

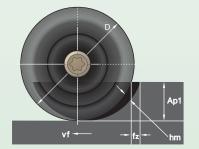

дано	результат вычисления
диаметр фрезы D ₁ = 125 мм число зубьев фрезы Z = 8 vc = 200 мм/мин fz = 0,2 мм	n = $\frac{1000 \times 200}{3.1416 \times 125}$ = 510 об/мин
	vf = 0,20 x 8 x 510 = 816 мм/мин

Глубина резания и средняя толщина стружки

Формула расчета компенсации подачи для ае <0,4 D₁

Такие операции, как периферийное фрезерование с небольшой радиальной глубиной резания или прорезание пазов с помощью фрезы, закрепленной на оправке, требуют выполнение расчета компенсации скорости подачи для сохранения существующего значения hm. Расчетная толщина снимаемой стружки и результирующее значение hm могут быть существенно уменьшены за счет незначительной радиальной глубины резания. Например: фактическая толщина стружки при входе для фрезы диаметром 20 мм составляет 0,3 мм, а радиальная глубина резания составляет только 23% от расчетной толщины снимаемой стружки.

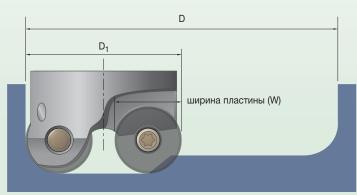

$$h_m = fz \times \sqrt{\frac{ae}{D_1}}$$


$$fz = h_m x \sqrt{\frac{D_1}{ae}}$$

Влияние угла в плане на толщину стружки

Увеличение угла в плане приведет к уменьшению толщины стружки, в связи с увеличением длины режущей кромки. Чтобы достичь высокой производительности и отсутствия проблем при фрезеровании, используйте фрезы с углом в плане.

У фрез с круглыми пластинами эффективный угол в плане изменяется в соответствии с изменением фактической глубины резания. Когда глубина резания составляет 30% или становится меньше диаметра пластины, необходимо выполнить расчет средней толщины стружки и увеличить подачу во избежание чрезмерного износа и поддержания максимальной производительности.


$$fz = h_m x \sqrt{\frac{D}{Ap1}}$$

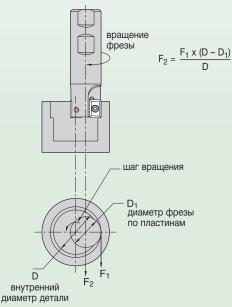
$$h_{m} = fz \times \sqrt{\frac{Ap}{D}}$$

Фрезерование методом круговой интерполяции

Обработка отверстия методом круговой интерполяции — это эффективный метод удаления материала при большом диаметре отверстия и низкой мощности станка. При этом особое значение приобретает расчет требуемого минимального или максимального диаметра фрезы. Выбранный инструмент должен допускать возможность врезания под углом, при условии соблюдения рекомендаций по углу и глубине резания.

Расчет минимального и максимального диаметра инструмента для получения требуемого диаметра отверстия:

минимальный диаметр инструмента для получения D составляет	максимальный диаметр инструмента для получения D составляет
$D_{1 \text{ min}} = \frac{D}{2} + 0.5 \text{ MM}$	$D_{1 \text{ max}} = \frac{D + W}{2} - 1 \text{ MM}$


Расчет подачи для внутренней и наружной обработки методом круговой интерполяции

Расчет требуемой подачи для программирования контура фрезерования (кругового или винтового) ведется по линии центров станка. При прямолинейном движении инструмента подача по режущей кромке и по линии цетров станка совпадают. При круговом движении инструмента не совпадают.

Используйте нижеприведенные формулы для определения соотношений между подачей по режущей кромке и по линии центров станка.

	условные обозначения				
F ₁	подача по режущей кромке фрезы (мм/мин)				
F ₂	подача по линии центров станка (мм/мин)				
D	внутренний диаметр детали				
D	наружный диаметр детали				
D ₁	диаметр фрезы по пластинам				

Интерполяция по внутреннему диаметру (ID)

При контурной обработке по внутреннему диаметру, подача по линии центров станка всегда меньше, чем подача по режущей кромке.

пример для внутреннего диаметра

D = 100 мм – внутренний диаметр детали

D₁ = 63 мм – диаметр фрезы

fz = 0.2 мм/зуб

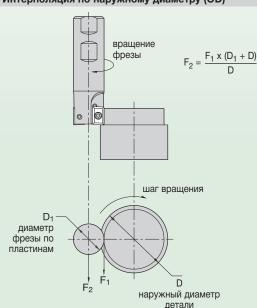
n = 708 об/мин

Z = 6 рабочих зубьев

1. Расчет подачи по режущей кромке.

 $F_1 = fz x Z x n$

 $F_1' = 0.2 \times 6 \times 708 = 850 \text{ мм/мин}$


2. Расчет подачи по линии центров станка.

$$F_2 = \frac{F_1 \times (D - D_1)}{D}$$

$$F_2 = \frac{850 \times (100 - 63)}{100} = 315 \text{ мм/мин}$$

Чтобы получить подачу по режущей кромке равную F_1 (850 мм/мин), необходимо запрограммировать станок на подачу по линии центров станка равную F_2 (315 мм/мин). Данная разница по отношению к подаче на режущей кромке (F_1) составляет приблизительно 63%.

Интерполяция по наружному диаметру (OD)

При контурной обработке по наружному диаметру, подача по линии центров станка всегда больше, чем подача по режущей кромке.

пример для наружного диаметра

D = 125 мм – наружный диаметр детали

 $D_1 = 50 \text{ мм} - \text{диаметр фрезы}$

fz = 0.2 мм/зуб

n = 955 об/мин

Z = 5 рабочих зубьев

1. Расчет подачи по режущей кромке.

 $F_1 = fz \times Z \times n$

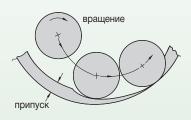
 $F_1 = 0.2 \times 5 \times 955 = 955 \text{ мм/мин}$

2. Расчет подачи по линии центров станка.

$$F_2 = \frac{F_1 \times (D_1 + D)}{D}$$

$$F_2 = \frac{955 \times (50 + 125)}{125} = 1337 \text{ мм/мин}$$

Чтобы обеспечить подачу по режущей кромке равную F_1 (955 мм/мин), необходимо запрограммировать станок на подачу по линии центров станка равную F_2 (1337 мм/мин). Разница между значениями составляет около 40% в сторону увеличения по отношению к подаче по режущей кромке (F_1) .


Рекомендации по внутренней и наружной круговой интерполяции

При винтовой интерполяции фреза находится в постоянном контакте с деталью, в результате срок службы инструмента становится предсказуемым, а давление инструмента – относительно постоянным. При круговой интерполяции необходимо избегать резкого входа фрезы в резание и стараться обеспечить плавный вход и выход инструмента из материала по наружной или внутренней дуге. Это обеспечит предсказуемость срока службы инструмента, позволит избежать чрезмерной нагрузки и разгрузки инструмента, а также избежать следов, образующихся при прерывании обработки. Минимальная величина возможной дуги зависит от припуска.

Избегайте прямолинейного контакта

Используйте плавный вход в контакт по дуге

Расчет требуемой мощности

Операция фрезерования требует больших затрат мощности и зачастую именно ограничение по мощности оборудования является лимитирующим фактором при выборе фрезы. При выполнении операций с использованием фрез больших диаметров или при тяжелых режимах обработки, наиболее важным будет в первую очередь выполнить расчет требуемой мощности.

ПРИМЕЧАНИЕ: Эффективность шпинделя «Е» варьируется в пределах от 75% до 90% (E = от 0,75 до 0,90).

Формула, применяемая для расчета мощности (НРС) фрезы:

 $HPC = \frac{MRR}{K}$

пример: ширина резания (ае) глубина резания (Ар1) подача (vf) сталь, 220 НВ

42 мм 5 мм 1092 мм/мин Коэффициент «К» — 25,56

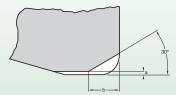
 $MRR = \frac{Ap1 \times ae \times vf}{1000}$

$$MRR = \frac{5 \times 42 \times 1092}{1000} = 229 \text{ cm}^3/\text{MuH}$$

Для расчета мощности двигателя (HP_m) используйте следующую формулу:

$$HP_m = \frac{HPC}{E}$$

Перевод из л.с. в кВт:


$$kW = \frac{hp}{1.341}$$

Для определения потребляемой мощности необходимо использовать коэффициент «К». Коэффициент «К» — это постоянная мощность, которая выражается в количестве кубических сантиметров металла в минуту, который может быть удалён с помощью одной лошадиной силы.

ПРИМЕЧАНИЕ: Коэффициент «К» изменяется в зависимости от твердости материала.

материал заготовки	твердость (НВ)	коэффициент «К»
	85–200	26,88
	201–253	25,56
	254–286	20,98
сталь, ковкий чугун (нелегированная,	287–327	18,03
легированная и инструментальная сталь)	328–371	14,42
	372-481	11,31
	482-560	9,67
	561–615	8,85
дисперсионно-твердеющая нержавеющая сталь	150–450	20,81–6,88
	150–175	37,20
	110-190	32,77
UVEVU (cont iğ. EFROSTANIN iğ la konkuğ)	176–200	30,97
чугун (серый, пластичный и ковкий)	201–250	24,91
	251-300	20,81
	301–320	19,50
нержавеющая сталь (ферритная,	135–275	25,24–12,45
аустенитная и мартенситная)	286–421	12,13-8,19
титан	250–375	21,80–14,26
жаропрочные сплавы на основе никеля и кобальта	200–360	13,60–7,87
сплавы на основе железа	180-320	14,91–8,69
никелевые сплавы	80-360	14,91–8,69
алюминиевые сплавы	30-150 (500 kg)	102,42–54,57
магниевые сплавы	40-90 (500 kg)	163,87–109,30
медь	150	54,57
MORIULO OFFICELL	100–150	54,57
медные сплавы	151–243	32,77

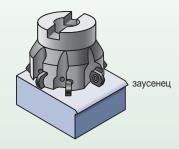
Модификация фрез при использовании пластин с большим радиусом (фрезы для обработки уступов и фрезы с винтовым расположением зубьев)

радиус	с удаляемый материал	
пластины	a	b
0,8–1,6	_	_
2–2,4	0,1	1
3–3,25	0,4	2,1
4	0,5	2,4

Наш полный комплект предложений. Реализация всех Ваших пожеланий.

Торговые марки WIDIA с гордостью поставляют на предприятия самые мощные инструменты: от инструментов для токарной обработки, обработки отверстий и фрез со сменными режущими пластинами до цельных твердосплавных концевых фрез, цельных твердосплавных сверл и метчиков. Покупая продукты WIDIA, Вы приобретаете не только скорость, производительность и точность — Вы обеспечиваете наиболее эффективную и качественную реализацию Ваших пожеланий.

Объедините наиболее широкий ассортимент высококачественной продукции и специальных решений, предлагаемых сегодня, с глобальной, специализированной сетью официальных дистрибьюторов, и Вы получите необходимые Вам инструментальные решения с высоким уровнем производительност, гарантируемым торговыми марками WIDIA. Для получения информации о продукции или возможности проведения испытаний на Вашем производстве посетите сайт www.widia.com.


Основные дефекты при фрезеровании

Вибрации — это небольшие колебательные движение инструмента или фрезерного станка. Один раз возникнув, это являение в дальнейшем проявляется самопроизвольно, до тех пор пока не будет установлена и устранена причина их возникновения. Признаком вибриций являются линии или риски на обработанной поверхности, располагающиеся с равными интервалами, величина которых зависит от периодичности возникающих колебаний.

причина	решение
жесткость	Увеличить жесткость системы.
подача	Снизить подачу, проверить фактическое потребление мощности.
осевая глубина резания	Уменьшить осевую глубину резания.
радиальная глубина резания	Уменьшить радиальную глубину резания.
подготовка режущей кромки пластины	Использовать пластины с острыми кромками с PVD- покрытием; снять небольшой хон или защитную фаску.
внешние факторы	Проверить внешние факторы (например, рядом стоящий штамповый пресс).

Образование заусенцев это формирование небольших заливин сплава, раскатанных по уступами и кромкам детали, напоминающих дефект поверхности, образующийся при выходе фрезы из резания. Данное явления характерно для фрезерования мягких вязких материалов.

причина	решение
износ режущей кромки	Выявить и заменить пластины, с износившейся режущей кромкой.
подготовка режущей кромки пластины	Уменьшить защитную фаску; уменьшить или имитировать хонингование.
марка сплава	Использовать острые пластины с PVD-покрытием.
угол входа	Измените угол при входе или выходе.
угол в плане	Угол в плане 90° является наименее предпочтительным; используйте углы в плане 45°, 60° или 75°.
подача на зуб	Увеличить или уменьшить подачу fz; предварительно выполнив фаску на детали.

Выров характеризуется неровной трещиной материала, связанной с отрывом, подобно разрыву на выходе фрезы. Это особенно заметно при фрезеровании чугуна и других материалов из порошкового металла.

причина	решение
угол в плане	Уменьшить угол в плане фрезы.
геометрия угла пластины	Применить двойные пластины с зачистными кромками.
подача на зуб	Снизить подачу fz.
угол входа	Изменить траекторию входа фрезы.

Устранение недостатков, связанных с поломкой пластин

Введение

Решить возникшую проблему на операции фрезерования можно последовательным выявлением и устранением возможных неисправностей. Эти проблемы могут сопровождаться преждевременной поломкой режущей пластины, повышенным шумом или вибрациями, повреждением корпуса фрезы или дефектами на обработанной поверхности. И основополагющим фактором в борьбе с возможными неисправностями является выявления причины их возникновения. Пять основных факторов, подлежащих анализу:

- 1. режущий материал (марка сплава)
- 2. фреза/патрон
- 4. деталь
- 5. установка/закрепление

3. станок

В данном разделе рассмотрены возможные причины и рекомендации по устранению неисправностей для каждого из пяти перечисленных пунктов. Помните, если одновременно выполняется несколько шагов, реальная причина проблемы возможно никогда не будет выявлена. Всегда выполняйте только одну корректирующую меру за один раз.

1. Скалывание: Внешне напоминает допустимый износ по задней поверхности. Но нормальный износ по задней поверхности представляет собой раномерно снятую ленточку по кромке пластины. А в случае выкрашиваний, плоскость износа отсутствует, а имеется пилообразная,

шероховатая поверхность. При несвоевременном обнаружении выкрашиваний, данная проблема может быть классифицирована как образование проточины по глубине резания.

скалывание	
причина	решение
марка сплава	Используйте более прочную марку сплава.
подготовка кромки	По возможности используйте защитную фаску.
нарост на кромке	Увеличьте скорость.
вибрации	Проверьте жесткость системы на предмет обеспечения соответствующего зажатия фрезы. Замените изношенную прижимную планку/подшипники. Проверьте правильность установки фрезы.
подача	Уменьшите подачу на зуб.
вторичное перерезание стружки	Выберите геометрию фрезы с правильным шагом зубьев, чтобы обеспечить пространство для размещения стружки. Использовать сжатый воздух или СОЖ для удаления стружки.

2. Образование зазубрин:

Образование проточины по глубине резания: Проявляется в виде местного истирания или выкрашивания кромки по линии, соответствующей глубине резания, на передней и задней поверхности пластины. Образование проточины чаще всего связано с

характеристиками обрабатываемого материала. Это могут быть корка на поверхности заготовки, специфические свойства жаропрочных сплавов, таких как INCONEL®, упрочненный поверхностный слой заготовки, возникший в процессе предварительной механической обработки или закаленный материал твердостью выше 55 HRC.

образование зазубрин	
причина	решение
геометрия фрезы	Измените угол в плане фрезы.
марка сплава	Используйте более износостойкую марку твердого сплава.
подача	Уменьшите подачу на зуб.
скорость	Уменьшите скорость.
подготовка кромки	Используйте хонингованные пластины или пластины с защитной фаской.
программирование	Измените глубину резания для чрезвычайно абразивных материалов.

3. Термические трещины: Эти трещины располагаются перпендикулярно режущей кромке пластины и вызваны значительными колебаниями температуры в зоне резания. За один оборот фрезы пластина начинает резать и температура быстро увеличивается. Различная толщина стружки также влияет на

изменение температуры во время резания. При выходе пластины из резания воздух или поток СОЖ быстро охлаждают пластину перед ее повторным вхождением в материал.

Эти колебания температуры создают термические напряжения внутри пластины, которые могут привести к термическим трещинам. Внешне развитая термическая трещина напоминает выкрашивания.

термические трещины	
причина	решение
скорость и подача	Уменьшите температуру режущей кромки путем снижения скорости резания и, возможно, подачи на зуб.
СОЖ	Прекратите подвод СОЖ.
марка сплава	Используйте сплав с покрытием, разработанным для фрезерования с СОЖ.

Устранение недостатков, связанных с поломкой пластин (продолжение)

4. Нарост на кромке: Данное состояние характеризуется налипанием слоев обрабатываемого материала на режущую кромку пластины. Твердые частицы прилипшего материала периодически срываются, оставляя углубления неправильной формы на режущей кромке. Это приводит к повреждению детали и пластины. Из-за нароста на кромке также может увеличиться усилие резания.

нарост на кромке	
причина	решение
скорость	Увеличьте скорость резания.
подача	Увеличьте подачу на зуб (fz).
сож	При обработке нержавеющей стали и алюминиевых сплавов используйте охлаждение туманом или наружный подвод СОЖ во избежание прилипания стружки к пластине.
подготовка кромки	Используйте острые кромки, пластины с положительным передним углом с PVD-покрытием; используйте полированные пластины для цветных металлов.

5. Лункообразование: Относительно гладкая, правильной формы впадина, возникающая на передней поверхности пластины. Образование лунки происходит по двум причинам:

 Обрабатываемый материал налипает на поверхность вершины пластины, приводя к мгновенному отрыванию фрагментов поверхности пластины.

2. При трении стружки о поверхность пластины выделяется большое количество теплоты. В итоге, рост тепла приводит к размягчению передней поверхности и отрыву частиц пластины, образуя лункообразный дефект.

лункообразование	
причина	решение
марка сплава	Используйте более износостойкую марку сплава.
скорость	Снизьте скорость резания.
подготовка кромки	Используйте меньшую защитную фаску или увеличьте подачу для защитной фаски до требуемой величины.

Лункообразование — это нехарактерный для фрезерования вид износа, иногда возникающий при обработке определенных легированных марок стали и чугуна.

6. Износ по задней поверхности:

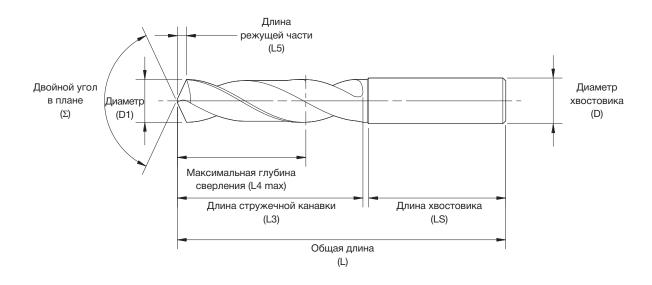
Равномерный износ по задней поверхности — наиболее частая и предсказуемая причина поломки пластины. Чрезмерный износ по задней поверхности приводит к увеличению усилий резания и способствует ухудшению качества обработанной поверхности. Когда износ

происходит с недопустимой интенсивностью или становится непредсказуемым, необходимо исследовать влияние таких ключевых факторов, как скорость, подача, марка сплава и геометрия пластины/фрезы.

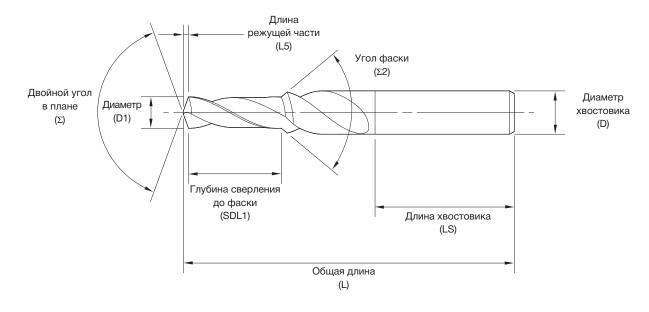
ПРИМЕЧАНИЕ: на пластины необходимо нанести риски, соответствующие черновой (износ по задней поверхности 0,38–0,50 мм) и чистовой обработке (износ по задней поверхности — 0,25–0,38 мм).

износ по задней поверхности	
причина	решение
скорость	Необходимо снизить скорость без изменения подачи на зуб.
подача	Увеличьте подачу на зуб (подача должна быть достаточно высокой, чтобы избежать трения, которое происходит при малой толщине стружки).
марка сплава	Используйте более износостойкую марку сплава. Замените на сплав с покрытием, если в данный момент используется сплав без покрытия.
геометрия пластины	Проверьте соответствие типа пластины используемой фрезе.

7. Другие факторы: Если износ, скалывание стружки, термические трещины и поломка случаются одновременно, оператор станка обычно должен проверить настройку подачи, скорости и глубины резания, чтобы определить основную причину проблемы.



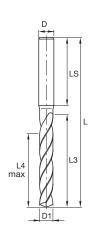
другие факторы	
причина	решение
жесткость системы	Проверьте закрепление фрезы. Увеличьте жесткость зажимного приспособления и фрезы. Проверьте степень износа используемого стационарного оборудования или правильность установки пластины. Уменьшите вылет фрезы.
подача	Снизьте подачу для уменьшения усилий резания.
геометрия фрезы	По возможности, используйте фрезу с таким углом в плане, чтобы силы резания были направлены от вершины пластины.
пластина/марка сплава	По возможности, используйте пластины с большим радиусом при вершине. Используйте пластину с защитной фаской. Используйте более прочный твердый сплав.



Конструктивные элементы сверла

Используйте данный пояснительный чертеж при описании конструктивных особенностей цельного твердосплавного сверла.

Используйте данный пояснительный чертеж при описании конструктивных особенностей цельного твердосплавного ступенчатого сверла.



Высокопроизводительные цельные твердосплавные сверла

Размеры по DIN и стандарту изготовителя

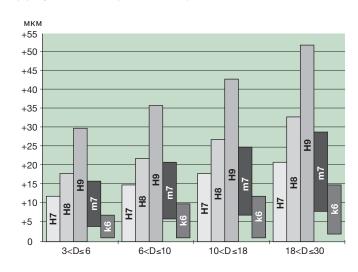
ПРИМЕЧАНИЕ:

Укороченные и стандартные цельные твердосплавные сверла от WIDIA Products Group изготавливают в соответствии с DIN 6537.

Сверла увеличенной длины соответствуют стандарту производителя WIDIA.

Все цельные твердосплавные сверла диаметром D1>20 мм также изготавливают в соответствии со стандартами изготовителя.

форма НЕ, прямое исполнение А


сверлах WIDIA

исполнение хвостовика по DIN 6535

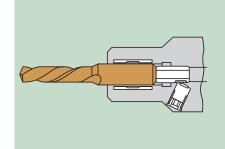
Размеры для высокопроизводительных цельных твердосплавных сверл WIDIA

	l	10 6535	приблизительно 3 x D	D1>2	по DIN 6537К 0 мм по изготовителя	ДЛИННОЕ приблизительно 5 x D	D1>2	по DIN 6537L 0 мм по изготовителя	СВЕРХДЛИННОЕ приблизительно 7 x D		андарту овителя
D1	D	LS	L	L3	L4 max	L	L3	L4 max	L	L3	L4 max
-3,75	6	36	62	20	14	66	28	23	78	40	33
-4,75	6	36	66	24	17	74	36	29	87	49	41
-6,00	6	36	66	28	20	82	44	35	94	56	48
-7,00	8	36	79	34	24	91	53	43	105	67	57
-8,00	8	36	79	41	29	91	53	43	110	72	61
-10,00	10	40	89	47	35	103	61	49	122	80	68
-12,00	12	45	102	55	40	118	71	56	141	94	79
-14,00	14	45	107	60	43	124	77	60	155	108	91
-16,00	16	48	115	65	45	133	83	63	171	121	101
-18,00	18	48	123	73	51	143	93	71	185	135	113
-20,00	20	50	131	79	55	153	101	77	200	148	124
-22,00	20	50	141	86	60	167	112	85	217	162	136
-25,00	25	56	153	95	65	184	126	98	238	180	150

Допуски на сверла и отверстия

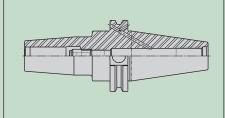
Высокопроизводительные цельные твердосплавные сверла, изготовленные с допуском по m7, обеспечивают точность отверстия по H9. В очень хороших условиях обработки точность отверстия может соответствовать H8. Цельные твердосплавные сверла, изготовленные с допуском по h7, производят отверстия с допусками K9–K11. Цельные твердосплавные сверла для обработки отверстий другой точности изготавливаются по специальному заказу.

Допуски на диаметр D1: Винтовая канавка Сверло GGX

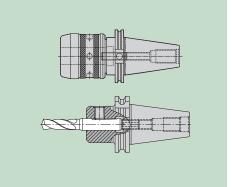


Системы крепления инструмента

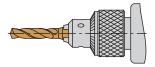
Как и на любой другой операции, при сверлении, качественной обработке отверстия способствует не только инструмент, но и отдельные компоненты всей системы. Для достижения максимальной эффективности и точности обработки лучшим выбором представляются следующие системы крепления инструмента:

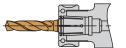

Лучший вариант

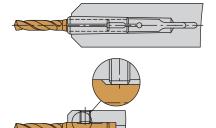
Гидравлические патроны


Второй вариант

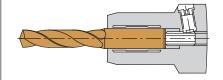
Патрон с термозажимом



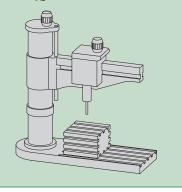

Третий вариант


Силовой фрезерный патрон с цангами

Не рекомендуется



Зажимной патрон


Следует избегать использования универсальных цанговых патронов для сверления, зажимных втулок и патронов Weldon®. Данные типы оснастки не компенсируют силы резания в достаточной степени и, следовательно, не могут обеспечить необходимую геометрическую точность отверстия.

Настоятельно рекомендуется

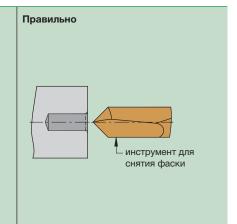
Гидравлические патроны обеспечивают надежную передачу крутящего момента с великолепной концентричностью отверстий.

Не рекомендуется

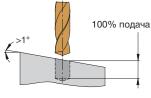
Станок

Цельные твердосплавные сверла имеют жесткость значительно большую, чем обычные сверла из быстрорежущей стали. Это позволяет осуществлять точную обработку отверстий, с точностью позиционирования 0,025 мм. Однако это также означает, что сверла требуют жестких станков с точными шпинделями.

(продолжение)


E22

(продолжение)


Неправильно

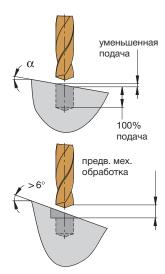
Сверление и снятие фаски

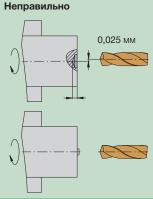
Сначала просверлить отверстие, а затем снимать фаску.

Неправильно

без предв. мех. обработки

Засверливание в наклонную или криволинейную поверхность


При сверлении наклонной или криволинейной поверхности необходимо снижать подачу. Численное значение требуемой подачи зависит от угла наклона поверхности детали и типа сверла (см. таблицу).


уменьшенная подача (% от стандартного значения)

наклон α	3 x D KOPOTKOE	5 x D Е ДЛИННОЕ	<5 x D
1°	100%	80%	предв. мех.обработка
2°	80-50%	80-50%	предв. мех.обработка
3°	65%	50%	предв. мех.обработка
4°	50%	предв. мех.обработка	предв. мех.обработка
6°	30%	предв. мех.обработка	предв. мех.обработка

Поверхности с большим углом наклона должны быть предварительно обработаны с помощью фрезы.

Правильно

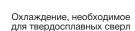
Сверление на токарных станках

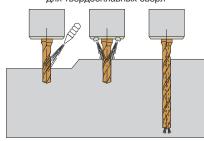
При сверлении на токарных станках чрезвычайно важным является точная установка сверла по высоте центров. Отклонение от центральной линии не должно превышать 0,025 мм.

На автоматах пруткового типа не следует сверлить центральное отверстие в бобышку на заготовке или в отверстие, оставшееся от предыдущей операции. Необходимо точно устанавливать отрезной резец

по высоте центров.

Отверстия глубиной более 3 x D


Обработка отверстий, глубиной в три раза превышающей диаметр, требует снижения скорости резания. Рекомендуется снижать скорость на 15%. Рекомендуемые режимы резания приведены на стр. В30-В31.


Техническая информация

сож

- Цельнотвердосплавные сверла Widia предполагают обработку с высокой степенью производительности.
 А для этого им необходимо организовать подачу достаточного объема охлаждающей жидкости.
 Только при обеспечении надлежащей скорости потока СОЖ может быть достигнут максимальный срок службы инструмента и высокая скорость резания.
- При неправильном охлаждении сверло быстро нагревается, в результате чего диаметр сверла увеличивается, и оно может застрять в отверстии.

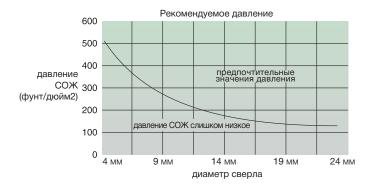
Рекомендуемое давление

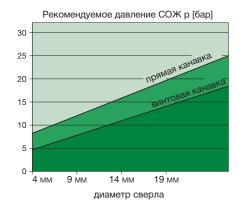
4 только внутренний подвод СОЖ

3 наружный подвод СОЖ под высоким давлением

4 диаметру 2 наружный подвод СОЖ

9 мм

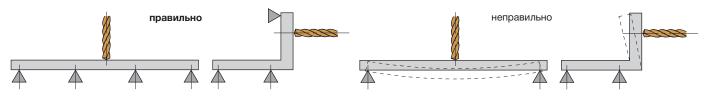

Рекомендуемый расход СОЖ V [л/мин]
60
40
30
прямая канавка —
винтовая канавка —
винтовая канавка —
диметр сверла


диаметр сверла

14 MM

19 MM

- Цельные твердосплавные сверла, снабженные внутренними каналами для подачи СОЖ, эффективны при обработке особо глубоких отверстий. Чем выше давление СОЖ, тем лучше результаты сверления.
- При использовании сверл без внутренней подачи СОЖ постарайтесь обеспечить наличие хотя бы одной струи СОЖ, по возможности параллельной сверлу.
- При сверлении неглубоких отверстий сверла без внутренней подачи СОЖ часто служат дольше. Инструмент является более прочным и не испытывает теплового удара на режущей кромке.
- Важно использовать СОЖ высокой концентрации для обеспечения смазочной способности, что поможет продлить срок службы инструмента, улучшить стружкоотвод и обеспечить лучшую чистоту поверхности.
- С целью увеличения срока службы инструмента и производительности обработки желательно организовать подачу СОЖ под высоким давлением, либо через инструмент, либо по касательной линии к инструменту.
- Рекомендуется подавать СОЖ через одну, но более мощную струю.
 Это будет обеспечивать лучший отвод стружки из отверстия.



Жесткость закрепления заготовки

0

4 MM

Поскольку цельные твердосплавные сверла работают с более высокими подачами, важно, чтобы заготовка имела достаточное число опор.

E24

Цельные твердосплавные сверла • Рекомендации по решению проблем

проблема	причина	решение
интенсивный износ на режущих углах	недостаточный подвод СОЖ	• Проверьте организацию подвода СОЖ. В случае внутреннего подвода СОЖ увеличьте ее давление. В случае внешней подачи отрегулируйте направление струи СОЖ. Охлаждайте с обеих сторон сверла.
	нежесткое закрепление заготовки	Увеличьте жесткость закрепления заготовки в патроне и проверьте жесткость станка.
	неверно выбрано сверло	• Проверьте тип сверла, глубину сверления, систему подачи СОЖ и соответствие обрабатываемого материала.
	неудовлетворительные режимы резания	• Уменьшите скорость резания, увеличьте подачу.
сколы на перемычке	неудовлетворительное закрепление в патроне	• Проверьте правильность зажима. Используйте гидропластовый патрон или высокоточный патрон другого типа.
	неудовлетворительные режимы резания	• Уменьшите подачу, увеличьте скорость.
нарост на кромке	недостаточный подвод СОЖ	• Проверьте организацию подвода СОЖ. В случае внутреннего подвода СОЖ увеличьте ее давление. В случае внешней подачи отрегулируйте направление струи СОЖ. Охлаждайте с обеих сторон сверла.
	неудовлетворительные режимы резания	• Увеличьте скорость на 20–30%.
сколы на режущих кромках	неудовлетворительное закрепление в патроне	• Проверьте правильность зажима и передачу крутящего момента. Используйте гидропластовый патрон или высокоточный патрон другого типа.
	неудовлетворительные условия резания, обусловленные наростом на режущей кромке	 Проверьте режимы резания и, возможно, увеличьте скорость резания. Регулярно проверяйте на наличие нароста на кромке.
термотрещины (образование проточин)	неудовлетворительные режимы резания	• Применяйте СОЖ и режимы резания, обеспечивающие снижение теплового удара.

проблема	причина	решение
отверстие большего диаметра	неудовлетворительные режимы резания	• Проверьте режимы резания, увеличьте скорость резания или уменьшите подачу.
	неудовлетворительное закрепление в патроне	• Проверьте правильность зажима и передачу крутящего момента. Используйте гидропластовый патрон или высокоточный патрон другого типа.
	неверно выбрано сверло	• Проверьте диаметр сверла. Следует иметь в виду, что сверла пришлифованы до плюсового допуска. Проверьте концентричность.
отверстие меньшего диаметра	недостаточный подвод СОЖ	• Проверьте организацию подвода СОЖ. В случае внутреннего подвода СОЖ увеличьте ее давление. В случае внешней подачи отрегулируйте направление струи СОЖ. Охлаждайте с обеих сторон сверла.
	неудовлетворительные режимы резания	• Уменьшите скорость резания, увеличьте подачу.
	неверно выбрано сверло	• Проверьте диаметр по режущим кромкам.
отверстие не цилиндрическое	неудовлетворительное закрепление в патроне	• Проверьте правильность зажима и передачу крутящего момента. Используйте гидропластовый патрон или высокоточный патрон другого типа.
	нежесткое закрепление заготовки	• Увеличьте жесткость закрепления заготовки в патроне и проверьте жесткость станка.
	неверно выбрано сверло	• Проверьте тип сверла и глубину сверления. Используйте более длинное сверло.
	неудовлетворительные режимы резания	• Уменьшите подачу при входе в отверстие.

Цельные твердосплавные сверла • Рекомендации по решению проблем

проблема	причина	решение
поломка сверла	неудовлетворительное закрепление в патроне	 Проверьте правильность зажима и передачу крутящего момента. Используйте гидропластовый патрон или высокоточный патрон другого типа.
	нежесткое закрепление заготовки	• Увеличьте жесткость закрепления заготовки в патроне и проверьте жесткость станка.
	неверно выбрано сверло	• Проверьте тип сверла, глубину сверления, систему подачи СОЖ и соответствие обрабатываемого материала.
	недостаточный подвод СОЖ	• Проверьте организацию подвода СОЖ. В случае внутреннего подвода СОЖ увеличьте ее давление. В случае внешней подачи отрегулируйте направление струи СОЖ. Охлаждайте с обеих сторон сверла.
	неудовлетворительные режимы резания	• Проверьте режимы резания и, возможно, увеличьте скорость резания.
	неудовлетворительное закрепление в патроне	• Проверьте правильность зажима и передачу крутящего момента. Используйте гидропластовый патрон или высокоточный патрон другого типа.
сколы на режущих углах	нежесткое закрепление заготовки	• Увеличьте жесткость закрепления заготовки в патроне и проверьте жесткость станка.
	неверно выбрано сверло	• Проверьте тип сверла, глубину сверления, систему подачи СОЖ и соответствие обрабатываемого материала. Возможно надо использовать более длинное сверло.
	недостаточный подвод СОЖ	• Проверьте организацию подвода СОЖ. В случае внутреннего подвода СОЖ увеличьте ее давление. В случае внешней подачи отрегулируйте направление струи СОЖ. Охлаждайте с обеих сторон сверла.
	неудовлетворительные режимы резания	• Проверьте режимы резания, возможно, уменьшите подачу.

омер материала	DIN EN - D	AFNOR - F	BS - UK	JIS
0.6010	GG10	_	Grade 100	FC 100
0.6015	GG15	FGL 150	Grade 150	FC 150
0.6020	GG20	FGL 200	Grade 220	FC 200
0.6025	GG25	FGL 250	Grade 250, 260	FC 250
0.6030	GG30	FGL 300	Grade 300	FC 300
0.6035	GG35	FGL 350	Grade 350	FC 350
0.6655	0033	L-NUC 15 6 2	F1	1 0 330
			F1	
0.6656		L-NUC 15 6 3		
0.6660		L-NC 20 2	F2	
0.6661		L-NC 20 3	F2	
0.6676		L-NC 30 3	F3	
0.7040	GGG40	FGS 400-15	Grade 420/12	FCD 400
0.7043	GGG40.3	FGS 370-17	Grade 370/12	FCD 370
0.7050	GGG50	FGS 500-7	Grade 500/7	FCD 500
0.7060	GGG60	FGS 600-3	Grade 600/3	FCD 600
0.7070	GGG70	FGS 700-2	Grade 700/2	FCD 700
0.7080	GGG80	FGS 800-2	Grade 800/2	FCD 800
0.7652	5.000	S-NM 13 7	S 6	
0.7660		S-NC 20 2	S 2	
0.7661		S-NC 20 3	S 2	
0.7670		S-N 22	\$ 2 C	
			\$ 2 U \$ 2 M	
0.7673		S-NM 23 4		
0.7676		S-NC 30 3	\$ 3	
0.7677	0711107	S-NC 30 1	S 3	F01.011.000
0.8035	GTW35	MB 35-7	W 35-04	FCMW 330
0.8038		MB 380-12	-	
0.8040	GTW40	MB 400-5	W 40-05	FCMW 370
0.8045	GTW45	MB 450-7	W 45-07	FCMWP 440
0.8135	GTS35	MN 350-10	B 35-12	FCMB 340
0.8145	GTS45	MP 50-5	P 45-06	
0.8155	GTS55	MP 60-3	P 55-04	
0.8165	GTS65		P 65-02	FCMP 540
0.8170	GTS70	MP 70-2	P 70-02	FCMP 690
0.9620	G-X 260 NiCr 4-2	IVII TO Z	Grade 2 A	1 01011 000
0.9625	G-X 330 NiCr 4-2		Grade 2 B	
0.9630	G-X 300 CrNiSi 9-5-2		Grade 2 C, D, E	
0.9635	G-X 300 CrMo 15-3		Grade 3 A, B	
0.9640	G-X 300 CrMoNi 15-2-1		Grade 3 A, B	
0.9645	G-X 260 CrMoNi 20-2-1		Grade 3 C	
0.9650	G-X 260 Cr 27		Grade 3 D	
0.9655	G-X 300 CrMo 27-1		Grade 3 E	
0.xxx	GGV - 30			FCV 300
0.xxx	GGV - 40			FCV 400
1.0301	C 10	XC 10	045 M 10040 A 10	S 10 C
1.0401	C 15	XC 12, XC 18	080 M 15	S 15 C
1.0402	C 22	1 C 22, XC 18, XC 25	1 C 22, 070 M 20	S 20 C, S 2 C
1.0406	C 25	1 C 25	070 M 26	S 25 C
1.0501	C 35	XC 38, 1 C 35	080 M 36, 1 C 35	S 35 C
1.0503	C 45		1 C 45, 080 M 46	S 45 C
	C 45	1 C 45, XC 48 H 1	•	
1.0511		1 C 40, XC 42 H 1	080 M 40, 1 C 40	S 40 C
1.0528	C 30	4.0.55, V0.55, U.4	1 C 30, XC 32	S 30 C
1.0535	C 55	1 C 55, XC 55 H 1	1 C 55, 070 M 55	S 55 C
1.0540	C 50	1 C 50	1 C 50, 080 M50	S 50 C
1.0570	S355J2G3	E 36-3, E 36-4	Fe 510 D1 FF, 50/35	SM 490 _, SM 520 B
1.0601	C 60	1 C 60, AF 70 C 55	1 C 60, 080 A 67	S 58 C
1.0715	9 SMn 28	S 250	080 M 15, 230 M 07	SUM 22
1.0718	9 SMnPb 28	S 250 Pb	<u> </u>	SUM 22 L, SUM 23 L
1.0721	10 S 20	13 MF 4, 10 F 1	210 M 15	,
1.0722	10 SPb 20	CC 10 Pb, 10 PbF 2		SUM 12
1.0726	35 S 20	35 MF 6	212 M 36	SUM 41
1.0727	45 S 20	45 MF 61, 45 MF 4	212 M 36	SUM 42
		43 IVIF 01, 43 IVIF 4		JUIVI 4Z
1.0728	60 S 20		040 M 07	OUNTOF
1.0736	9 SMn 36	\$ 300	240 M 07	SUM 25
1.0737	9 SMnPb 36	S 300 Pb	_	SUM 24 L
1.1121	Ck 10 (C 10 E)	XC 10	045 M 10, 040 A 10	S 9 CK, S 10 C
1.1141	Ck 15 (C 15 E)	XC 12, XC 15	080 M 15, 040 A 15	S 15, S 15 Ck
1.1151	C 22 E	2 C 22, XC 18/25	055 M 15	S 20 C, S 20 CK, S 22
1.1157	40 Mn 4	35 M 5, 40 M 5	150 M 36	
				0.05.0.00.0
1.1158	C 25 E	2 C 25, XC 25	070 M 26	S 25 C, S 28 C

	Ų
E29	

Техническая информация

UNI - I	UNE - E	AISI - US	состояние	группа материала
G 10	FG 10	Class 20 B	U	15
G 15	FG 15	Class 25 B	U	15
G 20	FG 20	Class 30 B	U	16
G 25	FG 25	Class 40 B	U	16
G 30	FG 30	Class 45 B	U	16
G 35	FG 35	Class 50 B	U	16
			GG/AU	17
			GG/AU	17
			GG/AU	17
			GG/AU	18
00 400 40		0 1 00 10 10	GG/AU	31
GS 400-12		Grade 60-40-18	U	17
<u> </u>	_	— 0 1 05 45 40	U	17
GS 500-7		Grade 65-45-12	U	17
GS 600-3	_	Grade 80-55-06	U	18
GS 700-2		Grade 100-70-03	U	18
GS 800-2	_	Grade120-90-02	U	18
			GGG/AU	17
			GGG/AU	17
			GGG/AU	18
			GGG/AU	17
			GGG/AU	17
			GGG/AU	31
			GGG/AU	31
W 20 10			G	20
W 38-12			G	19
W 40-05			G	19
W 45-07	T A	Crode 00010 20510	G	19
B 35-10	Type A	Grade 22010, 32510	G	19
P 45-06	Type E		G	19
P 55-04	Type C	_	G	20
P 65-02			G	20
P 70-02		_	G	20
			GO GO	40 40
			GO	40
				40
			GO GO	40
			GO	40
			GO	40
				40
			GO GO	17
C 10	F. 1511	1010	GO	18 1
C 15, C 16	F. 1311 F. 111	1015		1
1 C 22, C 20, C 21	1 C 22, F. 112	1020, 1023		1
C 25, 1 C 25	1 G 22, F. 112	1020, 1023	vor1	2–3
	1 C 35, F. 113	1035	var ¹	2–3 2–3
C 35, 1 C 35 C 45, 1 C 45	1 C 45, F. 114		var ¹	2-3
1 C 40	1 C 40, F. 114.A	1045 1040	var¹ var¹	2-3
1 C 30	1 C 30	1030	var ¹	2-3
C 55, 1 C 55	1 C 55	1055	var ¹	2-5 4-5
1 C 50	1 C 50	1050	var ¹	2–3
Fe 510 C FN	AE 355 D, Fe 510 D1 FF	——————————————————————————————————————	VdI	2-3
C 60, 1 C 60	1 C 60	1060	var¹	4–5
CF 9 SMn 28, CF 9 M 07	F. 2111	1213	vai	1
CF 9 SMnPb 28	F. 2112	12 L 14, 12 L 13		1
CF 10 S 20	F. 2121	1102, 1108, 1109		1
CF 10 SPb 20	F. 2121 F. 2122	1102, 1106, 1109 1108, 11 L 08		1
CF 10 SPD 20 CF 35 SMn 10	F. 2122 F. 2131, F. 210.G	1141, 1140	var¹	2–3
CF 35 SWII 10 CF 44 SMn 28	F. 2131, F. 210.6 F. 2133	1141, 1140	var ¹	2-3
CF 44 SMII 28 —	F. 2133 —	1151	var¹	2-3 4-5
CF 9 SMn 36	— F. 2113		vdi .	4-5 1
CF 9 SMn 36 CF 9 SMnPb 36	F. 2113 F. 2114	1215 12 L 14		· · · · · · · · · · · · · · · · · · ·
				1
C10, 2 C 10	F. 1510, C 10 k	1010		
C 15, C 16	F. 1110, F. 1511	1015		1
C 20, C 25	F. 1120	1020, 1023	1	1
 C 25	— F. 1120	1035, 1041	var ¹	2–3
	F 1170	1025	var¹	2–3
28 Mn 6	28 Mn 6, 36 Mn 6	1330	var¹	2–3

номер материала		AFNOR - F	BS - UK	JIS
1.1178	C 30 E		2 C 30, XC 32	S 30 C
1.1181	C 35 E	2 C 35, XC 38 H 1	080 M 36	S 35 C
1.1183	Cf 35	XC 42 TS	080 A 35	S 35 C
1.1186	C 40 E	2 C 40, XC42 H 1	2 C 40, 080 M 40	S 40 C
1.1191	C 45 E	XC 48 H 1, 2 C 45	2 C 45, 080 M 46	S 45 C
1.1193	Cf 45 C 55 E	XC 42 TS	060 A 47	S 45 C S 55 C
1.1203 1.1206	C 50 E	2 C 55, XC 55 H 1 2 C 50	2 C 55, 070 M 55 2 C 50, 080 M 50	S 50 C
1.1213	Cf 53	42 M 4 TS	060 A 57	S 50 C
1.1213	C 60 E	2 C 60	2 C 60, 060 A 62	S 58 C
1.2241	51 CrV 4	50 CV 4	735 A 51	SUP 10
1.2369	81 MoCrV 42-16	30 00 4	700 A 01	001 10
1.3505	100 Cr 6	100 C 6	535 A 99	SUJ 2
1.3520	100 CrMn 6	—	535 A 99	SUJ 3
1.3533	17 NiCrMo 14	16 NCD 13	_	
1.3536	100 CrMo 7-3		_	
1.3537	100 CrMo 7	100 CD 7	_	SUJ 4
1.3541	X 45 Cr 13	_	_	
1.3543	X 102 CrMo 17	Z 100 CD 17	_	SUS440 C
1.3551	80 MoCrV 42-16	80 DCV 40	_	
1.3553	X 82 WMoCrV 6-5-4	Z 85 WDCV 6	BM 2	SKH 51
1.3558	X 75 WCrV 18-4-1	_	BT 1	SKH 2
1.4000	X 6 Cr 13	Z 6 C 13	403 S 17	SUS 410 S
1.4002	X 6 CrAI 13	Z6 CA 13	405 S 17	SUS 405
1.4005	X 12 CrS 13	Z12 CF 13	416 S 21	SUS 416
1.4006	X 12 Cr 13 (X 10 Cr 13)	Z 10 C 13, Z 12 C 13	410 S 21	SUS 410
1.4007	X 35 Cr 14			SUS 420
1.4016	X 6 Cr 17	Z 8 C 17	430 S 17	SUS 430
1.4021	X 20 Cr 13	Z 20 C 13	420 S 37	SUS 420
1.4024	X 15 Cr 13	_	403 S 17	
1.4028	X 30 Cr 13	Z 30 C 13, Z 33 C 13	420 S 45	SUS 420
1.4034	X 46 Cr 13	Z 40 C 14	420 S 45	SUS 420
1.4057	X 20 CrNi 17-2	Z 15 CN 16-02	431 S 29	SUS 431
1.4104	X 12 CrMoS 17	Z 10 CF 17	441 S 29	SUS 430 F
1.411	X 90 CrMoV 1	_	_	SUS 440 B
1.4113	X 6 CrMo 17-1	Z 8 CD 17-01	434 S 17	SUS 434
1.4125	X 105 CrMo 17	Z100 CD 17		SUS 440 C
1.4301	X 5 CrNi 18-10 (X 4 CrNi 18-10)	Z 6 CN 18-09	304 S 16	SUS 304
1.4303	X 5 CrNi 18-12 (X 4 CrNi 18-12)	Z 8 CN 18-12	305 S 19	0110.000
1.4305	X 10 CrNiS 18-9	Z 10 CNF 18-09	303 S 21	SUS 303
1.4306	X 2 CrNi 19-11	Z 2 CN 18-10	304 S 11	SUS 304 L
1.4307	X 2 CrNi 18-9	Z 3 CN 18-10	304\$11	SUS 304 L
1.4310	X 12 CrNi 17-7	Z 11 CN 18-08	301 S 21	SUS 301
1.4311	X 2 CrNiN 18-10	Z 3 CN 18-10 Az Z 3 CN 23-04 Az	304 S 61	SUS 304 LN
1.4362 1.4372	X 2 CrNiN 23-4 X 12 CrMnNiN 17-7-5	Z 3 GN 23-04 AZ Z 12 CMN 17-07 Az	_	
1.4401	X 12 GIWIININ 17-7-3 X 5 CrNiMo 17-12-2 (X 4 CrNiMo 17-12-2)	Z 6 CND 17-07 AZ Z 6 CND 17-11	316 S 31	SUS 316
1.4404	X 2 CrNiMo 17-13-2 (X 2 CrNiMo 17-12-2)	Z 2 CND 17-11 Z 2 CND 17-12	316 \$ 11	SUS 316 L
1.4406	X 2 CrNiMoN 17-11-2 (X 2 CrNiMoN 17-11-2)	Z 2 CND 17-12 Z 2 CND 17-11 Az	316 S 62	SUS 316 LN
1.4410	X 2 CrNiMoN 25-7-4	Z 3 CND 17-11 AZ Z 3 CND 25-06 Az	310 3 02	303 3 10 LN
1.4418	X 4 CrNiMo 16-5	Z 6 CND 16 05 1	_	
1.4429	X 2 CrNiMoN 17-13-3	Z 2 CND 17-13 Az		SUS 316 LN
1.4432	X 2 CrNiMol 17-13-3 X 2 CrNiMo 17-12-3	Z 3 CND 17-13 A2	316 S 13	SUS 316 L
1.4434	X 2 CrNiMoN 17-12-3	Z 3 CND 19-14 Az	——————————————————————————————————————	SUS 317 LN
1.4435	X 2 CrNiMo 18-14-3	Z 2 CND 17-13	316 S 13	SUS 316 L
1.4436	X 5 CrNiMo 17-13-3 (X 4 CrNiMo 17-13-3)	Z 6 CND 17-12	316 S 33	SUS 316
1.4438	X 2 CrNiMo 18-16-4 (X 2 CrNiMo 18-15-4)	Z 2 CND 19-15	317 S 12	SUS 317 L
1.4439	X 2 CrNiMoN 17-13-5	Z 3 CND 18-14-05 Az	——————————————————————————————————————	000 011 2
1.4441	X 2 CrNiMo 18-15-3	Z 3 CND 18-14-13	316 S 13	
1.4460	X 4 CrNiMoN 27-5-2 (X 3 CrNiMoN 27-5-2)	25 CND 27-05 A2	-	SUS 329
1.4462	X 2 CrNiMoN 22-5-3	Z2 CND 22-05 Az	_	300 020
1.4466	X 1 CrNiMoN 25-22-2 (X 2 CrNiMoN 25-22-2)			
1.4504	[X 8 CrNiAl 17-7]	Z 8 CNA 17-07	316 S 111	17-7 PH
1.4510	X 6 CrTi 17 (X 3 CrTi 17)	Z 8 CT 17	_	
1.4512	X 6 CrTi 12 (X 2 CrTi 12)	Z 3 CT 12	409 S 19	SUH 409
1.4532	X 7 CrNiMoAl 15-7 (X 8 CrNiMoAl 15-7-2)	Z 8 CNDA 15-7	_	5055
1.4539	X 1 NiCrMoCu(N) 25-20-5	Z 1 NCDU 25-20	904 S 13	
1.4540	X 4 CrNiCuNb 16-4	Z 6 CNU 17-04	_	SUS 630
1.4541	X 6 CrNiTi 18-10	Z 6 CNT 18-10	321 S 12	SUS 321
1.4542	X 5 CrNiCuNb 17-4	Z 6 CNU 17-04, Z 7 CNNb 17-07		SUS 630

ᅜ
Z
<u>a</u>
Σ
Q
Ō
8
Ĭ
Z
ᄄ
a
¥
Ö
<u>e</u>
Ξ
₹
Ż
2

UNI - I	UNE - E	AISI - US	состояние	группа материала
2 C 30, 080 M 30	2 C 30	_	var¹	2–3
2 C 35, C 35	2 C 35, C 35 k		var¹	2–3
C 36	C 38 k	1035	var¹	2–3
2 C 40, C40	2 C 40, C 42 k	1040	var¹	2–3
2 C 45, C 45	2 C 45, C 45 k		var¹	2–3
C 43	C 42 k	1045	var¹	2–3
2 C 55, C 55	2 C 55, C 55 k		var ¹	4–5
2 C 50, C 50	2 C 50, C 55 k	1050	var¹	2–3
C 48	C 48 k	1050	var¹	2–3
2 C 60, C 60	2 C 60		var¹	4–5
50 CrV 4	F.1430	6150	var¹	6–9
400.00		613	var¹	10–11
100 Cr 6	_	52100	var¹	6–9
100 CrMo 7		A 485/2	var¹	6–9
_	_	E-3310	var ¹	6–9
100 0 0 0 0 7		5120	var ¹	6–9
100 CrMo 7	_	A 485/3	var ¹	6–9
X 45 Cr 13			var¹	10–11
X 105 CrMo 17	_	440 C	var¹	10–11
X 80 MoCrV 44			var¹	10–11
X 82 WMoV 6 5	_	M2 regular C	var¹	10–11
X 75 WCrV 18		T 1	var¹	10–11
X5 Cr 13		410 S	FE	12
X 6 CrA 13		405	FE	12
X 12 CrS 13		416	FE	12
X 12 Cr 13		410	MA	12
V 0 0 17		420	MA	12
X 8 Cr 17		430	FE	12
X 20 Cr 13		420	MA	12
		403	MA	12
		420	MA	13.1
V 15 0 NII 10		420	MA	13.1
X 15 CrNi 16		431	MA	13.1
X 10 CrS 17		430 F	MA	13.1
— V0.0M 47		440 B	MA	13.1
X 8 CrMo 17		434	MA	13.1
<u> </u>		440 C	MA	13.1
X 5 CrNi 18 10		304	AU	14.1
X 8 CrNi 18 12		305	AU	14.1
X 10 CrNiS 18 09		303	AU	14.1
X 2 CrNi 18 11		304 L	AU	14.1
V 40 0 NII 47 07		304 L	AU	14.1
X 12 CrNi 17 07		301	AU	14.1
		304 LN	AU	14.1
			DU	14.2
		201	DU	14.2
X 5 CrNiMo 17 12		316	AU	14.1
X 2 CrNiMo 17 12		316 L	AU	14.1
X 2 CrNiMoN		316 LN	AU	14.1
			DU	14.2
			MA	13.1
X 2 CrNiMoN 17 13		316 LN	AU	14.1
		316 L	AU	14.1
		317 LN	AU	14.1
X 2 CrNiMo 17 13		316 L	AU	14.1
X 5 CrNiMo 17 13		316	AU	14.1
X 2 CrNiMo 18 16		317 L	AU	14.1
			AU	14.1
		316 LVM	AU	14.1
<u> </u>		329	DU	14.2
_		2205	DU	14.2
		310 mod	S-AU	14.3
X 2 CrNiMo 17.12		17-7 PH	AU-PH	14.4
-		439, 430 Ti	FE	12
_		409	FE	12
_		632	AU	14.1
_			S-AU	14.3
_		630	AU	14.1
X 6 CrNiTi 18 11		321	AU	14.1
X O OHWITI TO TT		02:	AU-PH	

номер материала		AFNOR - F	BS - UK	JIS
1.4548	X 5 CrNiCuNb 17-4-4	Z 7 CNNb 17-07		SUS 630
1.4550	X 6 CrNiNb 18-10	Z 6 CNNB 18-10	347 S 17	SUS 347
1.4552	GX 5 CrNiNb 19-10 (G-X 5 CrNiNb 18-9)	Z 6 CNNb 18.10 M	347 C 17	SCS 21
1.4567	X 3 CrNiCu 18-9 (X 3 CrNiCu 18-9-4)	Z 3 CNU 18-09 FF		
1.4568	X 7 CrNiAI 17-7	Z 8 CNA 17-7	316 S 111	17-7 PH
1.4571	X 6 CrNiMoTi 17-12-2	Z 6 CNDT 17-12	320 S 31	SUS 316 Ti
1.4573	X 10 CrNiMoTi 18-12	Z 6 CNDT 17-13	320 S 33	_
1.4580	X 6 CrNiMoNb 17-12-2	Z 6 CNDNb 17-12	_	
1.4581	GX 5 CrNiMoNb 19-11 (G-X 5 CrNiMoNb 18-10)	Z 4 CNDNb 18.12 M	318 C 17	SCS 22
1.4583	X 10 CrNiMoNb 18-12	Z 6 CNDNb 17-13	—	000 22
1.4713	X 10 CrAI 7	Z 8 CA 7	_	
1.4718	X 45 CrSi 9-3	Z 45 CS 9	401 S 45	SUH 1
		Z 6 CT 12	401 5 45 —	
1.4720	X 7 CrTi 12			SUS 409
1.4724	X 10 CrAl 13	Z 10 C 13	403 S 17	SUS 405
1.4731	X 40 CrSiMo 10-2	Z 40 CSD 10		SUH 3
1.4742	X 10 CrAl 18	Z 12 CAS 18, Z 10 CAS 18	430 S 17	SUS 430
1.4748	X 85 CrMoV 18-2	Z 85 CDV 18.02	_	
1.4762	X 10 CrAl 24	Z10 CAS 24	-	SCH446
1.4821	X 20 CrNiSi 25-4	Z 20 CNS 25.04	_	
1.4828	X 15 CrNiSi 20-12 Z	15 CN 23-13, Z 15 CNS 20-12	309 S 24	SUS 309 S
1.4833	X 7 CrNi 23-14	Z 15 CN 23.13, Z 15 CN 24.13	309 S 16	SUH 309
1.4841	X 15 CrNiSi 25-20	Z 15 CNS 25-20, Z 12 CNS 25-20	310 S 24	SUS310
1.4845	X 12 CrNi 25-21	Z 12 CN 26.21, Z 12 CN 25.20	310 S 31	SUH 310
1.4864	X 12 NiCrSi 36-16	Z 20 NCS 33.16, Z 12 NCS 35.16	<u>—</u>	SUH 330
1.4871	X 53 CrMnNiN 21-9	Z 53 CMN 21.09 Az	349 S 54	SUH 35
1.4873	X 45 CrNiW 18-9	Z 35 CNWS 14.14	331 S 40	SUH 31
1.4875	X 55 CrMnNiN 20-8	Z 55 CMN 20.08 Az	——————————————————————————————————————	301131
1.4876			_	
	X 10 NiCrAITi 32-20	Z 8 NC 33.21, Z 8 NC 32.21		CHC 004
1.487	X 12 CrNiTi 18-9	Z 6 CNT 18.12, Z 6 CNT 18.10	321 S 12, 321 S 51	SUS 321
1.4948	X 6 CrNi 18-11	Z 6 CN 18-09	304 S 51	SUS304
1.5023	38 Si 7	46 S 7	-	
1.5092	60 SiCr 7	61 SC 7	251 A 61	SUP 7
1.5919	15 CrNi 6	16 NC 6	815 M 17	SNC 15
1.5920	18 CrNi 8	20 NC 6	822 M17	SNCM 616
1.6511	36 CrNiMo 4	36 CrNiMo 4	36 CrNiMo 4, 817 A 37	SNCM 439
1.6580	30 CrNiMo 8	30 CrNiMo 8, 30 CND 8	30 CrNiMo 8	SNCM 630
1.6582	34 CrNiMo 6	34 CrNiMo 6	34 CrNiMo 6, 817 M 40	SNCM 447
1.6587	17 CrNiMo 6	18 NCD 6	820 M 17	SNCM 815
1.7003	38 Cr 2	38 Cr 2	38 Cr 2, 120 M 36	SMn 438
1.7003	46 Cr 2	46 Cr 2, 42 C 2	46 Cr 2, 605 M 36	SMn 443
1.7030	28 Cr 4	30 CD 4	530 A 30	OWIII 440
1.7033	34 Cr 4	34 Cr 4, 32 C 4	34 Cr 4. 530 A 32	SCr 430
			,	
1.7034	37 Cr 4	37 Cr 4, 38 C 4	37 Cr 4, 530 A 36	SCr 435
1.7035	41 Cr 4	41 Cr 4, 42 C 4	41 Cr 4, 530 M 40	41 Cr 4SCr 440
1.7037	34 CrS 4	34 CrS 4, 32 C 4	34 CrS 4, 530 A 32	
1.7038	37 CrS 4	37 CrS 4, 38 C 4	37 CrS 4, 530 A 36	
1.7039	41 CrS 4	41 CrS 4, 42 C 4	41 CrS 4, 530 M 40	
1.7102	54 SiCr 6	51 S 7	251 A 58	SKD12
1.7131	16 MnCr 5	16 MC 5	527 M 17	
1.7147	20 MnCr 5	20 MC 5	_	SMnC 420
1.7176	55 Cr 3	55 C 3	525 A 60	SUP 9
1.7213	25 CrMoS 4	25 CrMoS 4, 25 CD 4	25 CrMoS 4, 708 A 25	
1.7218	25 CrMo 4	25 CrMo 4, 25 CD 4	25 CrMo 4, 708 A 25	SCM 430
1.7220	34 CrMo 4	34 CrMo 4, 34 CD 4	34 CrMo 4, 708 A 37	SCM 435
1.7225	42 CrMo 4	42 CrMo 4, 42 CD 4	42 CrMo 4, 708 M 40	SCM440
1.7226	34 CrMoS 4	34 CrMoS 4, 34 CD 4	34 CrMoS 4708 A 37	OUNTHO
1.7227	42 CrMoS 4	42 CrMoS 4, 42 CD 4	42 CrMoS 4, 708 M 40	
	50 CrMo 4	,	50 CrMo 4, 708 A 47	
1.7228		50 CrMo 4	,	000 M0140
1.7321	20 MoCr 4	— 10.00 4	805 M 20	SNCM 220
1.7325	25 MoCr 4	18 CD 4		
1.7361	32 CrMo 12	30 CD 12	722 M 24	
1.7701	51 CrMoV 4	51 CDV 4		SUP 13
1.8159	51 CrV 4	51 CrV 4, 50 CV 4	51 CrV 4	SUP 10
1.8507	34 CrAIMo 5		_	
1.8509	41 CrAIMo 7	40 CAD 6 12	905 M 39	
1.8515	31 CrMo 12	30 CD 12	722 M 24	
1.8523	39 CrMoV 13-9	—	897 M 39	

UNI - I	UNE - E	AISI - US	состояние	группа материала
		630	AU-PH	14.4
X 8 CrNiNb 18 11		347	AU	14.1
		_	AU	14.1
		302 HQ	AU	14.1
X 2 CrNiMo 17.12		17-07 PH	AU-PH	14.4
X 6 CrNiMoTi 17 12		316 Ti	AU	14.1
X 6 CrNiMoTi 17 12		(316 Ti)	AU	14.1
X 6 CrNiMoNb 17 12		316 Cb	AU	14.1
GX 6 CrNiMoNb 20 11		——————————————————————————————————————	AU	14.1
	_		AU	14.1
X 6 CrNiMoNb 17 13		316 Cb, (318)		
— V 45 00 0	_		FE	10–11
X 45 CS 8		HNV 3		31–32
_	_	409		31–32
X 10 CrAl 12	X 10 CrAI 13	405	FE	12
_	_	_		12
X 8 Cr 17	X 10 CrAI 18	430		12
_	_	_		31–32
X 16 Cr 26		446		12
——————————————————————————————————————	X 15 CrNiSi 25 04	—	DU	14.2
	X 10 CrNiSi 20	309	AU	14.1
X 6 CrNi 23 14				
	— V 15 0-NiC: 05 00	309 S	AU	14.1
X 16 CrNiSi 25 20	X 15 CrNiSi 25 20	310	AU	14.1
	-	310 S	AU	14.1
<u> </u>	X 12 NiCrSi 36 16	330		31–32
_	_	EV 8		10
X 45 CrNiW 18 9	_	EV 9		31–32
_	_	EV 11		31–32
<u></u>	X 10 NiCrAlTi 32 20	_	S-AU	31–32
X 6 CrNiTi 18 11	X 10 Midi/W11 02 20	321, 321 H	0 710	31–32
A O CHAITI TO TT	_	304H	AU	14.1
_		_	var¹	6–9
60 SiCr 8	F.1442	9260	var¹	6–9
_	F.1581	4320	var¹	6–9
16 NiCrMo 12	F.1525	_	var¹	6–9
36 CrNiMo 4, 39 NiCrMo 3 1	36 CrNiMo 4, 40 NiCrMo 4	_	var¹	6–9
SNCM 630	30 CrNiMo 8, 32 NiCrMo 16	_	var¹	6–9
34 CrNiMo 6	34 CrNiMo 6	4340	var¹	6–9
18 NiCrMo 12	F.1560	_	var ¹	6–9
38 Cr 2	38 Cr 2, 38 Cr 3		var ¹	6–9
				6–9
46 Cr 2	46 Cr 2		var¹	
 .	_ .	_	var¹	6–9
34 Cr 4	34 Cr 4	5132	var¹	6–9
37 Cr 4	37 Cr 4, 38 Cr 4	5135	var¹	6–9
41 Cr 4	41 Cr 4, 42 Cr 4	5140	var¹	6–9
34 CrS 4	34 CrS 4	_	var¹	6–9
37 CrS 4	37 Cr 4, 38 Cr 4-1	<u> </u>	var ¹	6–9
41 CrS 4	41 CrS 4, 42 Cr 4-1	_	var ¹	6–9
48 Si 7	F.1450	9260	var¹	6–9
		5200		
16 MnCr 5	F.1516	_	var ¹	6–9
20 MnCr 5	F.1523		var¹	6–9
55 Cr 3	-	5155	var¹	6–9
25 CrMoS 4, 25 CrMo 4	25 CrMoS 4, 30 CrMo 4-1	_	var¹	6–9
25 CrMo 4	25 CrMo 4, 30 CrMo 4	4130	var¹	6–9
34 CrMo 4, 35 CrMo 4	34 CrMo 4, 35 CrMo 4	4137	var¹	6–9
42 CrMo 4	42 CrMo 4		var¹	6–9
34 CrMoS 4, 35 CrMo 4	34 CrMoS 4. 35 CrMo 4	_	var ¹	6–9
42 CrMoS 4, 42 CrMo 4	42 CrMoS 4, 40 CrMo 4-1	_	var ¹	6–9
50 CrMo 4	50 CrMo 4	4150	var¹	6–9
16 NiCrMo 2	F.1523	8620	var¹	6–9
20 NiCrMo 2		8625	var¹	6–9
_	_	_	var¹	6–9
51 CrMoV 4	_	<u> </u>	var¹	6–9
51 CrV 4, 50 CrV 4	51 CrV 4	6150	var¹	6–9
<u>-</u>	35 CrAIMo 5	A 355/D	var¹	6–9
41 CrAlMo 7	41 CrAIMo 7	A 355/A	var ¹	6–9
			var¹	6–9
31 CrMo 12	311:100 19			
31 CrMo 12 36 CrMoV 12	31 CrMo 12 —	_ _	var ¹	6-9

Таблицы обрабатываемых материалов

Классификация обрабатываемых материалов • DIN

DIN ISO 513	VDI 3323	Материа	ал	Состояние материала	Rm N/mm²	Твердость НВ 30	Марки представители
	1	Нелегированная сталь/	C < 0,25%	G	420	125	9 SMn 28, St 37.3, C 10, Ck 22, GS-16 Mn 5
	2	литая сталь	$0,25 \le C < 0,55\%$	G	650	190	35 S 20, GS-45, GS-52, St 52.3, C 25, C 45, Ck 45, Cf 53
	3	Автоматная сталь		V	850	250	35 S 20, GS-45, GS-52, St 52.3, C 25, C 45, Ck 45, Cf 53
	4		0,55% ≤ C	G	750	220	GS-60, 60 S 20, C 60, Ck 67, C 60 W, Ck 75, C 105 W 1, C 110 W
	5			V	1000	300	GS-60, 60 S 20, C 60, Ck 67, C 60 W, Ck 75, C 105 W 1, C 110 W
	6	Низколегированная стал	ь/литая сталь	G	600	180	15 Cr 3, 16 MnCr 5, 17 CrNiMo 6, 25 CrMo 4, 29 CrMoV 9, 30 CrNiMo8
P	7			V	930	275	31 CrV 3, 42 CrMo 4, 51 CrV 4, 62 SiMnCr 4, 100 Cr 6, G-105 W 1
-	8			V	1000	300	105 WCr 6
	9			V	1200	350	105 WCr 6
	10	Высоколегированная ста	аль/литая сталь	G	680	200	X 210 Cr 12, X 40 CrMoV 5 1, X 30 WCrV 9 3, X 85 CrMoV 18 2
	11	Инструментальная сталь		V	1100	325	X 38 CrMoV 5 3, X 23 CrNi 17, X 155 CrVMo 12 1, S 6-5-2-5
	12	Нержавеющая сталь/лит	ая сталь	FE/MA	680	200	1.4000, 1.4005, 1.4021, 1.4109, 1.4119, 1.4120, 1.4313, 1.4510, 1.4512, 1.4523
	13.1			MA	820	240	1.4000, 1.4002, 1.4005, 1.4006, 1.4024, 1.4119, 1.4120, 1.4313, 1.4510, 1.4512, 1.4523
	13.2			MA-PH	1060	330	1.4542, 1.4548, 1.4923
	14.1	Нержавеющая сталь/лит	ая сталь	AU	600	180	1.4301, 1.4401, 1.4436, 1.4541, 1.4550, 1.4568, 1.4571, 1.4573, 1.4580
M	14.2			DU	740	230	1.4362, 1.4417, 1.4410, 1.4460, 1.4462, 1.4575, 1.4582
	14.3			S-AU	680	200	1.4465, 1.4505, 1.4506, 1.4529 (254SMO), 1.4539, 1.4563, 1.4577, 1.4586, 654SMO
	14.4			AU-PH	1060	330	1.4504, 1.4568
	15	Серый чугун GG		FE/PE		180	GG-10, GG-15, GG-170 HB
	16			PE		260	GG20, GG-25, GG-30, GG-25Cr
K	17	Чугун с шаровидным гра	фитом GGG	FE		160	GGG-35.3, GGG-40, GGG-50, GGV-30
1.	18			PE		250	≥GGG-60, GGV-40
	19	Ковкий чугун GTS/GTW		FE		130	GTS-35-10, GTS-45-06, GTW-S-38-12
	20			PE		230	GTW-35-04, GTS-55-04, GTS-65-02
	21	Деформируемые алюми	ниевые сплавы	NAG		60	Al 99,5, AlMg 1
	22			AG		100	AlCuMg 1, AlMgSiPb, AlMgSi 1
	23	Литье алюминиевое	Si < 12%	NAG		75	G-AISi 10 Mg, G-AISi12
	24			AG		90	G-AlCu 5 Si 3
N	25		Si > 12%			130	G-AlSi 17, G-AlSi 23
	26	Медь/медные сплавы	Pb > 1%			110	Автоматная латунь, CuNi 18 Zn 19 Pb
	27					90	Латунь, томпак, CuZn33, сплавы CuZn и CuSnZn
	28					100	Бронза, электролитическая медь, CuNi 3 Si, сплавы CuSn
	29	Неметаллы					Реактопласт, FVK, волокнит, бакелит
	30						Эбонит
	31	Жаропрочные Спл сплавы	павы на основе Fe	G		200	1.4864, 1.4865, 1.4876
	32			AG		280	1.4864, 1.4865, 1.4876
C	33	Сплавы	на основе Ni и Со	G		250	INCONEL® 718, Nimonic 80 A, Hasteloy, Udimet
3	34			AG		350	INCONEL 718, Nimonic 80 A, Hasteloy, Udimet
	35	T	-	GO	100	320	INCONEL 718, Nimonic 80 A, Hasteloy, Udimet
	36	Титан/титановые сплавы сплавы с альфа-бета-ст	I, руктурой		400		Титан
	37			AG	1050	45 UDO	TIAI 6 V 4
	38.1	Закаленная сталь		Н		45 HRC	90 MnV 8, Hardox 400
	38.2			Н		55 HRC	Hardox 500
	39.1			H		60 HRC	HSS, 90 MnV 8
	39.2	Отболоши и по		Н		> 62 HRC	HSS, 90 MnV 8
	40.1	Отбеленный чугун		GO GO		400	G-X 260 Cr 27, G-X 260 NiCr 42, G-X 300 CrNiSi 9 5 2, G-X 330 NiCr 42
	40.2	Pi icokonnolini iž ingini				> 440	G-X 260 Cr 27, G-X 260 NiCr 42, G-X 300 CrNiSi 9 5 2, G-X 330 NiCr 42
	41.1	Высокопрочный чугун		H		55 HRC	G-X 300 NiMo 3 Mg
	41.2			Н		> 5/ HKC	G-X 300 NiMo 3 Mg

Группы и состояние материала

Многие материалы, особенно стали, могут иметь различную микроструктуру, которая существенно влияет на их обрабатываемость. В связи с этим существует подразделение вышеупомянутых материалов в зависимости от их фактического состояния.

АG — подвергнутый старению

AU — аустенитный

BF — термически обработанный для получения заданной прочности

ВБ — термически обработанный для получения требуемой микроструктуры
ВУ — подвергнутый термической обработке

BY — подвергнутый термической обработке для улучшения обрабатываемости DU — дуплексная нержавеющая сталь

о — дуплексная нержавеющая стал (аустенитно-ферритная)

FE — ферритный

G — отожженный

GG — серый чугун GGG — чугун с шаровилным графито

GGG — чугун с шаровидным графитом GO — отливка

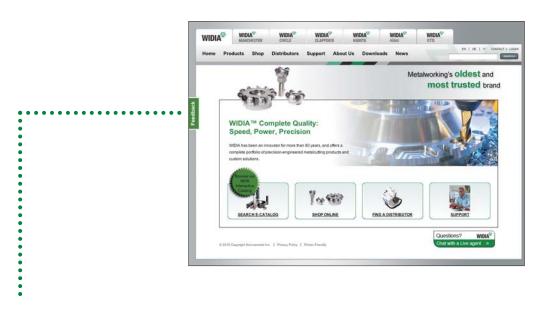
 H
 — закаленный

 MA
 — мартенситный

 N
 — нормализованный

NAG — не подвергаемый старению

РН — закаленный с последующим старением


S-AU — супераустенитный

U — термически необработанныйV — термически обработанный

var1 — неустойчивый

Интернет

Быстрота и простота регистрации

Вы можете легко зарегистрироваться на www.widia.com для получения полного доступа ко всем разделам сайта.

Выберите ближайшего к Вам регионального официального дистрибьютора WIDIA

WIDIA Products Group предлагает изделия мирового класса и глобальное сервисное обслуживание. Наши дистрибьюторы хорошо знакомы с нашей продукцией, но еще лучше они знают Ваши потребности. Они в состоянии найти грамотное применение глобальным ресурсам компании WIDIA в Ваших конкретных условиях — на Вашем производстве, в Вашем регионе, способствуя развитию Вашего бизнеса.

Свяжитесь с нами

Наши клиенты — наша главная ценность. Поэтому мы стремимся предложить Вам сервис и техническую поддержку самого высокого уровня. Мы открыты для диалога и готовы ответить на все Ваши вопросы и замечания в течение 24 часов.

Продукция WIDIA

Чем бы вы ни занимались, точением, фрезерованием или сверлением, компания WIDIA предоставит Вам высокопроизводительный инструмент, отвечающий Вашим конкретным условиям. Наш ассортимент объединяет широкую программу стандартного инструмента и возможности изготовления специальной продукции для большинства производственных областей.

Номер заказа Номер по каталогу Стр.	Номер заказа Номер по каталогу Стр.	Номер заказа Номер по каталогу Стр.	Номер заказа Номер по каталогу	Стр.
1880671193.341A138–139	200416212627277800 WGB102	2012426RDHT0802M0T TN7525	2012760M270BF25 TN2510	
1880754193.342A144–146, A150–152	2004177126272777000 WG	2012446RDHT1003M0T TN7525A187	2012760M270BF25 TTI25	
1888504193.364	200417812627278800 WG	2012452RDHT1003M0T TTMA187	2012774M270BF25 THM	
1888505193.343A156	200425912396806200 WA216	2012454RDHT1204M0TX TN5515	2012776M270BF25 TTM	
1896375193.338A150-152	200426012396806400 WA216	2012456RDHT1204M0TX TTI25A192	2012778M270BF32 TN2505	A165
200236712396202200 WA44	200426112396816200 WA220	2012462RDHT1605MOTX TTI25A197	2012780M270BF32 TN2510	A165
200237012396202600 WA44	200426212396816400 WA220	2012476RDHW0802M0MH TN2510A183	2012784M270BF32 THM	A165
200347512396922600 WA92	200427312396826400 WA223	2012478RDHW0802M0ML TN2510A183	201287612146012500 WE	
200347712396932600 WA92	200435512396806800 WA216	2012480RDHW1003MOMH TN2510A187	2012923SEKR1203AFNMS TN5515	
200350012396203200 W	200435612396816800 WA220	2012482RDHW1003M0ML TN2510	2012925SEKR1203AFNMS THM	
200351512396923000 W	200435712396826800 WA223	2012484RDHW1204M0MH TN2510	2012927SEKR1203AFNMS THR	
200351712396933000 WA92 200352112396933200 WA92	200439812396807200 WA216 200439912396827200 WA223	2012486RDHW1204MOML TN2510A192 2012518RDMT0802MOT TN7525	2012929SEKR1203AFNMS TTM 2012931SEKR1204AFNMS TN5515	
200352112396933200 WA92 200352212396203600 WA44	20045771237682/200 WA225	2012516RDM10602M011N7525A163	2012933SEKR1204AFNMS THM	
200353212376203000 W	200474012376804400 W	2012538RDMT1003M0TTHM	2012937SEKR1204AFNMS TTM	
200353512396903600 W	200477412396804600 W	2012540RDMT1003M0T TTMA187	2012939SEKR1504AFNMS TN5515	
200353912396923400 WA92	200477512396804800 WA216	2012544RDMT1204MOTX THMA192	2012964SNKT1205AZER20 TN2510	
200354012396933400 WA92	200477612396814600 WA220	2012546RDMT1204M0TX TTMA192	2012966SNKT1205AZER20 TN5515	
200354112396203800 WA45	200477712396814800 WA220	2012550RDMT1605MOTX THMA197	2013490SEKN1204AFN1 THM	A221
200355312396903800 WA93	200477812396824800 WA223	2012552RDMT1605MOTX TTMA197	2013503SEKN1504AFN1 TTM	A224
200355412396904000 WA93	200478112627270300 WGB102	2012564RDMW0802M0 TN2510A183	2013677SNMT1205AZR31 TN2510	
200355512396943800 WA80	200478212627275300 WGB102	2012566RDMW0802M0 THMA183	2013680SNMT1205AZR31 TTM	
200355612396953800 WA76	200549912627010200 WG	2012572RDMW1003M0 TN2510	2013707SPKR1203EDLMS TN7525	
200355712396954000 W	200550012600210900 WG	2012574RDMW1003M0 TN5515	2013713SPKR1203EDRMS TN5515	
200355812396204200 W	200554212627013200 WG	2012578RDMW1003M0T TTI25	2013717SPKR1203EDRMS THM	
200355912396214200 WA50 200356112396904200 WA93	200555312600213200 WGB90 200555612600215500 WGB90	2012582RDMW1003M0T TTMA187 2012594RDMW1204M0TX TN2510A192	2013719SPKR1203EDRMS THR 2013721SPKR1203EDRMS TTM	
200356212396944200 WA80	200555812627016200 WG	2012574RDMW1204MOTX TNZ5TOA172 2012600RDMW1204MOTX TTMA192	2013923SPAN1203EDR TTM	
200357312396954200 W	200556012600217800 WG	2012602RDMW1605M0TX TN2510A197	2014041TCAX1103ZZ18 TTM	
200357412396954400 W	200557312627019300 WG	2012608RDMW1605M0TX TTMA197	2014054TCAX1103ZZ26 THM	
200357512396204600 WA45	200557412600020000 WGB92	2012610M270BR10 TN2510A165	2014066SPMW432 THM	
200357612396214600 WA50	200557612614020100 WGB93	2012612A165	2014152TNAX1604ZZ26 THM	A129
200357812396904600 WA93	200558012625702200 WGB95	2012624M270BR10 TN7535A165	2014164TNAX1604ZZ26 TTM	A129
200357912396944600 WA80	200558112625902200 WGB95	2012626M270BR10 THMA165	2014166TNAX1604ZZ31 THM	
200358012396954600 WA76	200560212600027800 WGB92	2012628M270BR10 TTMA165	2014168TNAX1604ZZ31 TTM	
200358112396954800 W	200561812625703000 WG	2012630M270BR12 TN2510	2014170TNAX1604ZZ41 THM	
200358212396205000 W	200561912625903000 WG	2012632M270BR12 TN7525	2014172TNAX1604ZZ41 TTM	
200359312396215000 WA50 200359412396905000 WA93	200562012626003000 WGB94 200565612600035800 WGB92	2012634M270BR12 TN7535A165 2012638M270BR12 TTMA165	2014176TNAX2206ZZ41 TTM 2014810TPKR1603PDRMS TN5515	
200359512396945000 WA93	200567312600033800 WG	2012640M270BR16 TN2510A165	2014835TPKR1603PDRMS TTM	
200357612376755000 W	200567412625804000 WG	2012642M270BR16 TN7525A165	2014837TPKR2204PDRMS TN5515	
200359712396955200 W	200567512625904000 WG	2012654M270BR16 THMA165	2014839TPKR2204PDRMS TTM	
200367912396205400 WA45	200567612626004000 WG	2012656M270BR16 TTMA165	2015234XNKT1205AZER11 TN5505	
200368012396215400 WA50	200572212600043800 WGB92	2012658A165	2015236XNKT1205AZER11 TN2510	A47
200368112396905400 WA93	200580112625705000 WGB95	2012660M270BR20 TN7525A165	2015240XNKT1205AZER11 TN5515	A47
200368212396945400 WA80	200580212625805100 WGB94	2012662M270BR20 TN7535A165	2015242XNKT1205AZER11 TN7525	
200369312396955400 WA76	200581312625905000 WGB95	2012664M270BR20 THMA165	2015244XNKT1205AZER11 TTI25	
200369412396955600 W	200581412626005000 WG	2012666M270BR20 TTMA165	2015246XNKT1205AZER11 THM	
200378012396205800 W	200593812625706700 WG	2012668M270BR25 TN2510	2015248XNKT1205AZTR12 TN5505	
200378112396215800 WA50 200378212396905800 WA93	200593912625806800 WGB91, B94 200594012625906700 WGB91, B95	2012670M270BR25 TN7525A165 2012672M270BR25 TN7535A165	2015250XNKT1205AZTR12 TN2510 2015252XNKT1205AZTR12 TN5515	
200379312396955800 W	200594112626706700 WG	2012684M270BR25 THMA165	2015264XNKT1205AZTR12 TN7525	
200377412396956000 W	200595412627006200 WG	2012686M270BR25 TTMA165	2015266XNKT1205AZTR12 TTI25	
200411812396805000 WA216	200601512627008200 WG	2012688M270BR32 TN2510A165	201819412748610000 W	
200411912396805200 W	200601912600208800 WG	2012690M270BR32 TN7525A165	201826512148001300 W	
200412012396815000 WA220	200604112625708900 WGB95	2012692A165	201828112148005800 W	
200412112396815200 WA220	200605412625908900 WGB95	2012696M270BR32 TTMA165	201829412148007200 WB	64-65,
200412212396825200 WA223	200645212748305600 WA216	2012698M270BF10 TN2505A165	B71, E	394-95
200413312627270700 WGB102	200646312748305800 WA216	2012700A165	201829412148007200 WA44-4	
200413412627270800 WGB102	200646412748306000 WA216	2012714M270BF10 THMA165	201829412148007200 WA12	
200413512396805400 WA216	200646512748306200 WA220	2012718M270BF12 TN2505A165	201829412148007200 WA196	
200413612396805600 WA216	200646612748306400 W	2012720M270BF12 TN2510	201829412148007200 W	
200413712396815400 W	200646712748306600 WA220	2012724M270BF12 THM	201829612148007300 W	
200413812396815600 WA220 200413912396825600 WA223	200646812748306800 WA223 200646912748307000 WA223	2012728M270BF16 TN2505A165 2012730M270BF16 TN2510A165	201829612148007300 W 201853312148036700 W	
200414012627276500 WG	2011081CPNT09T308T THMA223	2012730M270BF16 IN2510A165 2012732M270BF16 TTI25A165	201853512148037200 W	
200414112627276800 WG	2012238LPGX06T10334 TPC35B55	2012744M270BF16 THMA165	201853912148037700 W	
200414212396805800 W	2012242LPGX07T20434 TPC35B55	2012746M270BF16 TTMA165	201853912148037700 W	
200415312396806000 WA216	2012250LPGX07T20436 THMB55	2012748M270BF20 TN2505A165	201854912148038800 WB71, B94-95	
200415412396815800 WA220	2012264LPGX10030834 TPC35B55	2012750A165	201854912148038800 W	
200415512396816000 WA220	2012400RCMT1606M043 TN5515A201	2012754A165	201854912148038800 W	
200415612396826000 WA223	2012416RCMT1606M0TX TN2510A201	2012756M270BF20 TTMA165	201854912148038800 W	
200416112627277700 WGB102	2012418RCMT1606M0TX TN7525A201	2012758M270BF25 TN2505A165	201854912148038800 WA19	0-191

Номер	, Номер		Номер			Номер		
заказа Номер по каталогу Стр.	заказа Номер по ка	талогу Стр.	заказа	Номер по каталогу	Стр.	заказа	Номер по каталогу	Стр.
201862512148055800 WB62, B64,	202135112391021800	WA196	2022630	12292511000 W	A208	2028522	SPKN1504EDR TTR	A228
B66, B68-70	202135212391022000			12292511200 W			SPKN1504EDR TN7535	
201862512148055800 WA112-113 201867312148067200 W	202135312391022200 202135412391022400			12292511400 W 12292511600 W		I	SPMW432 THR SPMW432 TTM	
B66-71. B94	202135512391022600			12292550400 W			SPNT120408 THM	
201867312148067200 WA122, A128	202135612391022800			12292550800 W		2028534	SPNT120408 TTR	A210
201867912148068700 WB50-54,	202135712391023200			12292551000 W			SPNT120408 TTM	
B94-96, B99, B102	202135812391023400			SEKN1504AFN1 TTR SPMW432 TTR			TPKN1603PDR TTI25	
201867912148068700 W	202135912391023600 202136012391023800			12146011800 WB50-		I	TPKN2204PDL TN7525 TPKN2204PDL TTM	
201870312148080000 WA128	202136112391024000			XPHT333 THM		I	TPKN2204PDR TTI25	
201881712148095100 WA128	202137412391050200			XPHT333 THM		I	TPKN2204PDR THM	
201881712148095100 W	202137512391050400			TCAX1103ZZ21 THM		I	TPKN2204PDR TTR	
201911812148574900 W	202137612391050600			TCAX1103ZZ21 TTM TNAX2206ZZ51 TTM		I	XOMTO4T10334 TN5515 XOMTO4T10334 TN7015	
2020653SNMT1205AZRS1 TN7535A46	202137912391051200			RCMT1606M043 THM			XOMT04T10334 TPC35	
2020673SNMT1205AZR31 TN7525A46	202138012391602600			SDMT43PDRMH TN2510			X0MT04T10334 THM	
2020677SNKT1205AZR31 TN7535A46	202138112391603000			SDMT43PDRMH TN2510		I	XOMT04T10335 TN5515	
2020683SNKT1205AZR31 TN7525	202138212391603400			SDMT1204PDRMH TN5515		I	X0MT04T10335 TN7015	
2020689SNKT435AZR21 TN5515	202138312391603800 202140712393001200			SDMT1204PDRMH TN5515 SDMT1204PDRMH TTI25			XOMTO4T10335 TPC35 XOMTO4T10335 THM	
2020695SNMT1505AZR31 TN7535	202140812393001400			SDMT1204PDRMH TTI25			XOMT05020434 TN5515	
2020701SNMT1505AZR31 TN7525A51	202140912393001600		2028318	SDMT1204PDRMH THM	A77	2028960	XOMT05020434 TN7015	B72
2020705SNKT1505AZR31 TN7535A51	202141212393021000			SDMT1204PDRMH THM			XOMT05020434 TPC35	
2020711SNKT1505AZR31 TN7525	202141912393040200 202142012393040400			SDMT1204PDRMH TTM SDMT1204PDRMH TTM		I	XOMT05020434 THM XOMT05020435 TN5515	
2020715CPNT0803001 TN7535A123	202142012393040400			SDMT1204PDRML TN2510			XOMTO5020435 TN7015	
2020723CPNT120408T TN7535	202142212393041200			SDMT1204PDRML TN2510		I	XOMT05020435 TPC35	
2020727RDMW0802M0T TN7535A183	202142312393041400		2028321	SDMT1204PDRML TN5515	A77		XOMT05020435 THM	
2020735RDMW1003M0T TN7535A187	202142412393041800			SDMT1204PDRML TN5515		I	X0MT05020436 TN7015	
2020741RDMW1204M0TX TN7535	202142512393050200 202142612393050400			SDMT1204PDRML TTI25 SDMT1204PDRML TTI25		I	XOMTO5020436 TPC35	
2020749RDMW1605M0TX TN7535A197	202142712373050400			SDMT1204PDRML THM		I	XOMT07030434 TN7015	
2020753RDMW1605M0TX TN5515A197	202142812393051200			SDMT1204PDRML THM		I	XOMT07030434 TPC35	
2020757RDMT0802M0T TN7535A183	202142912393051400			SDMT1204PDRML TTM		I	X0MT07030434 THM	
2020763RDMT1204M0TX TN7525A192 2020767RDMT1605M0TX TN7525A197	202143012393051800 202143112393060200			SDMT1204PDRML TTM SDMT1506PDRMH TN2510		I	XOMTO7030435 TN5515 XOMTO7030435 TN7015	
2020767RDM11605M01X 1N7525	202143112393060400			SDMT1506PDRMH TTI25		I	XOMTO7030435 TPC35	
2020775RDHT1204M0TX TN7525A192	202143312393060800			SDMT1506PDRMH TTM		I	X0MT07030435 THM	
2020781RCMT1606M0TX TN7535A201	202143412393080200			SDMT1506PDRML TN2510			XOMT07030436 TN7015	
2020785RCMT1606M0TX TN5515	202143512393080400			SDMW090308 THM		I	XOMT07030436 TPC35	
2020789TPKR1603PDRMS TN7535	202143612393080600 202143712393083200			SDMW090308 TTM			XOMTO9T30634 TN5515 XOMTO9T30634 TN7015	
2020799TPKR2204PDRMS TN7535	202143812393083400			SDNT090308T TN2510		I	XOMTO9T30634 TPC35	
2020803TPKR2204PDRMS TN7525A229	202143912393083600	WA112	2028337	SDNT090308T THM	A210	2028992	XOMT09T30634 THM	B72
2020881SEKR1203AFNMS TN7535	2022085CPNT060204T			SDNT090308T TTM			XOMTO9T30635 TN5515	
2020885SEKR1203AFNMS TN7525	2022086CPNT060204T			SDNT322T TTR SEAN1203AFN1 TN5515			XOMTO9T30635 TN7015	B72
2020895SEKR1204AFNMS TN7525A221	2022089CPNT080308T			SEAN1203AFN1 TTI25		l	XOMTO7T30635 THM	
2020901SEKR1504AFNMS TN7535	2022090CPNT080308T			SEAN1203AFN1 TTM			XOMT09T30636 TN7015	
2020905SEKR1504AFNMS TN7525A224	2022092CPNT09T308T			SEAN1204AFN1 THM		I	XOMT09T30636 TPC35	
2020911SPKR1203EDRMS TN7535	2022094CPNT120408T			SEKN1203AFN1 TTI25			X0MT12T30834 TN5515	
2020917SPKR1203EDRMS TN7525A228 202133112391010000 W	2022095CPNT120408T 2022320LPGX07T20436			SEKN1203AFN1 THM SEKN1203AFN1 THR			XOMT12T30834 TN7015 XOMT12T30834 TPC35	
202133212391010400 WA182	2022333LPGX10030836			SEKN1203AFN1 TTM			X0MT12T30834 THM	
202133312391010600 WA182	2022334LPGX10030836	THMB55		SEKN1203AFN1 TTR		2029023	XOMT12T30835 TN5515	B72
202133412391011000 WA182	2022370SNKT1205AZER			SEKN1204AFN1 TN5515		I	XOMT12T30835 TN7015	
202133512391011400 W	2022371SNKT1205AZER 2022372SNKT1205AZR2			SEKN1204AFN1 TTI25 SEKN1204AFN1 TTM		I	XOMT12T30835 TPC35 XOMT12T30835 THM	
202133712391012000 WA186	2022373SNKT1205AZR2			SEKN1204AFN1 TTR		I	XOMT12T30836 TN7015	
202133812391012400 WA186	2022374SNKT1205AZR2			SEKN1504AFN1 TTI25			XOMT12T30836 TPC35	
202133912391012800 WA186	2022375SNKT1205AZR2			SEKN1504AFN1 THM			X0MT16050834 TN5515	
202134012391013200 WA186	2022376SNKT1205AZR3			SPAN1203EDR THM			X0MT16050834 TN7015	
202134112391013800 WA196 202134212391020000 WA191	2022377SNKT435AZR31 2022378SNKT1205AZR3			SPKN1203EDL THM SPKN42EDR THM		I	XOMT16050834 TPC35 XOMT16050834 THM	
202134312391020200 WA191	2022380SNKT1505AZR2			SPKN1203EDL TTM		I	X0MT16050835 TN5515	
202134412391020400 WA191	2022383SNKT1505AZR3	1 TN5515A51		SPKN1203EDTR TTI25		I	XOMT16050835 TN7015	
202134512391020600 W	202261912290900800			SPKN1203EDTR TTM		I	X0MT16050835 TPC35	
202134612391020800 WA191 202134712391021000 WA196	202262012290901200 202262112290911600			SPKN1203EDTR TTR SPKN1504EDL THM		I	XOMT16050835 THM XOMT16050836 TN7015	
202134812391021200 WA176	202262212290911800			SPKN1504EDL TTM			XOMT16050836 TPC35	
202134912391021400 WA196	202262812292510400	WA208	2028520	SPKN53EDR THM	A228	2029040	XPHT160408 TN2510	A95
202135012391021600 WA196	202262912292510800	WA208	2028521	SPKN1504EDR TTM	A228	1 2029040	XPHT160408 TN2510	A115

	Номер заказа	Номер по каталогу	Стр.	Номер заказа	Номер по каталогу	Стр.	Номер заказа	Номер по каталогу	Стр.	Номер заказа	Номер по каталогу	Стр.
2007007	2029041	XPHT332 TN5515	195	2029284	12147600400 W	R88_89	2029598	12148086600 W	162-64	2030453	AONT10T308MM TN7535	188
Marie Prof. Marie Mari							l					
2007941							l		,			
MARTINITION MARTINITION							l					
Section Sect							l					
				2029295	12147602600 W	B88-89	2029604	12148099300	A162-164,	2030782	12168345100 W	B81
2007986 WITHOUT TITS 11 127909 174400500 W 1849 200797 174505900 W 1849 200797 174505900 W 1849 200797 2007	2029047	XPHT160412 TN2510	A95	2029296	12147602700 W	B88-89		A170-17	71, A174–175	2030793	12168345300 W	B82
	2029047	XPHT160412 TN2510	A115	2029297	12147602800 W	B88-89	2029605	12148099400	B94-95	2030794	12168345400 W	B83
	2029048	XPHT160412 TTI25	A95	2029299	12147603900 W	B88-89	2029605	12148099400	A156	2030795	12168354100 W	B81
				2029300	12147604000 W	B88-89	2029622	12148541600 W	B95	2030797	12168354300 W	B82
200905						,	l					
2007956							l					
200955							l					
2007855							l					
200905							l					
2007909							2029/12		,			
202995 _ MTH3338R M7923 _ A15 202995 _ T124622100 W _ B100—101 202972							0000710		,			
2007069. JPHT15614 (N2510)							l					
2029060							l					
2007996 MPHILOGIA NC510 Al15 207996 2147452500 W B94 207996 274745500 W B95 207996 274745500 W B95 207996 274745500 W B95 27474500 W B95 274745500 W B95 27474500 W B95 274745500 W							l					
							l					
2009006 APRISA MOSTS ALT						l						
2027002 XPHT338 TH7525 A15 202749 12144580200 B100-101 A270749 XPHT164402 TH7525 A35												
2009964						,	l					
2027966 RPHILAGEO TRYSTS A15 202746 2174600000 B100-101 2002707 S00170000001 TRYSTS A27 2021669 ANNIVOSCRIBO TRYSTS A27 2021669 ANNIVOSCRIBO TRYSTS A28 2021669 ANNIVOSCRIBO TRYSTS A28 2021669 ANNIVOSCRIBO TRYSTS A38 2021669 ANNIVOSCRIBO TRYSTS A39 2021669 ANNIVOSCRIBO TRYSTS A39							l					
2029066							l					
2029066 XPRISSE MISSIS ASS 2029472 1214786800W B.800-101 2039070 XPRITAGUESSE MISSIS ASS 203144 ADMITIOSOBALINESS ASS ADMITIOSOBALINESS ASS ADMITIOSOBALINESS ADMITIOSOBALINESS ASS ADMITIOSOBALINESS ASS ADMITIOSOBALINESS ADMI												
2029066							l			2031640	AONT10T308ML TN7525	88A
200966	2029066	XPHT336 TN5515	A115	2029428	12147680600 W	B100-101	2030319	XPNT333 TN7535	A95			
2029060 XPHTI 00432 TMS15 AJ5 2029440 7127470100 W	2029067	XPHT160425AL THM	A94	2029429	12147680700 W	B100-101	2030319	XPNT333 TN7535	A115	2031642	AONT10T308ML THM	88A
20290971 XFHI331 D INSS15 A15 A55 A2948 12148000600 A3-67 A2949 A294800060 A3-67 A29480 A29480 A29480 A2948000 A3-67 A29480 A294800060 A3-67 A29480 A294800060 A3-67 A29480 A29480 A294800060 A3-67 A2	2029067	XPHT160425AL THM	A114	2029459	12147739900 W	B92	2030322	XPNT333 TN5515	A95	2031642	MHT 1M808T0T100A	A109
2029071 XPHT3310 TMS515 A15 2029478 12148000600 A76, A72—8 2020338 XPHT338 TMS555 A15 2031464 A0NTIOT308MM TMS555 A18 20294797 XPHT3310 TMS575 A17 2029478 12148000600 A102, A112—113 2030338 XPHT338 TMS555 A15 2031464 A0NTIOT308MM TMS555 A18 2029479 XPHT3310 TMS755 A17 2029478 12148000600 A102, A112—113 2030338 XPHT338 TMS555 A15 2031464 A0NTIOT308MM TMS55 A18 2029479 XPHT3310 TMS755 A17 2029478 A12148000600 A102, A112—113 2030338 XPHT338 TMS555 A15 2031464 A0NTIOT308MM TMS 54 A19	2029068	XPHT160432 TN5515	A95	2029460	12147740100 W	B92	2030322	XPNT333 TN5515	A115	2031643	AONT10T308MM TN5515 .	88A
2029072 XPH13310 IW575				2029461	12147740200 W	B90	2030333	XPNT333 TN7525	A95	2031643	AONT10T308MM TN5515 .	A109
2029072 XPHT3310 IN7525							l					
2029072 XPHT13310 HV7525						,	l					
2029703							l					
							l					
2029914 XPNITI.60412 INZ510							l					
2029914 XPNITIGORI 17X550							l					
2029110 SPRIN 203BTR IN7535 A228 2029488 12148007500 A44-64, A50 2030358 XPH1160420 IN7535 A35 2031796 XPH1160408AL INM A14 A14 A1202156 SPRIN 203BTR IN7535 A228 2029488 12148007500 A180 A196, A200 2030358 XPH1160420 IN7535 A15 2031796 XPH1160408AL INM A14 A14 A14 A14 A14 A15						1						
2029114 SPKN1 203EDR TNS515 A228 2029488 12148007500 A44-45, A50 2030358 XPHTI 60420 TN7535 A15 2031796 XPHTI 60408AL THM A14 A12029150 SEKN1 504FNT I TN7525 A227 2029488 A228 A229546 A228 A229546 A228 A229 A229167 A228 A229 A229167 A228 A229 A229167 A229												
2029115 SPKN1 203EDIT N7525 A228 2029488 12148007500 A122, A128 203036 XPHT3336 IN7535 A35 203179 XPHT160408AL THM A114 A12029160 SEKN1 203AFN1 TN7535 A217 2029488 12148007500 A122, A128 2030360 XPHT336 IN7535 A35 203179 XPHT160408AL THM A114 A12029160 SEKN1 203AFN1 TN7535 A217 2029488 12148007500 A120, A						. ,	1					
2029160 SEKN1 2034FNI 1787525 A221 A229488 12148007500 A122, A128 2030360 XPHT336 TN7525 A251 2031797 XPHT160408ALP THHM-U A114 A228 A229488 XPHT36047500 A229488 A2294												
2029166 SEKN1203AFN TNT5755 A217 2029488 12148007500 A196, A200 2030360 XPHT336 TNT535 A115 2031798 XPHT160408NLP TIHM-U A114 2029164 SEKN1203AFN TNT5755 A227 2029542 12148040900 W B94-95, B100-101 2030373 XPHT160432 TNT535 A115 2031798 XPHT160412AL THM-U A114 2029164 SEKN1204AFN TNT5755 A227 2029544 12148041100 W B91, B93-95, B100-101 B103-106 2030373 XPHT160432 TNT535 A227 2029545 2148041200 W B71, B93, B100-101, B103-106 2030373 XPHT160432 TNT535 A227 2029546 12148041300 W B91, B93-99, B100-101 B103-106 2030378 XPHT336 TNT535 A227 2029545 2029546 21248041400 W B81-84, B100-101, B103-106 2030378 XPHT330 BNT5755 A227 2029545 21248041400 W B81-84, B100-101, B103-106 2030378 XPHT330 BNT5755 A227 2029545 2029546 20							l					
2029160 SEKN1203AFN1 TN5515 A217 2029488 12148007500 A209 2030361 XPHT336 TN7525 A95 2031798 XPHT160412AL THM. A94 2029161 SEKN1203AFN1 TN7525 A221 2029542 12148041000 WB94—95, B100—101 2030361 XPHT336 TN7525 A95 2031799 XPHT160412AL THM. A114 A94 2029167 SEKN1204AFN1 TN7525 A221 2029543 12148041000 WB94—95, B100—101, B103—106 2029544 2148041100 WB91 B93—95, B100—101, B103—106 2029545 2029545 2029545 2029546 B100—101, B103—106 2029175 SEKN1504AFN1 TN7525 A224 2029545 2029545 2029546 B100—101, B103—106 20290375 XPHT3301 TN7535 A05 2031800 XPHT160412AL THM. A94 2029184 121358680 THM A228 2029546 12148041300 WB91 B93—95, B100—101, B103—106 2030378 XPHT3308 TN7535 A05 2031800 XPHT160412AL THM. A94 2029186 121358680 THKS A229 2029547 202944100 WB91 B93—84, 2029199 TPKN1603PDR TN7535 A229 2029547 2029548 B100—101, B103—106 20290378 XPHT3308 TN7535 A329 2029547 2029548 B100—101, B103—106 20290378 XPHT3308 TN7535 A329 2029547 2029548 B100—101, B103—106 20290378 XPHT3308 TN7535 A329 2031801 XPHT160432T THM. A114 A024000 TN7535 A329 2029546 A224000 TN7535 A229 2029546 A224000 TN7535 A229 2029548 A224000 TN7535 A229 2029546 A224000 TN7535 A229 2029546 A224000 TN7535 A229 2029546 A224000 TN7535 A229							l					
2029164 SEKN1204AFN1 TN7525 A271 2029544 2148041000 W B94-95, B100-101 2030361 XPHT136412X1FTM-U A114 2029170 SEKN1504AFN1 TN7525 A224 2029544 2148041000 W B91, B93-95, 2030373 XPHT160432 TN7535 A25 2031799 XPHT160412AIF THM-U A114 A114 2029170 SEKN1504AFN1 TN7525 A224 2029544 2148041000 W B91, B93-95, 2030373 XPHT160432 TN7535 A115 2031799 XPHT160412AIF THM-U A114 A1												
2029164 SEKN1204AFN1 TN7535 A221 2029543 12148041000 W B94-95, B100-101 2030373 XPHT160432 TN7535 A95 2031799 XPHT160412AIP THM-U A94 2029174 SEKN1504AFN1 TN7525 A224 2029544 1214804100 W B91, B93-95 2030373 XPHT160432 TN7535 A115 2031801 XPHT160412AIP THM-U A114 A12029175 SEKN1504AFN1 TN7535 A224 2029545 12148041200 W B93, B97-98 2030378 XPHT3310 TN7535 A35 2031801 XPHT160416AI THM A114												
2029167 SEKNI 2046FN1 TN7525 A221 2029544 12148041100 W B91, B93-95, B100-101, B103-106 2030375 XPHT3310 TN7535 A35 2031801 XPHT160416AL THM A94			2029543	12148041000 WB94-9	95, B100—101							
2029174 SEKNI504AFNI TN5515 A224 2029545 12148041200 W B71, B93, B100-101, B103-106 2030378 XPHT3333MR TN7535 A15 2031802 XPHT160420AL THM A94 A94 A95	2029167	SEKN1204AFN1 TN7525	A221				2030373	XPHT160432 TN7535	A115	2031799	XPHT160412ALP THM-U	A114
2029175 SEKNI 504AFNI TNT525	2029170	SEKN1504AFN1 TN7535	A224		B100-10	1, B103-106	2030375	XPHT3310 TN7535	A95	2031801	XPHT160416AL THM	A94
2029184 .121358680 THM	2029174	SEKN1504AFN1 TN5515	A224	2029545	12148041200 W	B71, B93,	2030375	XPHT3310 TN7535	A115			
2029186 121358680 TN5515 A228 B100-101, B103-106 2030398 A0NT10T308MH TN7535 A88 2031803 XPHT160432 TN7525 A95 A229 A2	2029175	SEKN1504AFN1 TN7525	A224			,	2030378	XPHT333MR TN7535	A95	2031802	XPHT160420AL THM	A94
2029192 TPKN1603PDR TN7535 A229 2029547 12148041400 W B81-84, 2030398 A0NT10T308MH TN7535 A109 2031803 XPHT160432L THM A94 2029196 TPKN1603PDR TN7525 A229 2029548 12148042400 W B97-98 2030413 SDMT1506PDRMH TN5515 A81 2031804 XPHT160432L THM A114 A114 A115 A114 A115				2029546			2030378	XPHT333MR TN7535	A115			
2029195 TPKN1603PDR TN5515 A229 2029548 12148042400 W							1					
2029196 TPKN1603PDR TN7525 A229 2029548 12148042400 W				2029547			1					
2029199 TPKN2204PDR TN7535 A229 2029553 12148044900 A216, A220 2030414 SDMT1506PDRMH TN7525 A81 2031813 12147620000 W B100—101 2029204 TPKN2204PDR TN7525 A229 2029554 12148046000 W B95 2030417 SDMT1204PDRMH TN7535 A77 2031814 12147620300 W B100—101 2029212 1214606300 A162—164 2029582 12148069600 W B94—95 2030417 SDMT1204PDRMH TN7535 A77 2031816 12147620400 W B100—101 2029221 12146010000 B50—51, B53—54 2029585 12148079000 W B81—84, B91, 2030419 SDMT1204PDRMH TN7525 A77 2031816 12147620600 W B100—101 2029226 12146021100 W A113 2029585 12148079000 W B81—84, B91, 2030419 SDMT1204PDRMH TN7525 A81 2031829 1214775300 W B82—83 2029248 12147517100 W B91 2029596 12148082400 B62, B46, B66, B67, B91 2029266 12147549000 B50—52, B68—69 2029596 12148082400 A66—70 2030437 SDMT1204PDRML TN7525 A81 203183 12147775600 W B82—83 2039266 12147549000 B50—52, B68—69 2029596 12148082400 A66—70 2030437 SDMT1204PDRML TN7525 A81 203183 12147775600 W B82—83 2039266 12147549000 A36, A138—139 2029596 12148082400 A66—70 2030437 SDMT1204PDRML TN7525 A81 203183 12147775600 W B82—83 2039266 12147549000 A36, A138—139 2029596 12148082400 A66—70 2030437 SDMT1204PDRML TN7535 A81 2031836 12148087100 W B82—83 2039266 12147579300 W B95 2029596 12148082400 A66—70 2030437 SDMT1204PDRML TN7535 A103 2031836 12148087100 W B82—83 2039281 12147775400 W B82—83 2039439 SDMT1204PDRML TN7535 A103 2031836 12148087100 W B82—83 2039281 12147600100 W B88—89 864, B66, B68, B71, 2030441 A0NT101308ML TN7535 A88 2031959 12166903800 W B81, B84 2029282 12147600200 W B88—89 864, B66, B68, B71, 2030441 A0NT101308ML TN7535 A88 2031959 12166903800 W B81, B84 2029282 12147600200 W B83—89 864, B66, B68, B71, 2030441 A0NT101308ML TN7535 A88 2031959 12166903900 W B81, B84 203928 12147600200 W B81, B84							1					
2029203 TPKN2204PDR TN5515							1					
202924 TPKN2204PDR TN7525 A229 2029559 12148046000 W												
2029212 1214606300												
2029221 12146010000 B50-51, B53-54 2029585 12148079000 W B81-84, B91, 2030419 SDMT1204PDRMH TN7525 A103 2031817 12147620600 W B100-101 2030420 SDMT1506PDRML TN7535 A81 2031829 12147775300 W B82-83 2029249 12147519100 W B91 2029596 12148082400 B62, B64, B66, B64, B64, B64, B64, B64, B64							l					
2029226 12146021100 W												
2029248 12147517100 W							l					
202924912147519100 W				2020207			1					
202926612147549000				LUL1J70								
2029266				2029596			1					
202927612147579300 W							1					
202928112147600100 W							1					
202928212147600200 W												
	2029283	12147600300 WB8	8-90, B92		B94-9	6, B99, B102	2030441	AONT10T308ML TN7535 .	A109	2031960	12166904000 W	B81, B84

F5

WWW.WIDIA.COM

Номер заказа І	Номер по каталогу	Стр.	Номер	Номер по каталогу	Стр.	Номер	Номер по каталогу	Стр.	Номер	Номер по каталогу	Стр.
	12748600900 W			12167921300 W			M270BD020A20L170C W			XPHT160408 TN6520	
	12396814000 W			M270BD010A12L140 W			RCMT1606M0TX TN6540		l	XPHT160408 TN6520	
	12748601400 W			M270BD012A12L145 W			RDMT1003M0T TN6540		l	XPHT160412 TN6510	
2054603	12147615000	B88-89	2243615	M270BD020A20L170 W	A164	2957429	RDMT1003M0T TN6525	A187	2964169	XPHT160412 TN6510	A115
	12147615200			M270BD025A25L195 W			RDMT1204M0TX TN6525		l	XPHT160408ERGE TN6540	
	12147615300			M270BD032A32L205 W			RDMT1204M0TX TN6540		l	XPHT160408ERGE TN6540	
	SNMT1505AZR31 TN5515.		1	M270BD010B12L90 W		1	RDMT1605M0TX TN6540			XPHT160412ERGE TN6510	
	RCMT1606M043M TN7535 SPKN1203EDL TN5515			M270BD012B12L95 W M270BD016B16L105 W			RCMT1606M043M TN6525RCMT1606M0TX TN6525			XPHT160412ERGE TN6510 XPHT160408ERGE TN6510	
	M270BD016A16L155 W			M270BD010B10L103 W			RDMT1605M0TX TN6525			XPHT160408ERGE TN6510	
	12147615400		1	M270BD025B25L145 W			RCMT1606M043M TN6540			XPHT160402ERGE TN6520	
	12147615500			M270BD032B32L155 W		1	M270BF12 TN6525		l	XPHT160412ERGE TN6520	
2074676	12148783700	A102	2243624	M270BD010M08 W	A162	2957539	M270BR12 TN6540	A165	2964174	XPNT160412 TN6540	A95
2076813	LPGX07T20436 TN7015	B55		M270BD012M08 W			M270BR16 TN6540		l	XPNT160412 TN6540	
	SPKN1504EDR TN5515			M270BD016M08 W			M270BF16 TN6525		l	XPHT160412ERGE TN6525	
	SEAN1203AFN1 THM			M270BD020M10 W			M270BF20 TN6525		l	XPHT160412ERGE TN6525	
	12147670800 W M270TF12R2 TN2505			M270BD025M12 W M270BD032M16 W			M270BR20 TN6540		l	XPHT160408ERGE TN6525 XPHT160408ERGE TN6525	
	M270TF16R3 TN2505			12395410200 W			HPGTO6T3DZERLD TN6510		I	XPHT160400ERGE TN6540	
	M270TF10R1 TN2505		1	12395415200 W			HPGTO6T3DZENGD TN6540			XPHT160412ERGE TN6540	
2105190	SPNT120408 TN5515	A210	2263154	12395410400 W	A37	2957547	HPGTO6T3DZERLD TN6525	A38	2964180	XPHT160412 TN6525	A95
2105263	SDMW090308 TN7525	A210	2263155	12395415400 W	A37	2957548	HPGTO6T3DZFRLDAL TN6501 .	A38	2964180	XPHT160412 TN6525	A115
	SPMW432 TN7535		1	12395410600 W			HPGTO6T3DZERGD3W TN6510		l	SNKT1205AZER20 TN6540	
	SPMW432 TN5515			12395415600 W		1	HPPTO6T3DZENGD TN6510		l	SNMT435AZR31 TN6540	
	RDMW1003MOT TN7525 RDMW1204MOTX TN7525 .			12395410800 W		1	HPGTO6T3DZFRLDAL TN6502 . HPPT06T3DZENGD TN6540			SNKT1205AZR31 TN6540 SNMT435AZR31 TN6525	
	RDMW1605MOTX TN7525 .			12395411000 W			HPPTO6T3DZENGD TN6520		l	SNMT1505AZR31 TN6525	
	RDMT1204MOTX TN7535 .		1	12395416000 W			HPGTO6T3DZERGD3W TN6525		I	SNKT1205AZR31 TN6525	
	RDMT1204MOTX TN2510 .			12395411200 W			HPGTO6T3DZERLD TN6520			17050003000 K20FTIALN	
2109572	RDMT1605MOTX TN2510 .	A197	2263163	12395416200 W	A37	2957586	HPPTO6T3DZENGD TN6525	A38	2964233	17050003100 K20FTIALN	B12
	12748609900 W		1	12395400200 W			HPGTO6T3DZENGD TN6525		I	17050003200 K20FTIALN	
2109972	12748610500 W			12395405200 W			HPGTO6T3DZENGD TN6510		l	17050003250 K20FTIALN	
2100074	A170-17 12748610600 W	1, A174-175	1	12395400600 W 12395405600 W			AONT10T308ML TN6540		I	17050003300 K20FTIALN 17050003400 K20FTIALN	
21077/4		A162-164, 1. A174-175		HPPTO6T3DZENGD TN7535			AONT10T308ML TN6540 AONT10T308ML TN6520		I	17050003400 K20FTIALN	
2109976	12748610700 W	,		HPPTO6T3DZENGD TN7525		1	AONT10T308ML TN6520		I	17050003600 K20FTIALN	
		1, A174-175		HPPTO6T3DZENGD TN5515		1	AONT10T308ML TN6510		l	17050003700 K20FTIALN	
2109978	12748610800 W	A162-164,	2276618	RDMT1003M0T TN7535	A187	2957823	AONT10T308ML TN6510	A109	2964241	17050003800 K20FTIALN	B12
		1, A174-175		HPGTO6T3DZENGD TN7535		1	AONT10T308MH TN6540			17050003900 K20FTIALN	
	12748610900 W		1	HPGTO6T3DZENGD TN7525		1	AONT10T308MH TN6540		I	17050004000 K20FTIALN	
	12748611000 W XPHT160420 TN5515			HPGTO6T3DZENGD TN5515 HPGTO6T3DZENGD TN2510			AONT10T308ML TN6501 AONT10T308ML TN6501			17050004100 K20FTIALN 17050004200 K20FTIALN	
	XPHT160420 TN5515 XPHT160420 TN5515			HPGTO6T3DZERLD TN7525		1	AONT10T308ML TN6525		I	17050004200 K20FTIALN	
	LPGX07T20434 TN7015		1	HPGTO6T3DZERLD TN5515		1	AONT10T308ML TN6525			17050004400 K20FTIALN	
	LPGX10030834 TN7015			HPGTO6T3DZERLD TN2510			AONT10T308MH TN6525		l	17050004600 K20FTIALN	
2111356	LPGX10030836 TN7015	B55	2288103	HPGTO6T3DZERGD3W TN7525		2957827	AONT10T308MH TN6525	A109	2964251	17050004650 K20FTIALN	B12
	M270BR16 TN7535	A165	2288104	HPGTO6T3DZERGD3W TN5515		2963902	XPHT160408AL TN6502	A94	2964252		B12
	M270TF20R4 TN2505			HPGTO6T3DZERGD3W TN2510			XPHT160408AL TN6502		l	17050004900 K20FTIALN	
	RDMT1605MOTX TN7535 . LPGX06T10334 TN7015			HPGTO6T3DZFRLDAL THM HPGTO6T3DZFRLDAL THM-U			LPGX06T10334 TN6030 LPGX07T20434 TN6030		l	17050005000 K20FTIALN 17050005100 K20FTIALN	
	LPGX07T20436 TN5515			XPHT160408ERGE TN7525		1	LPGX07T20434 TN6030		I	17050005100 K20FTIALN	
	LPGX10030836 TN5515			XPHT160408ERGE TN7525			LPGX10030834 TN6030		I	17050005300 K20FTIALN	
2207898	12167920400 W	B71		XPHT160408ERGE TN7535			LPGX10030836 TN6030		I	17050005400 K20FTIALN	
	12167920500 W		2405301	XPHT160408ERGE TN7535	A114	1	XPHT160408 TN6510		2964282	17050005500 K20FTIALN	B12
	12167920000 W			XPHT160408ERGE TN5515		1	XPHT160408 TN6510		l	17050005550 K20FTIALN	
	12167920200 W			XPHT160408ERGE TN5515			XPHT160412MR TN6525		I	17050005600 K20FTIALN	
	12167920600 W 12167920800 W			XPHT160408ERGE TTI25XPHT160408ERGE TTI25			XPHT160412MR TN6525 XPHT160408ALP TN6501		I	17050005700 K20FTIALN 17050005800 K20FTIALN	
	12167921000 W			XPHT333ERGE TN7525			XPHT160408ALP TN6501			17050005900 K20FTIALN	
	12167921200 W		1	XPHT333ERGE TN7525		1	XPNT160412 TN6525			17050006000 K20FTIALN	
2223028	12396906400 W	A87	2405346	XPHT333ERGE TN7535	A94		XPNT160412 TN6525		I	17050006100 K20FTIALN	
	12396906600 W		2405346	XPHT333ERGE TN7535	A114		XPHT160412MR TN6540		2964302	17050006200 K20FTIALN	B13
	12396906800 W			XPHT333ERGE TN5515			XPHT160412MR TN6540		I	17050006300 K20FTIALN	
	12396924600 W			XPHT333ERGE TN5515			XPHT160408ERGE TN6520			17050006400 K20FTIALN	
	12396924800 W 12396925000 W			XPHT333ERGE TTI25		1	XPHT160408ERGE TN6520 XPHT160408 TN6540		l	17050006500 K20FTIALN	
	12396925200 W1 12396925200 W			M270BD010A12L140C W			XPHT160408 TN6540		I	17050006600 K20FTIALN 17050006700 K20FTIALN	
	12396931400 W			M270BD010A12L146C W		1	XPHT160412 TN6540		I	17050006700 K20FTIALN	
	12396931600 W			M270BD016A16L155C W			XPHT160412 TN6540			17050007000 K20FTIALN	
	12167921400 W			M270TF10R1 TN2525		1	XPHT160416 TN6540		l	17050007100 K20FTIALN	
	12167920100 W			M270TF12R2 TN2525		1	XPHT160416 TN6540		I	17050007200 K20FTIALN	
	12167920700 W			M270TF16R3 TN2525			XPHT160412 TN6520			17050007300 K20FTIALN	
2223056	12167921100 W	B/ I	1 2637023	M270TF20R4 TN2525	A1/Z	1 276416/	XPHT160412 TN6520	AII5	276433/	17050007400 K20FTIALN	R13

Номер		Hosson			Номер			Номер		
ломер заказа Номер по каталогу	Стр.	Номер Заказа Но	мер по каталогу	Стр.	заказа	Номер по каталогу	Стр.	заказа	Номер по каталогу	Стр.
						•				
296433817050007500 K20FTIALN			050111700 K20FTIALN		I	17050210300 K20FTIALN			17050109300 K20FTIALN	
296434017050007600 K20FTIALN			050111800 K20FTIALN		I	17050210400 K20FTIALN			17050109400 K20FTIALN	
296434117050007700 K20FTIALN			050203000 K20FTIALN		I	17050210500 K20FTIALN			17050109500 K20FTIALN	
296434217050007800 K20FTIALN			050203100 K20FTIALN		l	17050210600 K20FTIALN			17050109600 K20FTIALN	
296435317050007900 K20FTIALN		296480517	050203200 K20FTIALN	B18	l	17050210700 K20FTIALN		2965030	17050109700 K20FTIALN	B16
296435517050008000 K20FTIALN	B13	296480617	050203250 K20FTIALN	B18	2964900	17050210800 K20FTIALN	B20	2965032	17050109900 K20FTIALN	B16
296435617050008100 K20FTIALN	B13	296480717	050203300 K20FTIALN	B18	2964901	17050210900 K20FTIALN	B20	2965034	17050110000 K20FTIALN	B16
296435817050008300 K20FTIALN	B13	296480817	050203400 K20FTIALN	B18	2964902	17050211000 K20FTIALN	B20	2965035	17050110100 K20FTIALN	B16
296436017050008400 K20FTIALN	B13	296480917	050203500 K20FTIALN	B18	2964903	17050211100 K20FTIALN	B20	2965036	17050110200 K20FTIALN	B16
296436117050008500 K20FTIALN	B13	296481017	050203600 K20FTIALN	B18	2964905	17050211200 K20FTIALN	B20	2965037	17050110300 K20FTIALN	B16
296436217050008600 K20FTIALN			050203700 K20FTIALN			17050211300 K20FTIALN			17050110400 K20FTIALN	
296437317050008700 K20FTIALN			050203800 K20FTIALN			17050103000 K20FTIALN			17050110500 K20FTIALN	
296437417050008800 K20FTIALN			050203900 K20FTIALN		l	17050103100 K20FTIALN			17050110600 K20FTIALN	
296437517050008900 K20FTIALN			050204000 K20FTIALN		l	17050103100 K20FTIALN			17050110000 K20FTIALN	
296437617050009000 K20FTIALN			050204000 K20FTIALN			17050103250 K20FTIALN			17050110700 K20FTIALN	
					I					
296437717050009100 K20FTIALN			050204200 K20FTIALN		l	17050103300 K20FTIALN			17050110900 K20FTIALN	
296437917050009200 K20FTIALN			050204300 K20FTIALN		I	17050103400 K20FTIALN			17050111000 K20FTIALN	
296438017050009300 K20FTIALN			050204400 K20FTIALN		I	17050103500 K20FTIALN			17050111100 K20FTIALN	
296438117050009400 K20FTIALN			050204600 K20FTIALN		I	17050103600 K20FTIALN			17050111900 K20FTIALN	
296438217050009500 K20FTIALN			050204650 K20FTIALN		I	17050103700 K20FTIALN			17050112000 K20FTIALN	
296439417050009600 K20FTIALN	B13	296482317	050204700 K20FTIALN	B18	2964956	17050103800 K20FTIALN	B15	2965057	17050112500 K20FTIALN	B17
296439517050009700 K20FTIALN	B13	296482617	050204900 K20FTIALN	B18	2964957	17050103900 K20FTIALN	B15	2965059	17050112800 K20FTIALN	B17
296439717050009900 K20FTIALN	B13	296482717	050205000 K20FTIALN	B18	2964958	17050104000 K20FTIALN	B15	2965060	17050113000 K20FTIALN	B17
296439917050010000 K20FTIALN	B13	296482817	050205100 K20FTIALN	B18	2964959	17050104100 K20FTIALN	B15	2965061	17050113500 K20FTIALN	B17
296440017050010100 K20FTIALN	B13	296483017	050205200 K20FTIALN	B18	2964960	17050104200 K20FTIALN	B15	2965062	17050113800 K20FTIALN	B17
296440117050010200 K20FTIALN		296483117	050205300 K20FTIALN	B18	l	17050104300 K20FTIALN			17050114000 K20FTIALN	
296440217050010300 K20FTIALN		296483217	050205400 K20FTIALN	B18	2964963	17050104400 K20FTIALN	B15	2965065	17050114500 K20FTIALN	B17
296441417050010400 K20FTIALN			050205500 K20FTIALN		I	17050104600 K20FTIALN			17050114800 K20FTIALN	
296441517050010500 K20FTIALN			050205550 K20FTIALN		I	17050104650 K20FTIALN			17050115000 K20FTIALN	
296441617050010600 K20FTIALN			050205600 K20FTIALN		I	17050104700 K20FTIALN			17050115500 K20FTIALN	
296441717050010000 K20fTIALN			050205700 K20FTIALN		I	17050104900 K20FTIALN			17050115800 K20FTIALN	
296441917050010700 K20FTIALN			050205700 K20FTIALN		I	17050104700 K20FTIALN			17050115000 K20FTIALN	
					l					
296442017050010900 K20FTIALN			050205900 K20FTIALN		I	17050105100 K20FTIALN			17050116500 K20FTIALN	
296442117050011000 K20FTIALN			050206000 K20FTIALN		I	17050105200 K20FTIALN			17050116800 K20FTIALN	
296442317050011100 K20FTIALN			050206100 K20FTIALN		l	17050105300 K20FTIALN			17050117000 K20FTIALN	
296442517050011200 K20FTIALN			050206200 K20FTIALN		l	17050105400 K20FTIALN			17050117500 K20FTIALN	
296442617050011300 K20FTIALN			050206300 K20FTIALN		I	17050105500 K20FTIALN			17050117800 K20FTIALN	
296442717050011400 K20FTIALN			050206400 K20FTIALN		I	17050105550 K20FTIALN			17050118000 K20FTIALN	
296442817050011500 K20FTIALN			050206500 K20FTIALN		I	17050105600 K20FTIALN			17050118500 K20FTIALN	
296442917050011600 K20FTIALN	B14	296484817	050206600 K20FTIALN	B19	2964981	17050105700 K20FTIALN	B15	2965080	17050118800 K20FTIALN	B17
296443017050011700 K20FTIALN	B14	296484917	050206700 K20FTIALN	B19	2964982	17050105800 K20FTIALN	B15	2965081	17050119000 K20FTIALN	B17
296443117050011800 K20FTIALN	B14	296485117	050206800 K20FTIALN	B19	2964983	17050105900 K20FTIALN	B15	2965083	17050119500 K20FTIALN	B17
296443217050011900 K20FTIALN	B14	296485317	050207000 K20FTIALN	B19	2964985	17050106000 K20FTIALN	B15	2965084	17050119800 K20FTIALN	B17
296443417050012000 K20FTIALN	B14	296485417	050207100 K20FTIALN	B19	2964986	17050106100 K20FTIALN	B16	2965085	17050120000 K20FTIALN	B17
296443617050012500 K20FTIALN	B14	296485617	050207200 K20FTIALN	B19	2964987	17050106200 K20FTIALN	B16	2966474	17051203000 K20FTIALN	B26
296443817050012800 K20FTIALN	B14	296485717	050207300 K20FTIALN	B19	2964988	17050106300 K20FTIALN	B16	2966475	17051203100 K20FTIALN	B26
296443917050013000 K20FTIALN	B14	296485817	050207400 K20FTIALN	B19	2964990	17050106400 K20FTIALN	B16	2966476	17051203200 K20FTIALN	B26
296444017050013500 K20FTIALN	B14	296485917	050207500 K20FTIALN	B19	2964991	17050106500 K20FTIALN	B16	2966477	17051203250 K20FTIALN	B26
296444117050013800 K20FTIALN	B14	296486117	050207600 K20FTIALN	B19	2964992	17050106600 K20FTIALN	B16	2966478	17051203300 K20FTIALN	B26
296444217050014000 K20FTIALN			050207700 K20FTIALN		l	17050106700 K20FTIALN			17051203400 K20FTIALN	
296444417050014500 K20FTIALN			050207800 K20FTIALN			17050106800 K20FTIALN			17051203500 K20FTIALN	
296444517050014800 K20FTIALN			050207900 K20FTIALN		I	17050107000 K20FTIALN			17051203600 K20FTIALN	
296444617050015000 K20FTIALN			050208000 K20FTIALN			17050107100 K20FTIALN			17051203700 K20FTIALN	
296444717050015500 K20FTIALN			050208100 K20FTIALN		l	17050107200 K20FTIALN			17051212000 K20FTIALN	
296444817050015800 K20FTIALN			050208300 K20FTIALN		l	17050107200 K20FTIALN			17051212500 K20FTIALN	
296445017050016000 K20FTIALN			050208400 K20FTIALN		l	17050107400 K20FTIALN			17051212800 K20FTIALN	
296445117050016500 K20FTIALN			050208500 K20FTIALN			17050107400 K20FTIALN			17051212000 K20FTIALN	
					I					
296445317050016800 K20FTIALN			050208600 K20FTIALN			17050107600 K20FTIALN			17051213500 K20FTIALN	
296445417050017000 K20FTIALN		I .	050208700 K20FTIALN		I	17050107700 K20FTIALN			17051213800 K20FTIALN	
296445517050017500 K20FTIALN			050208800 K20FTIALN			17050107800 K20FTIALN			17051214000 K20FTIALN	
296445617050017800 K20FTIALN			050208900 K20FTIALN		I	17050107900 K20FTIALN			17051214500 K20FTIALN	
296445717050018000 K20FTIALN			050209000 K20FTIALN		l	17050108000 K20FTIALN			17051214800 K20FTIALN	
296445817050018500 K20FTIALN			050209100 K20FTIALN		l	17050108100 K20FTIALN			17051215000 K20FTIALN	
296445917050018800 K20FTIALN			050209200 K20FTIALN		l	17050108300 K20FTIALN			17051215500 K20FTIALN	
296446017050019000 K20FTIALN			050209300 K20FTIALN		l	17050108400 K20FTIALN			17051215800 K20FTIALN	
296446217050019500 K20FTIALN	B14	296488217	050209400 K20FTIALN	B19		17050108500 K20FTIALN		2966508	17051216000 K20FTIALN	B28
296446317050019800 K20FTIALN	B14	296488317	050209500 K20FTIALN	B19	2965017	17050108600 K20FTIALN	B16		17051216500 K20FTIALN	
296446417050020000 K20FTIALN	B14	296488517	050209600 K20FTIALN	B19	l	17050108700 K20FTIALN			17051216800 K20FTIALN	
296473617050111200 K20FTIALN	B17	296488617	050209700 K20FTIALN	B19	2965019	17050108800 K20FTIALN	B16	2966512	17051217000 K20FTIALN	B28
296473717050111300 K20FTIALN	B17	296488817	050209900 K20FTIALN	B19	2965020	17050108900 K20FTIALN	B16	2966513	17051203800 K20FTIALN	B26
296473817050111400 K20FTIALN	B17	296489017	050210000 K20FTIALN	B19	2965021	17050109000 K20FTIALN	B16	2966514	17051203900 K20FTIALN	B26
296473917050111500 K20FTIALN	B17	296489117	050210100 K20FTIALN	B19	2965022	17050109100 K20FTIALN	B16	2966516	17051204000 K20FTIALN	B26
296474017050111600 K20FTIALN		I .	050210200 K20FTIALN			17050109200 K20FTIALN			17051112000 K20FTIALN	
=-									\^\^\^\\\	0014

MARCINE MOSTONIAN DOTAINS 195	Номер	Номер по каталогу	Стр.	Номер	Номер по каталогу	Стр.	Номер	Номер по каталогу	Стр.	Номер	Номер по каталогу	Стр.
Model Mode		•			•			-				
1945 1951 1950				1			1					
1945 1957 1959				1			1					
PART PART	2966522	17051204300 K20FTIALN	B26	2966615	17051208500 K20FTIALN	B27	2968412 .	17050217500 K20FTIALN	B20	2968566	17050316000 K20FTIALN	B22
PARTS PART PARTS	2966523	17051217500 K20FTIALN	B28	2966616	17051208600 K20FTIALN	B27	2968413 .	17050217800 K20FTIALN	B20			
245-2527 TURN TUR							1					
245502				1			1					
2945533 - 1795121900 ESTEAM 22												
296.553 PASS							1					
29455279521900 CEPTAM829							1					
2464533 795112000 CHIFFAIN 23 746422 79512090 CHIFFAIN 27 746635 79512090 CHIFFAIN 27 746635 79512090 CHIFFAIN 27 746635 7952003030 CHIFFAIN 27				1								
2945453 POS-101-000 EPSTAIL S. 27	2966532	17051220000 K20FTIALN	B28	2966625	17051209400 K20FTIALN	B27	2968422 .	17050303000 K20FTIALN	B21			
PASSASS T785 15000 1097141 18.25 PASSASS T785 15000 109714 18.25 PA	2966535	17051112800 K20FTIALN	B25	2966626	17051209500 K20FTIALN	B27	2968503 .	17050303300 K20FTIALN	B21	2968972	17051103800 K20FTIALN	B23
2464660 7050				1			2968504 .	17050303500 K20FTIALN	B21			
PARASES 778510400 COFFIUM 270 794653 1795114000 COFFIUM 271 794654 7785114000 COFFIUM 271 794655 794654 794651 794654 794651 794654 79465				1			1					
2944545 7095 1795				1								
296555 7765 1264 SO COTTIMAL 22 226455 7765 7260 COTTIMAL 27 22 226579 7765 77				1			1					
PASSAS TVPS11PAPTO DEPTIMEN 872 PASSAS TVPS11PAPTO DEPTIMEN 877 PASSAS TVPS11PAPTO DEPTIMEN 873 PASSAS TVPS11PAPTO DEPTIMEN 873 PASSAS PA				1			1					
PARSASS TOSTITIAGO COTITIAM E75				1								
PARSASS TOSS				1								
2946555 17/0510000 ZOTHUM. 272 956664 1705111000 ZOTHUM. 272 956676 170511000 ZOTHUM. 272 956656 1705111000 ZOTHUM. 272 956656 1705111000 ZOTHUM. 272 956656 170511100 ZOTHUM. 272 956656 17051100 ZOTHU				1								
29464552 17/5510000 (ZEPTIAL) 22 2946445 17/5512000 (ZEPTIAL) 22 2946455 17/5515000 (ZEPTIAL) 22 2946455 17/5515000 (ZEPTIAL) 22 2946455 17/5515000 (ZEPTIAL) 22 2946455 17/5515000 (ZEPTIAL) 22 2946455 17/551500 (ZEPTIAL) 22 2946455 17/551500 (ZEPTIAL) 22 2946455 17/551500 (ZEPTIAL) 22 2946455 17/551500 (ZEPTIAL) 22 294645 17/551500 (ZEPTIAL) 22 2946455 17/551500 (ZEPTIA	2966549	17051114800 K20FTIALN	B25	2966640	17051210600 K20FTIALN	B27	2968513 .	17050304800 K20FTIALN	B21	2968986	17051104900 K20FTIALN	B23
2964555 1 175515000 CZPTIMIN 272 966664 1755121100 CZPTIMIN 272 976657 175515000 CZPTIMIN 272 976656 17551500 CZPTIMIN 272 976655 1 17551500 CZPTIMIN 272 976656 1 17551500 CZPTIMIN 272 976655 1 17551500 CZPTIMIN 272 976656 1 17551500 CZPTIMIN 272 976655 1 17551500 CZPTIMIN 272 976656 1 17551500 CZPTIMIN 272 976655 1 17551500 CZPTIMIN 272 9	2966550	17051204900 K20FTIALN	B26	2966641	17051210700 K20FTIALN	B28	2968514 .	17050305000 K20FTIALN	B21			
294655 1/205115500 (207FMM B.2)	2966551	17051115000 K20FTIALN	B25	2966643	17051210800 K20FTIALN	B28	1			2968988	17051105100 K20FTIALN	B23
2946555 17051 102600 (20FHIAM) 826 9746646 17051 12100 (20FHIAM) 828 829 974555 17051 102600 (20FHIAM) 829				1			1					
2945555 1705 113600 (2076 IMA) 8.27 294649 1705 12300 (2076 IMA) 8.28 294555 1705 12300 (2076 IMA) 8.21 294555 1705 113600 (2076 IMA) 8.22 294555 1705							1					
2946559 1705110000 CORTININ 329 2966494 170512113001 CORTININ 329 2946579 1705110000 CORTININ 321 2946591 1705110000 CORTININ 321 2946591 1705110000 CORTININ 322 2946591 1705110000 CORTININ 322 2946591 1705110000 CORTININ 323 2946591 1705110000 CORTININ 324 2946591 1705110000 CORTININ 328 2946591 1705110000 CORTININ 329 2946591 1705110000 CORTININ 329 2946591 170511000 CORTININ 329 2946591 1705110000 CORTININ 329 2946591 1705110000 CORTININ 329 2946591 1705110000 CORTININ 329 2946591 1705110000 CORTININ 329 2946591 1705110000 CORTININ 329 2946591 17051100000 CORTININ 329 2946591 1705110000 CORTININ 329 2946591 17051110000 CORTININ 329 2946591 17051110000 CORTININ 329 2946591 17051110000 CORTININ 329 2946591 17051110000 CORT				1			1					
2945550 17051115000 COTTININ 292 2966550 17051211400 COTTININ 282 294551 17051025000 COTTININ 292 2966551 17051012500 COTTININ 282 2966551 17051012500 COTTININ 282 2966552 17051012500 COTTININ 282 2966552 17051012500 COTTININ 282 2966554 1705102500 COTTININ 282 2966554 1705102500 COTTININ 282 2966554 1705102500 COTTININ 282 2966554 1705102500 COTTININ 282 2966555 170510000 COTTININ 282 2966555 170510000 COTTININ 282 2966555 170510000 COTTININ 282 2966555 170510000 COTTININ 282 296655 170510000 COTTININ 282 296655 170510000 COTTININ 282 296655 170500000 COTTININ 282 296655 170500000 COTTININ 282 296655 170500000 COTTININ 282 296650 1705000000 COTTININ 282 296650 1705000000 COTTININ 282 296650 1705000000 COTTININ 282 296650 1705000000000000 COTTININ 282 296650 170500000000000000000000000000000000000				1			1					
296656 170511500 COPTIAN 823 296655 17051211500 COPTIAN 828 294657 1705103000 COPTIAN 829 294657 1705103000 COPTIAN 829 294657 1705103000 COPTIAN 820 294658 1705103000 COPTIAN 820 294658 1705103000 COPTIAN 820 294658 1705103000 COPTIAN 821 294690 1705103000 COPTIAN 822 294690 1705103000 COPTIAN 824 294690 17050000 COPTIAN 824 294690 1705103000 COPTIAN 824 294690 17051				1			1					
2946551 7051111500 COPTHUM 826 294657 705121100 COPTHUM 827 294657 705101500 COPTHUM 827 2946562 705101500 COPTHUM 827 2946563 705121100 COPTHUM 828 294657 705001500 COPTHUM 827 2946564 705121500 COPTHUM 828 294654 705120500 COPTHUM 827 2946565 7051011100 COPTHUM 827 294657 705101500 COPTHUM 827 2946565 705101100 COPTHUM 827 294657 70510100 COPTHUM 827 294657 70510100 COPTHUM 827 294657 70510100 COPTHUM 827 294657 705101000 COPTHUM 827 294657 7050001500 COPTHUM 827 294650 70500015000 COPTHUM 827 294				1								
9965554 77051705000 (20FHAIN 825 2966554 7705101000 (20FHAIN 821 2969001 77051106000 (20FHAIN 822 296556 770510170100 (20FHAIN 821 296656 77051017000 (20FHAIN 821 296656 77051017000 (20FHAIN 822 296657 77050000 (20FHAIN 821 296656 77051017000 (20FHAIN 825 2966794 200000 (20FHAIN 825 2966570 770510000 (20FHAIN 825 2966570 770510000 (20FHAIN 825 2966794 2000000000 (20FHAIN 825 2966570 7705100000 (20FHAIN 826 2966570 770510000 (20FHAIN 826 2966570 770510000 (20FHAIN 826 2966570 7705100000 (20FHAIN 826 2966570 770510000 (20FHAIN 826 2966600 770510000 (20FHAIN 826 2966570 770510000 (20FHAIN 826 2966570 770510000 (20FHAIN 827 2966580 7705100000 (20FHAIN 827 2966580 770510000 (20FHAIN 827 2966580 7705010000 (20FHAIN 827 2966580 7705010000 (20FHAIN 8				2966652	17051211600 K20FTIALN	B28	2968523 .	17050306750 K20FTIALN	B21			
2946555 77051114800 ZOFTIAIN 822 2946655 1705121900 ZOFTIAIN 828 2746556 770510550 ZOFTIAIN 827 2746566 770510550 ZOFTIAIN 827 2746566 7705117000 ZOFTIAIN 827 2746579 XOMINDSTORAS TINGASO 877 2746527 7705300700 ZOFTIAIN 821 2746000 1705110400 ZOFTIAIN 824 27465657 77051117000 ZOFTIAIN 825 2746679 XOMINDSTORAS TINGASO 877 2746527 7705300700 ZOFTIAIN 821 2746000 1705110400 ZOFTIAIN 824 2746557 7705110400 ZOFTIAIN 824 2746679 XOMINDSTORAS TINGASO 872 2746527 7705300700 ZOFTIAIN 821 2746000 1705110400 ZOFTIAIN 824 2746570 7705110500 ZOFTIAIN 825 2746570 7705110500 ZOFTIAIN 824 2746570 7705110500 ZOFTIAIN 825 2746570 7705110500 ZOFTIAIN 825 2746570 7705110500 ZOFTIAIN 824 2746570 77051105000 ZOFTIAIN 825 2746570 7705110500 ZOFTIAIN 824 2746570 7705110500 ZOFTIAIN 824 2746570 7705110500 ZOFTIAIN 825 2746600 XOMINOTSOGAS TINGASO 827 2746535 770500000 ZOFTIAIN 821 2746001 77051107000 ZOFTIAIN 824 2746570 77051105000 ZOFTIAIN 824 2746570 77051105000 ZOFTIAIN 825 2746600 XOMINOTSOGAS TINGASO 827 2746535 7705000000 ZOFTIAIN 821 2746001 ZOFTIAIN 824 2746570 77051105000 ZOFTIAIN 824 2746570 77051105000 ZOFTIAIN 824 2746550 77051206000 ZOFTIAIN 825 2746600 XOMINOTSOGAS TINGASO 827 2746535 7705000000 ZOFTIAIN 821 2746001 ZOFTIAIN 824 27465600 ZOFTIAIN 825 2746600 ZOFTIAIN 827 2746550 ZOFTIAIN 827 2746550 ZOFTIAIN 827 2746550 ZOFTIAIN 8	2966562	17051205400 K20FTIALN	B26	2966653	17051211700 K20FTIALN	B28	2968524 .	17050306800 K20FTIALN	B21			
2946556 7705117500 2007												
294657 77051117500 (20FTIAIN R25 294679 XOMINGS/2043 TINAGOS R27 2946528 71056307540 (20FTIAIN R21 294006 17051103600 (20FTIAIN R24 2946570 77051025600 (20FTIAIN R25 294679 XOMINGS/2043 TINAGOS R27 2946530 71056300740 (20FTIAIN R21 294006 17051104600 (20FTIAIN R24 2946577 77051117500 (20FTIAIN R25 294679 XOMINGS/20435 TINAGOS R27 2946530 71056300740 (20FTIAIN R21 294000 71051104600 (20FTIAIN R24 2946577 77051117500 (20FTIAIN R25 294679 XOMINGS/20435 TINAGOS R27 2946531 71056300740 (20FTIAIN R21 294000 71051104600 (20FTIAIN R24 2946573 71051112000 (20FTIAIN R25 294679 XOMINGS/20435 TINAGOS R27 2946531 71056300740 (20FTIAIN R25 2946079 XOMINGS/20435 TINAGOS R27 2946531 71056300740 (20FTIAIN R25 2946079 XOMINGS/20435 TINAGOS R27 2946533 7105630050 (20FTIAIN R25 2946079 XOMINGS/20435 TINAGOS R27 2946533 7105630050 (20FTIAIN R25 2946079 XOMINGS/20435 TINAGOS R27 2946535 71056309500 (20FTIAIN R27 2946577 XOMINGS/20435 TINAGOS R27 2946535 XOMINGS/20435 TINAGOS R27 2946536 XOMINGS/20												
2946559 77051117500 (20FTIAIN				1								
2946575 17051129600 (ZOFTIALN B.25 2966797 XOMITOSO20436 TIN6030 B.72 2946853 17050308000 (ZOFTIALN B.21 2976008 17051106600 (ZOFTIALN B.24 2946573 17051129600 (ZOFTIALN B.25 2966797 XOMITOSO20436 TIN6030 B.72 2946853 17050308000 (ZOFTIALN B.21 2976008 17051106600 (ZOFTIALN B.24 2946573 17051112000 (ZOFTIALN B.25 2966797 XOMITOSO20436 TIN6030 B.72 2946853 17050308500 (ZOFTIALN B.21 2976008 17051106600 (ZOFTIALN B.24 2946573 17051112000 (ZOFTIALN B.25 2966801 XOMITOSO30436 TIN6030 B.72 2946853 17051020000 (ZOFTIALN B.25 2966801 XOMITOSO30436 TIN6030 B.72 2946853 1705102000 (ZOFTIALN B.21 2946014 XOMITOSO3045 TIN6030 B.72 2946853 1705102000 (ZOFTIALN B.21 2946014 XOMITOSO30436 TIN6030 B.72 2946853 1705102000 (ZOFTIALN B.21 2946014 XOMITOSO3045 TIN6030 B.72 2946853 1705102000 (ZOFTIALN B.21 2946014 XOMITOSO3045 TIN6030 B.72 2946853 1705102000 (ZOFTIALN B.21 2946014 XOMITOSO3045 TIN6030 B.72 2946853 1705102000 (ZOFTIALN B.21 2946014 XOMITOSO3045 TIN6030 B.72 2946853 1705102000 (ZOFTIALN B.21 2946014 XOMITOSO3045 TIN6030 B.72 2946853 1705102000 (ZOFTIALN B.21 2946014 XOMITOSO3045 TIN6030 B.72 2946853 1705102000 (ZOFTIALN B.21 2946000 XOMITOSO3045 TIN6030 B.72 2946853 XOMITOSO3045 TIN6030 B.72 2946050 XOMITOSO3045 TIN6030 B.72 2946853 XOMITOSO3045 T				1								
2946571 17051118000 (ZOFILIAN 826 2966797 XOMIOSO20445 TN6030 872 296853 17050308300 (ZOFILIAN 821 2969008 17051106700 KZOFILIAN 824 2966573 17051118000 (ZOFILIAN 825 2966799 XOMIO7030445 TN6030 872 296853 17050308305 (ZOFILIAN 821 2969010 17051106700 KZOFILIAN 824 2966574 17051205000 (ZOFILIAN 825 2966690 XOMIO7030435 TN6030 872 296853 17050308500 (ZOFILIAN 821 2969010 17051106700 KZOFILIAN 824 2966575 17051118500 KZOFILIAN 825 2966801 XOMIO7030435 TN6030 872 2968535 17050309100 KZOFILIAN 821 2969014 17051107100 KZOFILIAN 824 2966575 17051128000 KZOFILIAN 825 2966801 XOMIO7303635 TN6030 872 2968535 17050309100 KZOFILIAN 821 2969014 17051107100 KZOFILIAN 824 2966576 17051128000 KZOFILIAN 825 2966801 XOMIO730635 TN6030 872 2968535 17050309100 KZOFILIAN 821 2969014 17051107000 KZOFILIAN 824 2966580 17051120000 KZOFILIAN 825 2966805 XOMIO730635 TN6030 872 2968535 17050309900 KZOFILIAN 821 2969016 17051107000 KZOFILIAN 824 2966580 1705120000 KZOFILIAN 826 2966805 XOMIO730035 TN60300 872 2968530 17050309900 KZOFILIAN 821 2969010 17051107000 KZOFILIAN 824 2966580 1705120000 KZOFILIAN 827 2966805 XOMIO7300303 FN6030 872 2968530 170503009900 KZOFILIAN 821 2969010 17051107000 KZOFILIAN 824 2966580 1705110900 KZOFILIAN 827 2966800 XOMIO7300303 FN6030 872 2968530 170503009900 KZOFILIAN 821 2969010 17051107000 KZOFILIAN 824 2966580 17051108000 KZOFILIAN 827 2966800 XOMIO7300303 FN6030 872 2968530 17051108000 KZOFILIAN 827 2966800 XOMIO73003000000000000000000000000000000000				1			1					
296657317051118000 K20FTIAIN				1			1					
2966574170511205000 K20FTIALN	2966572	17051205700 K20FTIALN	B26	2966798	XOMT07030434 TN6030	B72	2968532 .	17050308330 K20FTIALN	B21	2969009	17051106700 K20FTIALN	B24
2966575 17051118500 K20FTHAIN				1			1					
296657617051205900 K20FTIALN							1					
2966577 17051118800 K20FTIALN 8.25 2966803 X0MT09T30336 TM6030 872 2968537 17050309520 K20FTIALN 8.21 2969017 17051107300 K20FTIALN 8.24 2966588 17051206000 K20FTIALN 8.25 2966804 X0MT12T30835 TM6030 8.72 2968538 17050309900 K20FTIALN 8.21 2969019 17051107400 K20FTIALN 8.24 2966582 17051206100 K20FTIALN 8.27 2966806 X0MT12T30835 TM6030 8.72 296854 17050310000 K20FTIALN 8.21 2969019 17051107500 K20FTIALN 8.24 2966588 1705119500 K20FTIALN 8.25 2966807 X0MT1650835 TM6030 8.72 296854 17050310000 K20FTIALN 8.21 2969012 17051107500 K20FTIALN 8.24 2966584 1705119800 K20FTIALN 8.22 2966586 X0MT1050835 TM6030 8.72 296854 17050310200 K20FTIALN 8.22 2969023 17051107500 K20FTIALN 8.24 2966588 1705119800 K20FTIALN 8.25 296809 X0MT1650835 TM6030 8.72 296854 17050310200 K20FTIALN 8.22 2969024 170510700 K20FTIALN 8.24 2966586 1705119800 K20FTIALN 8.27 2968376 17050211400 K20FTIALN 8.20 296854 17050310320 K20FTIALN 8.22 2969024 17051108000 K20FTIALN 8.24 2966589 17051206400 K20FTIALN 8.27 2968376 17050211600 K20FTIALN 8.20 296854 17050310000 K20FTIALN 8.22 2969024 17051108000 K20FTIALN 8.24 2966591 17051206500 K20FTIALN 8.27 2968376 17050211600 K20FTIALN 8.20 296854 1705031000 K20FTIALN 8.22 2969029 17051108000 K20FTIALN 8.24 2966591 17051206500 K20FTIALN 8.27 2968376 17050211600 K20FTIALN 8.20 296854 17050311000 K20FTIALN 8.22 2969029 17051108000 K20FTIALN 8.24 2966591 17051206500 K20FTIALN 8.27 2968376 17050211600 K20FTIALN 8.20 296854 17050311000 K20FTIALN 8.22 2969032 17051108000 K20FTIALN 8.24 2966591 17051207600 K20FTIALN 8.27 2968376 17050211600 K20FTIALN 8.20 296855 17050312000 K20FTIALN 8.22 2969033 17051108000 K20FTIALN 8.24 2966599 17051207600 K20FTIALN 8.27 2968376 17050212000 K20FTIALN 8.20 296855 17050312000 K20FTIALN				1			1					
2966579 17051119000 K20FTIALN 825 2966804 XOMT12130834 TN6030 872 2968538 17050309800 K20FTIALN 821 2969018 17051107400 K20FTIALN 824 2966805 XOMT1230838 TN6030 872 2968539 17050309920 K20FTIALN 821 2969018 17051107400 K20FTIALN 824 2966583 17051107500 K20FTIALN 827 2966806 XOMT1230838 TN6030 872 2968540 17050310900 K20FTIALN 821 2969021 17051107400 K20FTIALN 824 2966583 17051119500 K20FTIALN 827 2966808 XOMT16050834 TN6030 872 2968541 17050310200 K20FTIALN 822 2969022 17051107700 K20FTIALN 824 2966585 17051119800 K20FTIALN 825 2966809 XOMT16050836 TN6030 872 2968543 17050310500 K20FTIALN 822 2969024 17051107900 K20FTIALN 824 2966585 17051120000 K20FTIALN 825 2968374 17050211400 K20FTIALN 820 2968544 17050310500 K20FTIALN 822 2969024 17051100000 K20FTIALN 824 2966587 17051120000 K20FTIALN 825 2968376 17050211500 K20FTIALN 820 2968546 17050310500 K20FTIALN 822 2969027 17051108100 K20FTIALN 824 2966599 17051206500 K20FTIALN 827 2968376 17050211600 K20FTIALN 820 2968546 17050310500 K20FTIALN 822 2969027 17051108100 K20FTIALN 824 2966591 17051206500 K20FTIALN 827 2968376 17050211600 K20FTIALN 820 2968540 17050311500 K20FTIALN 824 2966591 17051206500 K20FTIALN 827 2968376 17050211600 K20FTIALN 820 2968540 17050311500 K20FTIALN 824 2966591 17051206500 K20FTIALN 827 2968378 17050211600 K20FTIALN 820 2968540 17050311500 K20FTIALN 827 2968376 17050211600 K20FTIALN 820 2968550 170503120000 K20FTIALN 822 2969032 17051108500 K20FTIALN 824 2966597 17051207000 K20FTIALN 827 2968393 17050212500 K20FTIALN 820 2968550 170503120000 K20FTIALN 822 2969033 17051108500 K20FTIALN 824 2966597 17051207000 K20FTIALN 827 2968393 17050212500 K20FTIALN 820 2968550 170503120000 K20FTIALN 822 2969033 17051108000 K20FTIALN 824 2966601 17051												
2966580 17051206000 K20FTIALN				1			1					
2966582 17051206100 K20FTIALN. B27				1								
296658417051206200 K20FTIALN				1			1					
2966585 .17051119800 K20FTIALN B25	2966583	17051119500 K20FTIALN	B25	2966807	X0MT16050834 TN6030	B72	2968541 .	17050310200 K20FTIALN	B21	2969022	17051107700 K20FTIALN	B24
2966586 1.7051206300 K20FTIALN				1			2968542 .	17050310320 K20FTIALN	B22			
2966587 17051120000 K20FTIALN B25 2968375 1.7050211500 K20FTIALN B20 2968545 1.7050310800 K20FTIALN B22 2969029 1.7051108100 K20FTIALN B24 2966589 1.7051206400 K20FTIALN B27 2968376 1.7050211700 K20FTIALN B20 2968546 1.7050311000 K20FTIALN B22 2969029 1.7051108300 K20FTIALN B24 2966590 1.7051206500 K20FTIALN B27 2968377 1.7050211700 K20FTIALN B20 2968541 1.7050311500 K20FTIALN B22 2969031 1.7051108400 K20FTIALN B24 2966591 1.7051206700 K20FTIALN B27 2968378 1.7050211900 K20FTIALN B20 2968548 1.7050311800 K20FTIALN B22 2969032 1.7051108500 K20FTIALN B22 2966592 1.7051206700 K20FTIALN B27 2968379 1.7050211900 K20FTIALN B20 2968549 1.7050311800 K20FTIALN B22 2969033 1.7051108500 K20FTIALN B24 2966594 1.7051206800 K20FTIALN B27 2968381 1.7050212000 K20FTIALN B20 2968550 1.7050312000 K20FTIALN B22 2969034 1.7051108600 K20FTIALN B24 2966597 1.7051207000 K20FTIALN B27 2968381 1.7050212500 K20FTIALN B20 2968550 1.7050312000 K20FTIALN B22 2969034 1.7051108800 K20FTIALN B24 2966599 1.7051207100 K20FTIALN B27 2968395 1.7050212800 K20FTIALN B20 2968551 1.7050312300 K20FTIALN B22 2969035 1.7051108800 K20FTIALN B24 2966599 1.7051207200 K20FTIALN B27 2968396 1.7050212800 K20FTIALN B20 2968552 1.7050312500 K20FTIALN B22 2969037 1.7051108800 K20FTIALN B24 2966600 1.7051207300 K20FTIALN B27 2968396 1.7050213000 K20FTIALN B20 2968553 1.705031200 K20FTIALN B22 2969038 1.7051109000 K20FTIALN B24 2966601 1.7051207300 K20FTIALN B27 2968399 1.7050213800 K20FTIALN B20 2968556 1.7050313800 K20FTIALN B22 2969048 1.7051109000 K20FTIALN B24 2966602 1.7051207500 K20FTIALN B27 2968401 1.7050214500 K20FTIALN B20 2968556 1.7050313800 K20FTIALN B22 2969041 1.7051109300 K20FTIALN B24 2966604 1.7051207500 K20FTIALN B27 2968401 1.7050214500 K20FTIALN B20 2968556 1.7050313800 K20FTIALN B22 2969041 1.7051109400 K20FTIALN B24 2966606 1.7051207500 K20FTIALN B27 2968401 1.7050214500 K20FTIALN B20 2968556 1.7050313800 K20FTIALN B22 2969041 1.7051109400 K20FTIALN B24 2966606 1.7051207900 K20FTIALN B27 2968405 1.7050214500 K20FTIALN B20 2968556 1.70503134				1			1					
2966589 17051206400 K20FTIALN B27 2968376 17050211600 K20FTIALN B20 2968546 17050311000 K20FTIALN B22 296903 17051108300 K20FTIALN B24 2966590 17051206500 K20FTIALN B27 2968378 17050211700 K20FTIALN B20 2968548 17050311800 K20FTIALN B22 296903 17051108400 K20FTIALN B24 2966592 17051206600 K20FTIALN B27 2968379 17050211900 K20FTIALN B20 2968548 17050311800 K20FTIALN B22 296903 17051108500 K20FTIALN B24 2966594 17051206800 K20FTIALN B27 2968381 17050212000 K20FTIALN B20 2968549 17050311900 K20FTIALN B22 296903 17051108600 K20FTIALN B24 2966596 17051206800 K20FTIALN B27 2968393 17050212500 K20FTIALN B20 2968550 17050312900 K20FTIALN B22 296903 17051108800 K20FTIALN B24 2966599 17051207100 K20FTIALN B27 2968395 17050212800 K20FTIALN B20 2968551 17050312300 K20FTIALN B22 2969035 17051108800 K20FTIALN B24 2966599 17051207100 K20FTIALN B27 2968396 17050212800 K20FTIALN B20 2968552 17050312500 K20FTIALN B22 2969035 17051108800 K20FTIALN B24 2966600 17051207300 K20FTIALN B27 2968396 17050212800 K20FTIALN B20 2968553 17050312500 K20FTIALN B22 2969036 17051108900 K20FTIALN B24 2966600 17051207300 K20FTIALN B27 2968398 17050213800 K20FTIALN B20 2968555 17050312800 K20FTIALN B22 2969038 17051109000 K20FTIALN B24 2966602 17051207300 K20FTIALN B27 2968398 17050213800 K20FTIALN B20 2968555 17050312800 K20FTIALN B22 2969038 17051109000 K20FTIALN B24 2966602 17051207400 K20FTIALN B27 2968398 17050213800 K20FTIALN B20 2968555 17050313800 K20FTIALN B22 2969040 17051109200 K20FTIALN B24 2966602 17051207500 K20FTIALN B27 2968402 17050214500 K20FTIALN B20 2968555 17050313800 K20FTIALN B22 2969040 17051109400 K20FTIALN B24 2966603 17051207600 K20FTIALN B27 2968402 17050214500 K20FTIALN B20 2968555 17050313800 K20FTIALN B22 2969040 17051109400 K20FTIALN B24 2966603 17051207600 K20FTIALN B27 2968402 17050214500 K20FTIALN B20 2968555 17050313800 K20FTIALN B22 2969040 17051109400 K20FTIALN B24 2966603 17051207600 K20FTIALN B27 2968402 17050214500 K20FTIALN B20 2968555 17050313800 K20FTIALN B22 2969040 17051109400 K20FTIALN B24 2966603 170												
296659017051206500 K20FTIALN B27 296837717050211700 K20FTIALN B20 296854717050311500 K20FTIALN B22 296903117051108400 K20FTIALN B24 296659217051206600 K20FTIALN B27 296837917050211900 K20FTIALN B20 29685481705031190 K20FTIALN B22 296903217051108500 K20FTIALN B24 296659417051206800 K20FTIALN B27 296838117050212000 K20FTIALN B20 296855017050312000 K20FTIALN B22 296903317051108600 K20FTIALN B24 296659417051207000 K20FTIALN B27 296838117050212000 K20FTIALN B20 296855017050312000 K20FTIALN B22 296903417051108700 K20FTIALN B24 296659717051207000 K20FTIALN B27 296839517050212800 K20FTIALN B20 296855117050312300 K20FTIALN B22 296903517051108800 K20FTIALN B24 296659917051207100 K20FTIALN B27 296839617050212800 K20FTIALN B20 296855217050312500 K20FTIALN B22 296903617051108900 K20FTIALN B24 296660017051207300 K20FTIALN B27 296839617050212800 K20FTIALN B20 296855317050312500 K20FTIALN B22 296903617051108900 K20FTIALN B24 296660117051207300 K20FTIALN B27 296839617050213800 K20FTIALN B20 296855317050312500 K20FTIALN B22 296903617051108900 K20FTIALN B24 296660117051207300 K20FTIALN B27 296839617050213800 K20FTIALN B20 296855417050313200 K20FTIALN B22 296903617051109900 K20FTIALN B24 296660217051207400 K20FTIALN B27 296839817050213800 K20FTIALN B20 296855517050313800 K20FTIALN B22 296903817051109900 K20FTIALN B24 296660217051207500 K20FTIALN B27 296839817050213800 K20FTIALN B20 296855517050313800 K20FTIALN B22 296904017051109900 K20FTIALN B24 296660617051207500 K20FTIALN B27 296840117050214800 K20FTIALN B20 29685517050313800 K20FTIALN B22 296904117051109900 K20FTIALN B24 296660617051207500 K20FTIALN B27 296840117050214800 K20FTIALN B20 29685517050313800 K20FTIALN B22 296904217051109900 K20FTIALN B24 296660617051207900 K20FTIALN B27 296840317050215800 K20FTIALN B20 29685517050314500 K20FTIALN B22 29690451705				1			1					
2966591 17051206000 K20FTIALN B27 2968378 17050211800 K20FTIALN B20 2968548 17050311800 K20FTIALN B22 2969032 17051108500 K20FTIALN B24 2966592 17051206700 K20FTIALN B27 2968379 17050211900 K20FTIALN B20 2968549 17050311910 K20FTIALN B22 2969033 17051108500 K20FTIALN B24 2966594 17051207000 K20FTIALN B27 2968381 17050212000 K20FTIALN B20 2968550 17050312000 K20FTIALN B22 2969034 17051108700 K20FTIALN B24 2966597 17051207000 K20FTIALN B27 2968393 17050212500 K20FTIALN B20 2968551 17050312000 K20FTIALN B22 2969035 17051108800 K20FTIALN B24 2966599 17051207200 K20FTIALN B27 2968396 17050212800 K20FTIALN B20 2968552 17050312500 K20FTIALN B22 2969036 17051108900 K20FTIALN B24 2966600 17051207300 K20FTIALN B27 2968397 17050213800 K20FTIALN B20 2968553 17050312700 K20FTIALN B22 2969037 17051109000 K20FTIALN B24 2966601 17051207300 K20FTIALN B27 2968398 17050213800 K20FTIALN B20 2968554 17050312700 K20FTIALN B22 2969037 17051109000 K20FTIALN B24 2966602 17051207300 K20FTIALN B27 2968399 17050213800 K20FTIALN B20 2968555 17050312800 K20FTIALN B22 2969038 17051109100 K20FTIALN B24 2966602 17051207400 K20FTIALN B27 2968399 17050213800 K20FTIALN B20 2968555 17050313800 K20FTIALN B22 2969040 17051109200 K20FTIALN B24 2966604 17051207500 K20FTIALN B27 2968401 17050213800 K20FTIALN B20 2968556 17050313800 K20FTIALN B22 2969040 17051109200 K20FTIALN B24 2966606 17051207700 K20FTIALN B27 2968401 17050214500 K20FTIALN B20 2968556 17050313800 K20FTIALN B22 2969042 17051109400 K20FTIALN B24 2966606 17051207700 K20FTIALN B27 2968403 17050214500 K20FTIALN B20 2968559 17050314200 K20FTIALN B22 2969045 17051109400 K20FTIALN B24 2966608 17051207900 K20FTIALN B27 2968404 17050215500 K20FTIALN B20 2968559 17050314500 K20FTIALN B22 2969046 17051109700 K20FTIALN B24 2966608 17051207900 K20FTIALN B27 2968404 17050215500 K20FTIALN B20 2968559 17050314500 K20FTIALN B22 2969046 17051109700 K20FTIALN B24 2966608 17051207900 K20FTIALN B27 2968404 17050215500 K20FTIALN B20 2968559 17050314500 K20FTIALN B22 2969046 17051109700 K20FTIALN B24 296660				1			1					
2966592 17051206700 K20FTIALN B27 2968381 17050211900 K20FTIALN B20 296854 1705031300 K20FTIALN B22 2969033 17051108600 K20FTIALN B24 296656 17051207000 K20FTIALN B27 2968393 17050212800 K20FTIALN B20 296855 17050312000 K20FTIALN B21 2966599 17051207200 K20FTIALN B27 2968396 17050212800 K20FTIALN B20 296855 17050312500 K20FTIALN B21 2966600 17051207300 K20FTIALN B27 2968397 17050213000 K20FTIALN B20 296855 17050312500 K20FTIALN B21 2966601 17051207300 K20FTIALN B27 2968398 17050213800 K20FTIALN B20 296855 17050312700 K20FTIALN B21 2966601 17051207300 K20FTIALN B27 2968398 17050213800 K20FTIALN B20 296855 17050312700 K20FTIALN B21 2968399 17050213800 K20FTIALN B20 296855 17050312700 K20FTIALN B21 296804 17050213800 K20FTIALN B21 2968604 17051207300 K20FTIALN B27 2968399 17050213800 K20FTIALN B20 296855 1705031300 K20FTIALN B21 2966604 17051207300 K20FTIALN B27 2968401 17050213800 K20FTIALN B20 296855 1705031300 K20FTIALN B21 2969040 17051109200 K20FTIALN B22 2966606 17051207300 K20FTIALN B27 2968401 17050214500 K20FTIALN B20 296855 1705031300 K20FTIALN B21 2969040 17051109200 K20FTIALN B22 2966606 17051207300 K20FTIALN B27 2968401 17050214500 K20FTIALN B20 296855 17050313300 K20FTIALN B21 2969040 17051109300 K20FTIALN B22 2968606 17051207700 K20FTIALN B27 2968401 17050214500 K20FTIALN B20 296855 17050313300 K20FTIALN B22 2969041 17051109300 K20FTIALN B24 2966606 17051207700 K20FTIALN B27 2968401 17050214500 K20FTIALN B20 296855 17050313800 K20FTIALN B22 2969043 17051109400 K20FTIALN B24 2966606 17051207900 K20FTIALN B27 2968403 17050214500 K20FTIALN B20 296855 17050314290 K20FTIALN B22 2969045 17051109400 K20FTIALN B24 2966608 17051207900 K20FTIALN B27 2968404 17050215500 K20FTIALN B20 296855 17050314500 K20FTIALN B22 2969045 17051109400 K20FTIALN B24 2966608 17051207900 K20FTIALN B27 2968405 17050215500 K20FTIALN B20 296855 17050314500 K20FTIALN B22 2969045 17051109900 K20FTIALN B24 2966608 17051207900 K20FTIALN B27 2968405 17050215500 K20FTIALN B20 296856 17050314500 K20FTIALN B22 2969048 17051109900 K20FTIALN				1			1					
296659617051207000 K20FTIALN. B27 296839317050212500 K20FTIALN. B20 296855117050312300 K20FTIALN. B22 296903517051108800 K20FTIALN. B24 296659717051207200 K20FTIALN. B27 296839517050212800 K20FTIALN. B20 296855217050312500 K20FTIALN. B22 296903617051108900 K20FTIALN. B24 296660017051207300 K20FTIALN. B27 296839717050213000 K20FTIALN. B20 296855317050312700 K20FTIALN. B22 296903717051109000 K20FTIALN. B24 296660117051207300 K20FTIALN. B27 296839817050213500 K20FTIALN. B20 296855417050312800 K20FTIALN. B22 296903817051109100 K20FTIALN. B24 296660217051207400 K20FTIALN. B27 296839817050213800 K20FTIALN. B20 296855517050313000 K20FTIALN. B22 296904017051109200 K20FTIALN. B24 296660417051207500 K20FTIALN. B27 296840117050214500 K20FTIALN. B20 296855617050313000 K20FTIALN. B22 296904117051109300 K20FTIALN. B24 296660617051207500 K20FTIALN. B27 296840117050214500 K20FTIALN. B20 296855817050313500 K20FTIALN. B22 296904217051109400 K20FTIALN. B24 2966606170512077500 K20FTIALN. B27 296840317050214500 K20FTIALN. B20 296855917050313500 K20FTIALN. B22 296904317051109400 K20FTIALN. B24 296660617051207500 K20FTIALN. B27 296840317050215500 K20FTIALN. B20 296855917050314290 K20FTIALN. B22 296904517051109500 K20FTIALN. B24 296660717051207900 K20FTIALN. B27 296840417050215500 K20FTIALN. B20 296855917050314500 K20FTIALN. B22 296904617051109700 K20FTIALN. B24 296660817051207900 K20FTIALN. B27 296840517050215500 K20FTIALN. B20 29685617050314500 K20FTIALN. B22 296904817051109700 K20FTIALN. B24 296660817051207900 K20FTIALN. B27 296840517050215800 K20FTIALN. B20 29685617050314500 K20FTIALN. B22 296904817051109700 K20FTIALN. B24 296660817051207900 K20FTIALN. B27 296840517050215800 K20FTIALN. B20 29685617050314500 K20FTIALN. B22 296904817051109700 K20FTIALN. B24 296660817051207900 K20FTIALN. B22 296840517050314500 K20FTIALN.				1			1					
296659717051207100 K20FTIALN. B27 296839517050212800 K20FTIALN. B20 296855217050312500 K20FTIALN. B22 296903617051108900 K20FTIALN. B24 296660017051207300 K20FTIALN. B27 296839717050213500 K20FTIALN. B20 296855317050312700 K20FTIALN. B22 296903717051109000 K20FTIALN. B24 296660117051207300 K20FTIALN. B27 296839817050213500 K20FTIALN. B20 296855417050312800 K20FTIALN. B22 296903817051109100 K20FTIALN. B24 296660217051207300 K20FTIALN. B27 296839917050213800 K20FTIALN. B20 296855517050313000 K20FTIALN. B22 296904017051109200 K20FTIALN. B24 296660417051207500 K20FTIALN. B27 296840117050214500 K20FTIALN. B20 296855617050313500 K20FTIALN. B22 296904117051109300 K20FTIALN. B24 296660517051207500 K20FTIALN. B27 296840117050214500 K20FTIALN. B20 296855817050313500 K20FTIALN. B22 296904217051109400 K20FTIALN. B24 2966605170512077600 K20FTIALN. B27 296840217050214800 K20FTIALN. B20 296855817050313500 K20FTIALN. B22 296904217051109400 K20FTIALN. B24 296660717051207800 K20FTIALN. B27 296840317050215500 K20FTIALN. B20 296855917050314500 K20FTIALN. B22 296904517051109400 K20FTIALN. B24 296660817051207900 K20FTIALN. B27 296840417050215500 K20FTIALN. B20 296856017050314500 K20FTIALN. B22 296904617051109700 K20FTIALN. B24 296660817051207900 K20FTIALN. B27 296840417050215500 K20FTIALN. B20 296856017050314500 K20FTIALN. B22 296904817051109700 K20FTIALN. B24 296660817051207900 K20FTIALN. B27 296840517050215500 K20FTIALN. B20 296856117050314500 K20FTIALN. B22 296904817051109900 K20FTIALN. B24 296660817051207900 K20FTIALN. B27 296840517050215500 K20FTIALN. B20 296856117050314500 K20FTIALN. B22 296904817051109900 K20FTIALN. B24 296660817051207900 K20FTIALN. B27 296840517050215500 K20FTIALN. B20 296856117050314500 K20FTIALN. B22 296904817051109900 K20FTIALN. B24 296660817051207900 K20FTIALN. B27 296840517050215500 K20FTIAL	2966594	17051206800 K20FTIALN	B27	2968381	17050212000 K20FTIALN	B20	2968550 .	17050312000 K20FTIALN	B22	2969034	17051108700 K20FTIALN	B24
2966599 17051207200 K20FTIALN B27 2968396 17050213000 K20FTIALN B20 2968553 17050313700 K20FTIALN B22 2969037 17051109000 K20FTIALN B24 2966600 17051207300 K20FTIALN B27 2968397 17050213500 K20FTIALN B20 2968554 17050313800 K20FTIALN B22 2969038 17051109100 K20FTIALN B24 2966602 17051207400 K20FTIALN B27 2968398 17050213800 K20FTIALN B20 2968555 17050313800 K20FTIALN B22 2969040 17051109200 K20FTIALN B24 2966604 17051207500 K20FTIALN B27 2968401 17050214500 K20FTIALN B20 2968556 17050313500 K20FTIALN B22 2969041 17051109300 K20FTIALN B24 2966605 17051207500 K20FTIALN B27 2968401 17050214500 K20FTIALN B20 2968556 17050313500 K20FTIALN B21 2969042 17051109400 K20FTIALN B24 2966605 17051207500 K20FTIALN B27 2968402 17050214800 K20FTIALN B20 2968558 17050313600 K20FTIALN B22 2969042 17051109400 K20FTIALN B24 2966606 17051207700 K20FTIALN B27 2968403 17050215800 K20FTIALN B20 2968559 17050314500 K20FTIALN B22 2969043 17051109500 K20FTIALN B24 2966607 17051207900 K20FTIALN B27 2968404 17050215500 K20FTIALN B20 2968559 17050314500 K20FTIALN B22 2969046 17051109700 K20FTIALN B24 2966608 17051207900 K20FTIALN B27 2968404 17050215500 K20FTIALN B20 296856 17050314500 K20FTIALN B22 2969048 17051109700 K20FTIALN B24 2966608 17051207900 K20FTIALN B27 2968405 17050215800 K20FTIALN B20 2968561 17050314500 K20FTIALN B22 2969048 17051109700 K20FTIALN B24 2966608 17051207900 K20FTIALN B27 2968405 17050215800 K20FTIALN B20 2968561 17050314500 K20FTIALN B22 2969048 17051109700 K20FTIALN B24 2966608 17051207900 K20FTIALN B27 2968405 17050215800 K20FTIALN B20 2968561 17050314500 K20FTIALN B22 2969048 17051109900 K20FTIALN B24 2966608 17051207900 K20FTIALN B27 2968405 17050215800 K20FTIALN B20 2968561 17050314500 K20FTIALN B22 2969048 17051109900 K20FTIALN B24 2966608 17051207900 K20FTIALN B21 2966608 17050215800 K20FTIALN B22 2968561 17050314500 K20FTIALN B22 2969048 17051109900 K20FTIALN B24 2966608 17050215800 K20FTIALN B20 2968561 17050314500 K20FTIALN B22 2969048 17051109900 K20FTIALN B24 2966608 17050215800 K20FTIALN B22 2968561	2966596	17051207000 K20FTIALN	B27	2968393	17050212500 K20FTIALN	B20	2968551 .	17050312300 K20FTIALN	B22	2969035	17051108800 K20FTIALN	B24
296660017051207300 K20FTIALN B27 296839717050213500 K20FTIALN B20 296855417050312800 K20FTIALN B22 296903817051109100 K20FTIALN B24 296660117051207400 K20FTIALN B27 296839817050213800 K20FTIALN B20 296855517050313000 K20FTIALN B22 296904017051109200 K20FTIALN B24 296660217051207500 K20FTIALN B27 296840117050214500 K20FTIALN B20 296855617050313500 K20FTIALN B22 296904117051109300 K20FTIALN B24 296660517051207600 K20FTIALN B27 296840117050214500 K20FTIALN B20 296855617050313800 K20FTIALN B22 296904217051109300 K20FTIALN B24 296660617051207700 K20FTIALN B27 296840217050214800 K20FTIALN B20 296855817050314000 K20FTIALN B22 296904317051109500 K20FTIALN B24 296660617051207800 K20FTIALN B27 296840317050215000 K20FTIALN B20 296855917050314290 K20FTIALN B22 296904517051109500 K20FTIALN B24 296660717051207900 K20FTIALN B27 296840417050215500 K20FTIALN B20 29685617050314500 K20FTIALN B22 296904617051109700 K20FTIALN B24 296660817051207900 K20FTIALN B27 296840517050215800 K20FTIALN B20 29685617050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817051207900 K20FTIALN B27 296840517050215800 K20FTIALN B20 29685617050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817051207900 K20FTIALN B27 296840517050215800 K20FTIALN B20 29685617050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817051207900 K20FTIALN B27 296840517050215800 K20FTIALN B20 29685617050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817051207900 K20FTIALN B27 296840517050215800 K20FTIALN B20 29685617050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817050215800 K20FTIALN B20 29685617050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817050215800 K20FTIALN B20 29685617050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817050215800 K20FTIALN B20 296856170503148				1			1					
296660117051207400 K20FTIALN B27 296839817050213800 K20FTIALN B20 296855517050313000 K20FTIALN B22 296904017051109200 K20FTIALN B24 296660217051207500 K20FTIALN B27 296839917050214000 K20FTIALN B20 296855617050313500 K20FTIALN B22 296904117051109300 K20FTIALN B24 296660417051207600 K20FTIALN B27 296840117050214500 K20FTIALN B20 296855617050313800 K20FTIALN B22 296904217051109300 K20FTIALN B24 296660517051207700 K20FTIALN B27 296840217050214800 K20FTIALN B20 296855817050314000 K20FTIALN B22 296904317051109500 K20FTIALN B24 296660617051207800 K20FTIALN B27 296840317050215000 K20FTIALN B20 296855917050314290 K20FTIALN B22 296904517051109500 K20FTIALN B24 296660717051207900 K20FTIALN B27 296840417050215500 K20FTIALN B20 296856017050314500 K20FTIALN B22 296904617051109700 K20FTIALN B24 296660817051207900 K20FTIALN B27 296840517050215800 K20FTIALN B20 296856117050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817051207940 K20FTIALN B27 296840517050215800 K20FTIALN B20 296856117050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817051207940 K20FTIALN B27 296840517050215800 K20FTIALN B20 296856117050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817051207940 K20FTIALN B27 296840517050215800 K20FTIALN B20 296856117050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817051207940 K20FTIALN B27 296840517050215800 K20FTIALN B20 296856117050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817051207940 K20FTIALN B27 296840517050215800 K20FTIALN B20 296856117050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817050314800 K20FTIALN B20 296856117050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817050314800 K20FTIALN B20 296856117050314800 K20FTIALN B22 296904817051109900 K20FTIALN B24 296660817050314800 K20FTIALN B22 2969048				1			1					
2966602 17051207500 K20FTIALN B27 2968399 17050214000 K20FTIALN B20 2968556 17050313500 K20FTIALN B22 2969041 17051109300 K20FTIALN B24 2966604 17051207600 K20FTIALN B27 2968401 17050214500 K20FTIALN B20 2968555 17050313800 K20FTIALN B22 2969042 17051109400 K20FTIALN B24 2966605 17051207700 K20FTIALN B27 2968402 17050214800 K20FTIALN B20 2968558 17050314000 K20FTIALN B22 2969043 17051109500 K20FTIALN B24 2966606 17051207800 K20FTIALN B27 2968403 17050215000 K20FTIALN B20 2968559 17050314290 K20FTIALN B22 2969045 17051109600 K20FTIALN B24 2966607 17051207900 K20FTIALN B27 2968404 17050215500 K20FTIALN B20 296856 17050314500 K20FTIALN B22 2969046 17051109700 K20FTIALN B24 2966608 17051207900 K20FTIALN B27 2968405 17050215800 K20FTIALN B20 296856 17050314500 K20FTIALN B22				1			1					
296660417051207600 K20FTIALN				1			1					
2966605 17051207700 K20FTIALN B27 2968402 17050214800 K20FTIALN B20 2968558 17050314000 K20FTIALN B22 2969043 17051109500 K20FTIALN B24 2966606 17051207800 K20FTIALN B27 2968403 17050215000 K20FTIALN B20 2968559 17050314290 K20FTIALN B22 2969045 17051109600 K20FTIALN B24 2966607 17051207900 K20FTIALN B27 2968404 17050215800 K20FTIALN B20 2968560 17050314500 K20FTIALN B22 2969046 17051109700 K20FTIALN B24 2966608 17051207900 K20FTIALN B27 2968560 17050314500 K20FTIALN B22 2969046 17051109700 K20FTIALN B24 2966608 17051207940 K20FTIALN B27 2968405 17050215800 K20FTIALN B20 2968561 17050314800 K20FTIALN B22 2969048 17051109700 K20FTIALN B24				1			1					
2966666 17051207800 K20FTIALN 827 2968403 17050215000 K20FTIALN 820 2968559 17050314290 K20FTIALN 822 2969045 17051109600 K20FTIALN 824 2966607 17051207900 K20FTIALN 827 2968404 17050215500 K20FTIALN 820 2968560 17050314500 K20FTIALN 822 2969046 17051109700 K20FTIALN 824 2966608 17051207940 K20FTIALN 827 2968405 17050215800 K20FTIALN 820 2968561 17050314800 K20FTIALN 822 2969048 17051109900 K20FTIALN 824				1			1					
2966607 17051207900 K20FTIALN				1								
				1			1					
296660917051208000 K20FTIALNB27 296840717050216000 K20FTIALNB20 296856217050315000 K20FTIALNB22 296905017051110000 K20FTIALNB24				1			1					
	2966609	17051208000 K20FTIALN	B27	1 2968407	17050216000 K20FTIALN	B20	1 2968562 .	17050315000 K20FTIALN	B22	2969050	17051110000 K20FTIALN	B24

WWW.WIDIA.COM F7

WWW.WIDIA.COM

Номер заказа	Номер по каталогу	Стр.	Номер заказа	Номер по каталогу Стр.	Номер заказа	Номер по каталогу	Стр.	Номер заказа	Номер по каталогу	Стр.
	•									
	17051110100 K20FTIALN. 17051110200 K20FTIALN.			M270TF10R03 TN2510A172		12396451000			BDMT11T316ERML TN6430	
	17051110200 K20FTIALN. 17051110320 K20FTIALN.			SDMT1204PDRMH TN6510A103	1	12396451600 12396455800			BDMT11T320ERML TN6405 BDMT11T320ERML TN6430	
	17051110320 K20FTIALN.		1	SDMT1204PDRML TN6510A77	1	12396456000			BDMT11T320ERML TN6405	
	17051110500 K20FTIALN.			SDMT1204PDRML TN6510A103		12396456200			BDMT11T331ERML TN6430	
	17051110600 K20FTIALN.			SDMT1204PDRML TN6525A77		12396456600			BDMT170404ERMS TN6425	
2969058	17051110700 K20FTIALN.	B24	3378675 .	SDMT1204PDRML TN6525A103	3577835 .	12396456800	A62	3577947	BDMT170404ERMS TN6430	A71
2969060	17051110800 K20FTIALN.	B25	3378676.	SDMT1506PDRMH TN6540	3577836 .	12396457000	A62	3577948	BDMT170404ERML TN6405	A71
	17051110900 K20FTIALN.			SDMT1506PDRML TN6540A81		12396457400			BDMT170404ERML TN6430	
	17051111000 K20FTIALN.			12146111000A25, A30		12396457600			BDMT170408ERMS TN6425	
	170511111110 K20FTIALN.			12146111100A25, A30		12396457800			BDMT170408ERMS TN6430	
	17051111200 K20FTIALN.			12146034500A16-18, A24-25, A30		12396458200			BDMT170408ERML TN6405 BDMT170408ERML TN6430	
	17051111300 K20FTIALN. 17051111400 K20FTIALN.		1	12146101000A18, A25, A3012146101800A18, A25, A30		1239645860012396458800			BDMT170412ERML TN6430	
	17051111400 K20FTIALN.			12146107000A25, A30		12396459000			BDMT170412ERML TN6430	
	17051111600 K20FTIALN.			M270TF10R05 TN2525A172		12396461600			BDMT170416ERML TN6405	
	17051111700 K20FTIALN.			M270TF12R03 TN2525A172		12396461800			BDMT170416ERML TN6430	
2969071	17051111800 K20FTIALN.	B25	3384426 .	M270TF12R05 TN2525A172	3577854 .	12396462000	A63	3577958	BDMT170420ERML TN6405	A71
	17051111900 K20FTIALN.		3384427 .	M270TF12R1 TN2525A172	3577855 .	12396462200	A63		BDMT170420ERML TN6430	
	SEKN1504AFN1 TN6540			M270TF16R03 TN2525A172	1	12396462400			BDMT170431ERML TN6405	
	SDMT1204PDRML TN6540.			M270TF16R05 TN2525A172		12396462600			BDMT170431ERML TN6430	
	SDMT1204PDRML TN6540			M270TF16R1 TN2525A172		12396462800			BDMT070302ERML TN6430	
	M1200D063Z07HN09 M1200D080Z09HN09			M270TF16R2 TN2525A172M270TF20R03 TN2525	1	1239646300012396463200			BDMT070302ERML TN6425 BDMT070302ERML TN6405	
	M1200D080Z07HN09			M270TF20R05 TN2525A172		12396463400			BDMT070302ERMS TN6430	
	HNGJ535ANENLD TN7535			M270TF20R1 TN2525A172		12396463600			BDMT070302ERMS TN6425	
	HNGJ535ANENLD TN6540 .		1	M270TF20R2 TN2525A172		12396463800			BDMT070302ERMS TN6405	
	HNGJ535ANSNGD TN6540			12146101900A25		12396464000			BDMT070304ERMS TN6430	
3065464	SEKN1203AFN1 TN6540	A217	3397551.	12146109400A18, A25, A30	3577865 .	12396464200	A63	3577969	BDMT070304ERMS TN6425	A60
3066118	M1200D160Z12HN09	A25	3523083 .	RDMW1605MOTX TN6540A197	3577866 .	12396464400	A63	3577970	BDMT070304ERMS TN6405	A60
	M1200D160Z16HN09			XNGJ535ANSNGD3W TN6525		12396464600			BDMT070304ERML TN6430	
	XNGJ535ANSNGD3W TN65		1	XNGJ535ANSNGD3W TN6520		12396464800			BDMT070304ERML TN6425	
	M1200D080Z06HN09			12147629800B96		12396465000			BDMT070304ERML TN6405	
	M1200D125Z10HN09 HNGJ535ANENLD TN5515 .			HNGJ535ANSNHD TN5515		1239646520012396465400			HNGJ535ANFNLDJ THM-U MS2072CGA146, A	
	HNGJ535ANENLD TN6520 .			HNGJ535ANSNHD TN6525		12396465600			MS2072CGA146, F	
	M1200D125Z14HN09		1	HNGJ535ANSNHD TN6540A31		12396465800			HNGJ535ANSNGD TN6525	,
3093594	M1200D063Z06HN09	A25		HNGJ53511ANSNHD TN6520	3577874 .	12396466000	A63	3636595	12146121000	A68-70
3093721	HNGJ535ANSNGD TN7535 .	A31	3564084 .	HNGJ53511ANSNHD TN6525	3577875 .	12396466200	A63	3636596	12146120900	A62-64
	SDMT1204PDRML TN6520.			HNGJ53511ANSNHD TN6540A31	1	12396466400			12146120700	
	SDMT1204PDRML TN6520		1	16396451600A64		12396466600			12146120600	
	SDMT1204PDRMH TN6520 SDMT1204PDRMH TN6520			16396452200A64	1	1239646680012396470400			M1200D063Z04HN09 M1200D080Z05HN09	
	XNGJ535ANSNGD3W TN65			16396453200A64		12396471000			M1200D000Z05HN07	
	HNGJ535ANSNGD TN5515 .			16396453600A64		12396471600			M1200D125Z08HN09	
3119541.	HNGJ535ANSNGD TN6520 .	A31	3577360.	16396471600A70	3577882 .	12396475000	A68	3670841	HNPJ535ANSNHD TN5515	A31
	MS1294CG		3577361.	16396472200A70	3577883 .	12396475200	A68	3670842	HNPJ535ANSNHD TN6540	A31
3134515	MS1254CG	A152, A156	1	16396472800A70	1	12396475400			HNPJ535ANSNHD TN6520	
	SDMT1204PDRMH TN6525			16396473200A70	1	12396475600			HNPJ53511ANSNHD TN6540	
	SDMT1204PDRMH TN6525			16396473600A70	1	12396475800			HNPJ53511ANSNHD TN6520	
	M1200D040Z03B25HN09. M1200D040Z04B25HN09.			12396430400A59 12396431000A59	1	12396480000			M1200HF050Z04HN09 M1200HF063Z05HN09	
	M1200D040Z04B23HN07			12376431600A57	1	12396480400			M1200HF080Z06HN09	
	M1200D050Z05HN09			12396440600A58	1	12396480600			M1200HF100Z08HN09	
	M1200D100Z08HN09			12396440800A58	1	12396480800			M1200HF125Z09HN09	
3326330	SDMT1204PDRMH TN6540	A77	3577807 .	12396441000A58	3577892 .	12396481000	A69	3761184	HNPJ535ANSNGD TN5515	A31
	SDMT1204PDRMH TN6540		1	12396441200A58	3577893 .	12396481200	A69		HNPJ535ANSNGD TN6520	
	HNGJ535ANENLD TN6525 .			12396441400A58		12396481400			HNPJ535ANSNGD TN6540	
	RDMW0802M0T TN6540			12396441600A58	1	12396481600			HNPJ535ANSNGD TN7535	
	RDMW1003M0T TN6540			12396441800		12396481800			TDM0800UPM K20FTIALN	
	RDMW1204M0TX TN6540 M270TF10R05 TN2510			12396442000A58 12396442200A58	1	1239648200012396482200			TDM0810UPM K20FTIALN TDM0830UPM K20FTIALN	
	M270TF10R03 TN2510			12396442400A58		BDMT11T304ERMS TN6425 .			TDM08300FM K20FTIALN	
	M270TF12R05 TN2510			12376442600A58	1	BDMT11T304ERMS TN6430 .			TDM004001M K201TIALN	
	M270TF12R1 TN2510			12396442800A58	1	BDMT11T304ERML TN6405 .			TDM0860UPM K20FTIALN	
	M270TF16R03 TN2510			12396443000A58	1	BDMT11T304ERML TN6430 .			TDM0870UPM K20FTIALN	
	M270TF16R05 TN2510		3577818 .	12396443200A58		BDMT11T308ERMS TN6425.			TDM0880UPM K20FTIALN	
	M270TF16R1 TN2510			12396443400A58	1	BDMT11T308ERMS TN6430.			TDM0890UPM K20FTIALN	
	M270TF16R2 TN2510			12396443600A58	1	BDMT11T308ERML TN6405 .			TDM0900UPM K20FTIALN	
	M270TF20R03 TN2510			12396443800A58	1	BDMT11T308ERML TN6430 .			TDM0910UPM K20FTIALN	
	M270TF20R05 TN2510 M270TF20R1 TN2510			12396444000A58 12396444200A58	1	BDMT11T312ERML TN6405 . BDMT11T312ERML TN6430 .			TDM0920UPM K20FTIALN TDM0930UPM K20FTIALN	
	M2701F20R1 TN2510		1	12396450400A64	1	BDMT11T312ERML TN6430 . BDMT11T316ERML TN6405 .			TDM0930UPM K20FTIALN	
5515110				A04	. 5511170.	55 10 TOLIMIL INUTUJ .		001/07/	D	

Номер			. Номер			. Номер			Номер		
заказа	Номер по каталогу	Стр.	заказа	Номер по каталогу	Стр.	заказа	Номер по каталогу	Стр.	заказа	Номер по каталогу	Стр.
	TDM0950UPM K20FTIALN	B34	1	TDM1760UPM K20FTIALN TDM1770UPM K20FTIALN		1	TDM200R3SCF25M WG TDM200R5SCF25M WG			DV40BRFX320060M WG DV40BRFX420060M WG	
	TDM0980UPM K20FTIALN		1	TDM17700PM K20FTIALN TDM1780UPM K20FTIALN		I	TDM200K53CF25M WG TDM05625UP K20FTIALN			DV40BRFX550065M WG	
		B34	l	TDM1790UPM K20FTIALN			TDM05774UP K20FTIALN		3860701	DV50BRFX320060M WG	B103
	TDM1010UPM K20FTIALN		l	TDM1800UPM K20FTIALN		l	TDM05781UP K20FTIALN			DV50BRFX420060M WG	
	TDM1020UPM K20FTIALN TDM1030UPM K20FTIALN			TDM1810UPM K20FTIALN TDM1820UPM K20FTIALN		l	TDM05938UP K20FTIALN TDM06094UP K20FTIALN			DV50BRFX550060M WG DV50BRFX720065M WG	
	TDM1040UPM K20FTIALN		I	TDM1830UPM K20FTIALN		l	TDM06250UP K20FTIALN			CV40BRFX185236 WG	
	TDM1050UPM K20FTIALN		l	TDM1840UPM K20FTIALN		l	TDM06310UP K20FTIALN			CV40BRFX245236 WG	
	TDM1060UPM K20FTIALN TDM1070UPM K20FTIALN		I	TDM1850UPM K20FTIALN		l	TDM06330UP K20FTIALN			CV40BRFX320236 WG CV40BRFX420236 WG	
	TDM1080UPM K20FTIALN		l	TDM1860UPM K20FTIALN TDM1870UPM K20FTIALN		I	TDM06406UP K20FTIALN TDM06562UP K20FTIALN			CV40BRFX550256 WG	
	TDM1090UPM K20FTIALN		1	TDM1880UPM K20FTIALN			TDM06643UP K20FTIALN			CV50BRFX320236 WG	
	TDM1100UPM K20FTIALN		I	TDM1890UPM K20FTIALN		l	TDM06719UP K20FTIALN			CV50BRFX420236 WG	
	TDM1110UPM K20FTIALN TDM1120UPM K20FTIALN		l	TDM1900UPM K20FTIALN TDM1910UPM K20FTIALN		l	TDM06875UP K20FTIALN TDM07031UP K20FTIALN			CV50BRFX550236 WG CV50BRFX720276 WG	
	TDM1130UPM K20FTIALN		1	TDM1920UPM K20FTIALN		l	TDM07188UP K20FTIALN			SMAC200 WG	
	TDM1140UPM K20FTIALN		l	TDM1930UPM K20FTIALN		l	TDM07344UP K20FTIALN			RFX420FBHBB006022 WG	
	TDM1150UPM K20FTIALN		l	TDM1940UPM K20FTIALN		I	TDM07500UP K20FTIALN			KM40TSFBHBB006022 WG	
	TDM1160UPM K20FTIALN TDM1170UPM K20FTIALN		l	TDM1950UPM K20FTIALN TDM1960UPM K20FTIALN			TDM07570UP K20FTIALNTDM07580UP K20FTIALN			MASCFCR09CA06F WG MASCLCR09CA06F WG	
	TDM1180UPM K20FTIALN		I	TDM1970UPM K20FTIALN			TDM07590UP K20FTIALN			MASTFCR09CA11F WG	
	TDM1190UPM K20FTIALN			TDM1980UPM K20FTIALN			TDM07620UP K20FTIALN			KM32TSFBH022029 WG	
	TDM1200UPM K20FTIALN		l	TDM1990UPM K20FTIALN		I	TDM07656UP K20FTIALN			KM32TSFBH029038 WG	
	TDM1210UPM K20FTIALN TDM1220UPM K20FTIALN		l	TDM2000UPM K20FTIALN TDM2010UPM K20FTIALN			TDM07812UP K20FTIALN TDM07969UP K20FTIALN			KM32TSFBH038050 WG KM40TSFBH029038 WG	
	TDM1240UPM K20FTIALN		l	TDM2020UPM K20FTIALN			TDM08125UP K20FTIALN			KM40TSFBH038050 WG	
	TDM1250UPM K20FTIALN		l	TDM2030UPM K20FTIALN		l	BDGT11T302FRALTHR-S			KM40TSFBH050065 WG	
	TDM1260UPM K20FTIALN		l	TDM2040UPM K20FTIALN		l	BDGT11T304FRAL THR-S			KM50TSFBH050065 WG	
	TDM1280UPM K20FTIALN TDM1300UPM K20FTIALN		l	TDM2050UPM K20FTIALN TDM2060UPM K20FTIALN		l	BDGT11T308FRAL THR-S BDGT170404FRAL THR-S			KM50TSFBH065088 WG KM63TSFBH065088 WG	
	TDM1320UPM K20FTIALN		I	TDM2070UPM K20FTIALN		l	BDMT070308ERML TN6405 .			KM63TSFBH088115 WG	
	TDM1330UPM K20FTIALN		l	TDM2080UPM K20FTIALN		l	BDMT070308ERML TN6425.			RFX185FBH022029 WG	
	TDM1340UPM K20FTIALN		l	TDM2090UPM K20FTIALN		l	BDMT070308ERML TN6430.			RFX245FBH029038 WG	
	TDM1350UPM K20FTIALN TDM1360UPM K20FTIALN		I	TDM2099UPM K20FTIALN TDM080R3SCF12M WG		l	BDGT170408FRAL THR-S BDGT170420FRAL THR-S			RFX320FBH038050 WG RFX420FBH050065 WG	
	TDM1370UPM K20FTIALN		1	TDM080R5SCF12M WG		l	BDGT170431FRAL THR-S			RFX550FBH065088 WG	
	TDM1380UPM K20FTIALN		1	TDM085R3SCF12M WG		l	RFX320RFX185030M WG			RFX720FBH088115 WG	
	TDM1400UPM K20FTIALN TDM1410UPM K20FTIALN		l	TDM085R5SCF12M WG TDM090R3SCF12M WG		l	RFX320RFX245040M WG RFX420RFX185035M WG			KM32TSTCHS022030 WG KM32TSTCHS030039 WG	
	TDM1410UFM K20FTIALN	B36	1	TDM090R5SCF12M WG		l	RFX420RFX245045M WG			KM32TSTCHS039050 WG	
	TDM1430UPM K20FTIALN		l	TDM095R3SCF12M WG		I	RFX420RFX320045M WG			KM40TSTCHS030039 WG	
	TDM1440UPM K20FTIALN		l	TDM095R5SCF12M WG		l	RFX550RFX185040M WG			KM40TSTCHS039050 WG	
		B36	I	TDM100R3SCF16M WG TDM100R5SCF16M WG		l	RFX550RFX245050M WG RFX550RFX320050M WG			KM40TSTCHS050067 WG KM50TSTCHS050067 WG	
	TDM1470UPM K20FTIALN		l	TDM105R3SCF16M WG		l	RFX550RFX420055M WG			KM50TSTCHS067088 WG	
	TDM1480UPM K20FTIALN		I	TDM105R5SCF16M WG		1	RFX720RFX420060M WG			KM63TSTCHS067088 WG	
	TDM1490UPM K20FTIALN			TDM110R3SCF16M WG		l	RFX720RFX550060M WG			KM63TSTCHS088115 WG	
	TDM1500UPM K20FTIALN TDM1510UPM K20FTIALN		I	TDM110R5SCF16M WG TDM115R3SCF16M WG		I	RFX185RFX185030M WG RFX245RFX245035M WG			RFX185TCHS022030 WG RFX245TCHS030039 WG	
	TDM1520UPM K20FTIALN			TDM115R5SCF16M WG		1	RFX320RFX320050M WG			RFX320TCHS039050 WG	
	TDM1530UPM K20FTIALN			TDM120R3SCF16M WG		1	RFX420RFX420060M WG			RFX420TCHS050067 WG	
	TDM1540UPM K20FTIALN			TDM120R5SCF16M WG		1	RFX550RFX550090M WG			RFX550TCHS067088 WG	
	TDM1550UPM K20FTIALN TDM1560UPM K20FTIALN			TDM125R3SCF16M WG TDM125R5SCF16M WG		I	RFX720RFX720100M WG RFX550CS27030M WG			RFX720TCHS088115 WG RFX185LS WG	
	TDM1570UPM K20FTIALN		I	TDM130R3SCF16M WG		I	RFX720CS40035M WG			RFX245LS WG	
	TDM1580UPM K20FTIALN		I	TDM130R5SCF16M WG		I	HSK63ARFX185060M WG			RFX320LS WG	
	TDM1600UPM K20FTIALN TDM1610UPM K20FTIALN			TDM135R3SCF16M WG TDM135R5SCF16M WG		1	HSK63ARFX245060M WG HSK63ARFX320060M WG			RFX420LS WG RFX550LS WG	
	TDM1620UPM K20FTIALN		I	TDM140R3SCF16M WG		I	HSK63ARFX420070M WG			RFX720LS WG	
	TDM1630UPM K20FTIALN			TDM140R5SCF16M WG		l	HSK63ARFX550080M WG			SMAC087 WG	
	TDM1640UPM K20FTIALN			TDM145R3SCF16M WG			HSK63ARFX720095M WG			XNGJ535ANFNLDJ3W THM-U	
	TDM1650UPM K20FTIALN		I	TDM145R5SCF16M WG		I	BT40BRFX185060M WG			HNGJ535ANFNLDJ TN6501	
	TDM1660UPM K20FTIALN TDM1670UPM K20FTIALN			TDM150R3SCF20M WG TDM150R5SCF20M WG		I	BT40BRFX245060M WG BT40BRFX320060M WG			XNGJ535ANFNLDJ3W TN6501 12396452200	
	TDM1680UPM K20FTIALN		3850944 .	TDM160R3SCF20M WG	B40	I	BT40BRFX420060M WG			12396452800	
	TDM1690UPM K20FTIALN		I	TDM160R5SCF20M WG		I	BT40BRFX550065M WG			12396453200	
	TDM1700UPM K20FTIALN TDM1710UPM K20FTIALN			TDM170R3SCF20M WG TDM170R5SCF20M WG		I	BT50BRFX320060M WG BT50BRFX420060M WG			12396472200 12396472800	
	TDM1710UPM K20FTIALN		I	TDM170K5SCF20M WG TDM180R3SCF25M WG		I	BT50BRFX550065M WG			12396473200	
	TDM1730UPM K20FTIALN			TDM180R5SCF25M WG			BT50BRFX720070M WG		3881208	HSK100ARFX420080M WG	B105
	TDM1740UPM K20FTIALN		1	TDM190R3SCF25M WG		I	DV40BRFX185060M WG			HSK100ARFX550090M WG	
	TDM1750UPM K20FTIALN	83/	305U95 .	TDM190R5SCF25M WG	R4 I	ı 3ö6U69/.	DV40BRFX245060M WG	R103	3881Z1U	HSK100ARFX720105M WG	RIU5

Номер заказа	Номер по каталогу	Стр.	Номер заказа	Номер по каталогу	Стр.	Номер заказа	Номер по каталогу	Стр.	Номер заказа	Номер по каталогу	Стр.
	•										
	TCP190R2SNF25M W			TCP500R3SNF40M WG		l	KM50TSTCD160R3M W			KM50TSTCP370R3M W	
	TCP200R2SNF25M W TCP210R2SNF25M W		1	TCP510R3SNF40M WG TCP520R3SNF40M WG		l	KM50TSTCD170R3M W KM50TSTCD180R3M W			KM50TSTCP380R3M W KM50TSTCP390R3M W	
	TCP210K25NF25M W			TCP530R3SNF40M WG		l	KM50TSTCD190R3M W			KM50TSTCP400R3M W	
	TCP230R2SNF25M W			TCP540R3SNF40M WG		l	KM50TSTCD200R3M W			KM50TSTCP410R3M W	
	TCP240R2SNF25M W			TCP550R3SNF40M WG		l	KM50TSTCD210R3M W			KM50TSTCP420R3M W	
	TCP250R2SNF32M W			TCP560R3SNF40M WG			KM50TSTCD220R3M W			KM50TSTCP430R3M W	
	TCP260R2SNF32M W			TCP570R3SNF40M WG		l	KM50TSTCD230R3M W			KM50TSTCP440R3M W	
3895417 .	TCP270R2SNF32M W	B62	3895490	TCP580R3SNF40M WG	B65	3895693	KM50TSTCD240R3M W	B54	3898400	KM50TSTCP450R3M W	B68
3895418 .	TCP280R2SNF32M W	B62		TCP590R3SNF40M WG		l	KM50TSTCD250R3M W		3898401	KM63XMZTCP350R3YM W	B69
	TCP290R2SNF32M W			TCP600R3SNF40M WG		l	TCD110R2SN12M W			KM63XMZTCP360R3YM W	
	TCP300R2SNF32M W			TCP190R4SNF25M W		l	TCD115R2SN12M W			KM63XMZTCP370R3YM W	
	TCP310R2SNF32M W			TCP200R4SNF25M W			TCD120R2SN12M W			KM63XMZTCP380R3YM W	
	TCP320R2SNF32M W TCP330R2SNF32M W			TCP210R4SNF25M W		l	TCD125R2SN16M W TCD130R2SN16M W			KM63XMZTCP390R3YM W	
	TCP340R2SNF32M W			TCP220R4SNF25M W TCP230R4SNF25M W		l	TCD135R2SN16M W			KM63XMZTCP400R3YM W KM63XMZTCP410R3YM W	
	TCP350R2SNF40M W			TCP240R4SNF25M W		l	TCD140R2SNF25M W			KM63XMZTCP420R3YM W	
	TCP360R2SNF40M W			TCP250R4SNF32M W		l	TCD150R2SNF25M W			KM63XMZTCP430R3YM W	
	TCP370R2SNF40M W			TCP260R4SNF32M W			TCD160R2SNF25M W			KM63XMZTCP440R3YM W	
3895428 .	TCP380R2SNF40M W	B62	3895501	TCP270R4SNF32M W	B66	1	TCD170R2SNF25M W		3898411	KM63XMZTCP450R3YM W	B69
3895429 .	TCP390R2SNF40M W	B62	3895502	TCP280R4SNF32M W	B66	3895715	TCD175R2SNF25M W	B50	3898412	KM63XMZTCP460R3YM W	B69
3895430 .	TCP400R2SNF40M W	B62	3895513	TCP290R4SNF32M W	B66	3895716	TCD180R2SNF25M W	B50	3898413	KM63XMZTCP470R3YM W	B69
	TCP410R2SNF40M W		3895514	TCP300R4SNF32M W	B66	1	TCD190R2SNF25M W		3898414	KM63XMZTCP480R3YM W	B69
	TCP420R2SNF40M W			TCP310R4SNF32M W		l	TCD200R2SNF25M W			KM63XMZTCP490R3YM W	
	TCP430R2SNF40M W			TCP320R4SNF32M W		l	TCD210R2SNF25M W			KM63XMZTCP500R3YM W	
	TCP440R2SNF40M W			TCP330R4SNF32M W		l	TCD220R2SNF25M W			KM63TSTCP350R3M W	
	TCP450R2SNF40M W TCP460R2SNF40M W			TCP340R4SNF32M W		l	TCD230R2SNF25M W			KM63TSTCP360R3M W	
	TCP470R2SNF40M W			TCP350R4SNF40M W TCP360R4SNF40M W		1	TCD240R2SNF25M W TCD250R2SNF25M W			KM63TSTCP370R3M W KM63TSTCP380R3M W	
	TCP480R2SNF40M W			TCP370R4SNF40M W		1	TCD110R3SN12M W			KM63TSTCP390R3M W	
	TCP490R2SNF40M W			TCP380R4SNF40M W		l	TCD115R3SN12M W			KM63TSTCP400R3M W	
	TCP500R2SNF40M W			TCP390R4SNF40M W		l	TCD120R3SN12M W			KM63TSTCP410R3M W	
3895441 .	TCP510R2SNF40M W	B63	3895524	TCP400R4SNF40M W	B66	3895727	TCD125R3SN16M W	B51	3898425	KM63TSTCP420R3M W	B70
3895442 .	TCP520R2SNF40M W	B63	3895525	TCP410R4SNF40M W	B66	3895728	TCD130R3SN16M W	B51	3898426	KM63TSTCP430R3M W	B70
	TCP530R2SNF40M W			TCP420R4SNF40M W		l	TCD135R3SN16M W			KM63TSTCP440R3M W	
	TCP540R2SNF40M W			TCP430R4SNF40M W		l	TCD140R3SNF25M W			KM63TSTCP450R3M W	
	TCP550R2SNF40M W			TCP440R4SNF40M W		l	TCD150R3SNF25M W			KM63TSTCP460R3M W	
	TCP560R2SNF40M W TCP570R2SNF40M W			TCP450R4SNF40M W TCP460R4SNF40M W			TCD160R3SNF25M W			KM63TSTCP470R3M W	
	TCP580R2SNF40M W			TCP470R4SNF40M W		l	TCD170R3SNF25M W TCD175R3SNF25M W			KM63TSTCP480R3M W KM63TSTCP490R3M W	
	TCP590R2SNF40M W			TCP480R4SNF40M W		l	TCD180R3SNF25M W			KM63TSTCP500R3M W	
	TCP600R2SNF40M W			TCP490R4SNF40M W		l	TCD190R3SNF25M W			M270HF10 TN6540	
3895451.	TCP190R3SNF25M WG	B64	3895534	TCP500R4SNF40M W	B67	3895737	TCD200R3SNF25M W	B51	3903944	M270HF10 TN2505	A176
3895452 .	TCP200R3SNF25M WG		3895535	TCP510R4SNF40M W	B67	3895738	TCD210R3SNF25M W	B51	3903945	M270HF12 TN6540	A176
		B64		TCP520R4SNF40M W		l	TCD220R3SNF25M W			M270HF12 TN2505	
	TCP220R3SNF25M WG		1	TCP530R4SNF40M W		1	TCD230R3SNF25M W			M270HF13 TN6540	
	TCP230R3SNF25M WG			TCP540R4SNF40M W		l	TCD240R3SNF25M W			M270HF13 TN2505	
	TCP240R3SNF25M WG TCP250R3SNF32M WG			TCP550R4SNF40M W TCP560R4SNF40M W		1	TCD250R3SNF25M W TCD140R4SNF25M W			M270HF16 TN6540 M270HF16 TN2505	
	TCP260R3SNF32M WG		1	TCP570R4SNF40M W		l	TCD140K43NF25M W			M270HF17 TN6540	
	TCP270R3SNF32M WG			TCP580R4SNF40M W			TCD160R4SNF25M W			M270HF17 TN2505	
	TCP280R3SNF32M WG			TCP590R4SNF40M W		1	TCD170R4SNF25M W			M270HF20 TN6540	
3895461.	TCP290R3SNF32M WG	B64	3895544	TCP600R4SNF40M W	B67	3895747	TCD175R4SNF25M W	B52	3903954	M270HF20 TN2505	A176
	TCP300R3SNF32M WG		1	KM40TSTCD110R3M W		1	TCD180R4SNF25M W			M270TD010A10L120	
	TCP310R3SNF32M WG			KM40TSTCD120R3M W			TCD190R4SNF25M W			M270TD012A12L140	
	TCP320R3SNF32M WG			KM40TSTCD130R3M W		l	TCD200R4SNF25M W			M270TD016A16L160	
	TCP330R3SNF32M WG			KM40TSTCD140R3M W		1	TCD210R4SNF25M W			M270TD020A20L180	
	TCP340R3SNF32M WG TCP350R3SNF40M WG		1	KM40TSTCD150R3M W KM40TSTCD160R3M W		l	TCD22OR4SNF25M W TCD23OR4SNF25M W			M270TD010A10L120C M270TD010A10L150C	
	TCP360R3SNF40M WG			KM40TSTCD170R3M W		1	TCD230R4SNF25M W			M270TD012A12L120C	
	TCP370R3SNF40M WG			KM40TSTCD180R3M W		l	TCD250R4SNF25M W			M270TD012A12L160C	
	TCP380R3SNF40M WG			KM40TSTCD190R3M W		l	KM50TSTCP250R3M W			M270TD016A16L140C	
	TCP390R3SNF40M WG			KM40TSTCD200R3M W		l	KM50TSTCP260R3M W			M270TD016A16L180C	
	TCP400R3SNF40M WG			KM40TSTCD210R3M W		l	KM50TSTCP270R3M W			M270TD020A20L150C	
	TCP410R3SNF40M WG		1	KM40TSTCD220R3M W		l	KM50TSTCP280R3M W			M270TD020A20L200C	
	TCP420R3SNF40M WG			KM40TSTCD230R3M W		l	KM50TSTCP290R3M W			M270TD012M08	
	TCP430R3SNF40M WG			KM40TSTCD240R3M W		l	KM50TSTCP300R3M W			M270TD016M08	
	TCP440R3SNF40M WG TCP450R3SNF40M WG			KM40TSTCD250R3M W KM50TSTCD110R3M W		l	KM50TSTCP310R3M W KM50TSTCP320R3M W			M270TD020M10 M170D032Z02M16RD16	
	TCP460R3SNF40M WG		1	KM50TSTCD120R3M W		l	KM50TSTCP320R3M W			M170D032Z0ZM16KD16 M170D050Z04RD16	
	TCP470R3SNF40M WG		1	KM50TSTCD130R3M W		l	KM50TSTCP340R3M W			M170D030Z04KD18	
	TCP480R3SNF40M WG			KM50TSTCD140R3M W		l	KM50TSTCP350R3M W			M170D016Z03M08RD07	
3895481 .	TCP490R3SNF40M WG	B65	3895664	KM50TSTCD150R3M W	B54	3898391	KM50TSTCP360R3M W	B68	3926609	M170D020Z04M10RD07	A138

Номер	Номор по котологи	Cen	Ho
	Номер по каталогу		<u>3a</u>
	M170D025Z05M12RD07 M170D030Z05M16RD07		39
	M170D035Z05M16RD07		39
	M170D015Z02B16RD07		39
	M170D015Z02A16RD07L110		39
3929405	M170D015Z02A16RD07L150	A139	39
3929406	M170D016Z03A16RD07L110	A139	39
	M170D016Z02A16RD07L150		39
	M170D020Z04A20RD07L115		39
	M170D020Z03A20RD07L140		39
	M170D024Z02M12RD12 M170D035Z03M16RD12		39
	M170D035Z03M16RD12		39
	M170D042Z05M16RD12		39
3930960	M170D032Z03B32RD12	A150	39
3930962	M170D032Z02A32RD12L200	A151	39
	M170D032Z02A32RD12L300		39
	M170D035Z02A32RD12L300		39
	M170D040Z04RD12		39
	M170D052Z05RD12		39
	M170D063Z06RD12		39
	M170D066Z06RD12		39
	M170D080Z07RD12		39
	M170D100Z08RD12		39
	M170D052Z04RD16		39
	M170D063Z05RD16 M170D066Z05RD16		39
	M170D080Z05RD16		39
	M170D100Z07RD16		39
3934629	M170D125Z08RD16	A156	39
	M170D020Z02M10RD10		39
	M170D025Z02M12RD10		39
	M170D025Z03M12RD10 M170D030Z04M16RD10		39
	M170D035Z05M16RD10		39
	M170D042Z06M16RD10		39
3935336	M170D012Z02M06RD07T	A136	39
	M170D012Z02M08RD07T		39
	M170D015Z03M08RD07T		39
	M170D012Z02A12RD07TL100 M170D012Z02A16RD07TL120		39
	M170D012Z02A16RD07TL120		39
	M170D015Z03A16RD07TL130		39
3940703	M170D020Z02B20RD10	A144	39
		A145	39
	M170D020Z02A25RD10L160		39
	M170D020Z02A25RD10L180 M170D022Z02A20RD10L160		39
	M170D025Z03B25RD10		39
	M170D025Z02A25RD10L180		39
	M170D025Z02A25RD10L220		39
	M170D028Z02A25RD10L200		39
	M170D040Z05RD10		39
	M170D042Z05RD10 M170D050Z06RD10		39
	M170D052Z06RD10		39
	SDMX543RMM TN6540		39
3949808	SDMX543RMM TN5515	A81	39
	SDMX543RMM TN7525		39
	SDMX543RMM TN7535		39
	SDMX543RMH TN6540		39
	SDMX543RMH TN7525		39
	SDMX543RMH TN7535		39
	SDMX544RMH TN6540		39
	SDMX544RMH TN5515		39
	SDMX544RMH TN7535		39
	SDMX432RMM TN6525		39
	SDMX432RMM TN6540		39
	SDMX432RMM TN6540		39
3950590	SDMX432RMM TN7525	A77	39

Номер заказа	Номер по каталогу Стр.	Номер заказа Номер по каталогу	Стр.
3950590	SDMX432RMM TN7525A103	3957841M1200D032Z03M16HN07	A16
	SDMX432RMM TN7535A77	3957842M1200D032Z04M16HN07	
	SDMX432RMM TN7535A103	3957963M1200D040Z04M16HN07	
	SDMX432RMH TN6540A77	3957964M1200D040Z05M16HN07	
	SDMX432RMH TN6540A103	3957969M1200HF160Z12HN09 3957970M1200D040Z03HN09	
	SDMX432RMH TN5515A77	3957970M1200D040Z03HN09	
	SDMX432RMH TN7525A77	3957972M1200D040Z04HN09	
	SDMX432RMH TN7525A103	3957993M1200D250Z10HN09	
	SDMX432RMH TN7535A77	3957994M1200D315Z24HN09	
3950595	SDMX432RMH TN7535A103	3957995M1200D040Z04HN07	A18
3950596	SDMX433RMM TN6525A77	3957996M1200D040Z05HN07	A18
	SDMX433RMM TN6525A103	3957997M1200D050Z04HN07	
	SDMX433RMM TN6540A77	3957998M1200D050Z05HN07	
	SDMX433RMM TN6540A103	3957999M1200D050Z06HN07	
	SDMX433RMM TN5515A77	3958000M1200D063Z04HN07 3958001M1200D063Z06HN07	
	SDMX433RMM TN7525A77	3958002M1200D063Z06HN07	
	SDMX433RMM TN7525A103	3958003M1200D080Z05HN07	
	SDMX433RMM TN7535A77	3958004M1200D080Z08HN07	
	SDMX433RMM TN7535A103	3958005M1200D080Z10HN07	
3950601	SDMX433RMH TN6525A77	3958006M1200D100Z06HN07	A18
	SDMX433RMH TN6525A103	3958007M1200D100Z09HN07	
	SDMX433RMH TN6540A77	3958008M1200D100Z12HN07	
	SDMX433RMH TN6540A103	3958011M1200D025Z02B20HN07	
	SDMX433RMH TN5515	3958012M1200D025Z03B20HN07	
	SDMX433RMH TN5515A103	3958023M1200D032Z03B25HN07 3958024M1200D032Z04B25HN07	
	SDMX433RMH TN7525A103	3958025M1200D03ZZ04BZ5HN07 3958025M1200D025Z02A20HN07L120	
	SDMX433RMH TN7535A77	3958026M1200D025Z02A20HN07L120	
	SDMX433RMH TN7535	3958027M1200D032Z03A25HN07L130	
	SDMX434RMH TN6540A77	3958028M1200D032Z04A25HN07L130	
3950607	SDMX434RMH TN6540A103	3958029M1200D025Z02A25HN07L200	A17
	SDMX434RMH TN5515A77	3958030M1200D025Z03A25HN07L200	
	SDMX434RMH TN5515A103	3959579RDPX1003M0SNMH TN6540	
	SDMX434RMH TN7535	3959580RDPX1003M0SNMH TN6525	
	SDMX434RMH TN7535A103	3959581RDPX1003M0SNMH TN2505 3959582RDPX1003M0SNMM TN6540	
	SDMX433RMH TN6520A103	3959620RDPX12T3M0SNMH TN6540	
	HNGJ0704ANFNLDJ THM-UA19	3959621RDPX12T3M0SNMH TN6525	
	HNGJ0704ANFNLDJ TN6501	3959622RDPX12T3M0SNMH TN2505	
3954416	XNGJ0704ANFNLDJ3W TN6501A20	3959623RDPX12T3MOSNMM TN6540	A153
	HNGJ0704ANENLD TN5515	3959624RDPX12T3MOSNMM TN6525	
	HNGJ0704ANENLD TN6505A19	3959625RDPX0702M0SNMH TN6540	
	HNGJ0704ANENLD TN6510	3959626RDPX0702M0SNMH TN6525	
	HNGJ0704ANENLD TN6520	3959627RDPX0702M0SNMH TN2505	
	HNGJ0704ANENLD TN6525A19	3959633RDPX1003M0SNMM TN6525 3960462RDPX1604M0SNMH TN6540	
	XNGJ0704ANENLD3W TN5515A20	3960513RDPX1604M0SNMH TN6525	
	XNGJ0704ANENLD3W TN6510A20	3960514RDPX1604M0SNMH TN2505	
	XNGJ0704ANENLD3W TN6520A20	3960515RDPX1604M0SNMM TN6540	
3954426	XNGJ0704ANENLD3W TN6525A20	3960516RDPX1604M0SNMM TN6525	A157
	XNGJ0704ANENLD3W TN6540A20	3960532RDHX07T1M0SNMH TN6540	
	HNGJ070432ANENLD TN6510A19	3960573RDHX07T1M0SNMH TN6525	
	HNGJ070432ANENLD TN6525A19	3960578RDHX07T1M0SNMH TN2505	
	HNGJ070432ANENLD TN6540A19	396490912146111200 396491012146111300	
	HNPJ0704ANSNGD TN6510A19	396491112146111400	
	XNGJ0704ANFNLDJ3W THM-UA20	396495412146109200A18	
	HNPJ0704ANSNGD TN6520A19	3969291TDM2150UPM K20FTIALN	
	HNPJ0704ANSNGD TN6540	3992013TDM2599UPM K20FTIALN	
3954475	HNPJ0704ANSNGD TN7535A19	3992070TDM210R3SCF25M WG	B40
	HNPJ0704ANSNHD TN5515A19	3992071TDM220R3SCF25M WG	
	HNPJ0704ANSNHD TN6510A19	3992072TDM230R3SCF25M WG	
	HNPJ0704ANSNHD TN6520	3992141TDM080R8SCF12M WG	
	HNPJ0704ANSNHD TN6540A19	3992142TDM085R8SCF12M WG 3992213TDM090R8SCF12M WG	
	HNPJ0704ANSNHD TN7535A19	3992213TDM090R8SCF12M WG	
	HNPJ070432ANSNHD TN6520A19	3992215TDM100R8SCF16M WG	
	HNPJ070432ANSNHD TN6540A19	3992216TDM105R8SCF16M WG	
	HNPJ070432ANSNHD TN7535A19	3992217TDM110R8SCF16M WG	
	M1200D025Z02M16HN07A16	3992218TDM115R8SCF16M WG	
3957840	M1200D025Z03M16HN07A16	3992219TDM120R8SCF16M WG	B42

	Номер заказа	Номер по каталогу Стр.	
	3957841	M1200D032Z03M16HN07A16	
		M1200D032Z04M16HN07A16	
		M1200D040Z04M16HN07A16	
	3957964	M1200D040Z05M16HN07A16	
		M1200D040Z03HN09A25	
	3957971	M1200D040Z04HN09A25	
	3957972	M1200D200Z16HN09A25	
		M1200D250Z20HN09A25	
		M1200D315Z24HN09A25	
		M1200D040Z04HN07A18	
		M1200D040Z05HN07A18	
		M1200D050Z05HN07A18	
	3957999	M1200D050Z06HN07A18	
		M1200D063Z04HN07A18	
		M1200D063Z06HN07A18	
		M1200D063Z08HN07A18	
		M1200D080Z08HN07A18	
		M1200D080Z10HN07A18	
	3958006	M1200D100Z06HN07A18	
		M1200D100Z09HN07A18	
		M1200D100Z12HN07A18	
		M1200D025Z02B20HN07A16	
		M1200D023203B25HN07A16	
		M1200D032Z04B25HN07A16	
	3958025	M1200D025Z02A20HN07L120A17	
		M1200D025Z03A20HN07L120A17	
		M1200D032Z03A25HN07L130A17	
	3958028	M1200D032Z04A25HN07L130A17	
		M1200D025Z03A25HN07L200A17	
	3959579	RDPX1003M0SNMH TN6540A147	
	3959580	RDPX1003M0SNMH TN6525A147	
	3959581	RDPX1003M0SNMH TN2505A147	
		RDPX1003M0SNMM TN6540A147	
		RDPX12T3MOSNMH TN6540A153	
		RDPX12T3M0SNMH TN2505A153	
	3959623	RDPX12T3M0SNMM TN6540A153	
		RDPX12T3M0SNMM TN6525A153	
		RDPX0702M0SNMH TN6540A140	
		RDPX0702M0SNMH TN6525A140	
		RDPX0702M0SNMH TN2505A140RDPX1003M0SNMM TN6525A147	
		RDPX1604M0SNMH TN6540A157	
	3960513	RDPX1604M0SNMH TN6525A157	
		RDPX1604M0SNMH TN2505A157	
		RDPX1604M0SNMM TN6540A157	
		RDHX07T1M0SNMH TN6540A137	
		RDHX07T1M0SNMH TN6525A137	
	3960578	RDHX07T1M0SNMH TN2505A137	
		12146111200A25	
		12146111300A25	
		12146111400A25	
		TDM2150UPM K20FTIALNB38	
		TDM2599UPM K20FTIALNB38	
		TDM210R3SCF25M WGB40	
		TDM220R3SCF25M WGB40	
		TDM230R3SCF25M WGB40	
		TDM080R8SCF12M WGB42TDM085R8SCF12M WGB42	
		TDM090R8SCF12M WGB42	
		TDM095R8SCF12M WGB42	
		TDM100R8SCF16M WGB42	
		TDM105R8SCF16M WGB42	
		TDM110R8SCF16M WGB42	
ı	U.,LLIU		

Номер заказа	Номер по каталогу	Стр.
3992220	TDM125R8SCF16M WG	B42
3992221	TDM130R8SCF16M WG	B42
3992222	TDM135R8SCF16M WG	B42
3992223	TDM140R8SCF16M WG	B42
3992224	TDM145R8SCF16M WG	B42
3992225	TDM150R8SCF20M WG	B42
3992226	TDM160R8SCF20M WG	B42
3992227	TDM170R8SCF20M WG	B42
3992228	TDM180R8SCF25M WG	B42
3992229	TDM190R8SCF25M WG	B42
3992230	TDM200R8SCF25M WG	B42
3992231	TDM210R8SCF25M WG	B42
3992232	TDM220R8SCF25M WG	B42
3992233	TDM230R8SCF25M WG	B42
	TDM240R8SCF25M WG	
	TDM250R8SCF25M WG	
3992483	TDM240R3SCF25M WG	B40
3992484	TDM250R3SCF25M WG	B40
	TDM210R5SCF25M WG	
3992486	TDM220R5SCF25M WG	B41
	TDM230R5SCF25M WG	
	TDM240R5SCF25M WG	
	TDM250R5SCF25M WG	
	TDM2550UPM K20FTIALN	
	TDM08440UP K20FTIALN.	
	TDM08750UP K20FTIALN.	
	TDM08840UP K20FTIALN.	
	TDM09375UP K20FTIALN.	
	TDM09690UP K20FTIALN.	
	TDM10000UP K20FTIALN.	
	TDM10110UP K20FTIALN.	
	TDM10160UP K20FTIALN.	
	TDM2100UPM K20FTIALN	
	TDM2200UPM K20FTIALN	
	TDM2250UPM K20FTIALN	
	TDM2300UPM K20FTIALN	
	TDM2350UPM K20FTIALN	
	TDM2400UPM K20FTIALN	
	TDM2450UPM K20FTIALN	B38
4003232	TDM2500UPM K20FTIALN	B38

Номер по каталогу	Стр.	Номер по катало	гу Стр.	Номер по каталогу	Стр.	Номер по каталогу	Стр.
121358680 THM	A228	12147680700 W	B100-101	12148086800	A162—164	12391010000 W	A182
121358680 TN5515	A228	12147739800 W	B93	12148087100 W	B100-101	12391010400 W	A182
12146006300			B92	12148095100 W	A128	12391010600 W	
12146010000			B92	12148095100 W		12391011000 W	
12146011800 W	B50-51, B53-54	12147740200 W	B90	12148099300	B88–89	12391011400 W	A182
12146012500 W	,		B82-83	12148099300A162-164, A1		12391011600 W	A186
12146021100 W			B82-83	12148099400	,	12391012000 W	
12146034500			B82-83	12148099400		12391012400 W	
12146101000			B82-83	12148541600 W		12391012800 W	
12146101800			A36—37	12148574900 W		12391013200 W	
12146101900	, ,		A76, A92–93	12148575900 W		12391013800 W	
12146107000			A102, A112–113	12148577000 W		12391020000 W	
12146109200			A122	12148577000 W		12391020200 W	
12146109400	,		A186.A190–191	12148783700		12391020400 W	
12146111000	, ,		A208–209	12148788900 W		12391020600 W	
12146111100	,		A182	12148788900 W		12391020800 W	
12146111200	,		B99	12148788900 WA162-164, A1		12391021000 W	
12146111300			B99	12166903700 W	,	12391021200 W	
12146111400			A58–59	12166903800 W	,	12391021400 W	
12146120600			B64-65, B71, B94-95	12166903900 W	,	12391021600 W	
12146120700			A44—45, A50	12166904000 W	,	12391021800 W	
12146120900			A122, A128	12167920000 W	,	12391022000 W	
12146121000			A122, A120	12167920100 W		12391022200 W	
12147517100 W			A209	12167920200 W		12391022400 W	
12147519100 W			B95	12167920400 W		12391022600 W	
12147549000			A80	12167920500 W		12391022800 W	
12147549000	,		B62-67, B69-71	12167920600 W	B71	12391023200 W	
12147579300 W			A44—45, A50	12167920700 W	B71	12391023400 W	
12147600100 W			A80	12167920800 W	B71	12391023600 W	
12147600200 W			A122.A128	12167921000 W	B71	12391023800 W	
12147600300 W			A122, A120	12167921100 W	B71	12391024000 W	
12147600400 W	,		A209	12167921200 W	B71	12391050200 W	
12147602200 W			A186	12167921300 W	B71	12391050400 W	
12147602300 W			B71	12167921400 W		12391050600 W	
12147602400 W			A76	12168243000 W	B84	12391051000 W	
12147602500 W			A102	12168244000 W		12391051200 W	
12147602600 W			B71, B94–95, B102	12168245000 W		12391602600 W	
12147602700 W			A36—37	12168253000 W		12391603000 W	
12147602800 W			A92—93	12168254000 W		12391603400 W	
12147603900 W			A72—73	12168255000 W		12391603800 W	
12147604000 W			A190—191	12168264000 W	B84	12393001200 W	
12147604500 W			B94–95, B100–101	12168265000 W		12393001400 W	
12147613500 W	,		B94—95. B100—101	12168344100 W		12393001600 W	
12147615000 w			B91, B93–95,	12168344300 W		12393021000 W	
12147615200		12140041100 W	B100-101, B103-106	12168344400 W		12393040200 W	
12147615300		12140041200 W	B71, B93, B100–101, B103–106	12168345100 W		12393040400 W	
12147615400				12168345300 W		12393040800 W	
12147615500	B88–90	12140041300 W	B100-101, B103-106	12168345400 W		12393041200 W	
12147617400 W		10140041400 W		12168354100 W		12393041400 W	
			B81-84, B100-101, B103-106			12393041800 W	
12147620000 W			B97-98	12168354300 W			
12147620300 W			A216, A220	12168354400 W		12393050200 W	
12147620400 W			A223	12168355100 W		12393050400 W 12393050800 W	
12147620500 W 12147620600 W			B62, B64, B66, B68–70	12168355300 W		12393050800 W	
12147620600 W			862, 864, 866, 868—70 A112—113	12168355400 W 12168364100 W		12393051200 W	
12147621100 W						12393051800 W	
			B62-64, B66-71, B94	12168364300 W			
12147621300 W			A122, A128			12393060200 W	
12147621400 W			B50-54, B94-96, B99, B102	12168365100 W		12393060400 W	
12147621500 W			A122	12168365300 W		12393060800 W	
12147621600 W			B94–95	12168365400 W		12393080200 W	
12147622100			B81-84, B91, B93, B100-101	12290900800 W		12393080400 W	
12147622300 W			B62, B64, B66	12290901200 W		12393080600 W	
12147625200 W			A128	12290911600 W		12393083200 W	
12147625400 W		12148082400	B62, B64, B66, B68-71,	12290911800 W		12393083400 W	
12147629800			B94-95, B102	12292510400 W		12393083600 W	
12147665000 W	,		A16-18, A24-25, A30	12292510800 W		12395400200 W	
12147666700 W			A68-70	12292511000 W		12395400600 W	
12147670800 W			A144-146, A150-152	12292511200 W		12395405200 W	
12147680200 W		12148086600 W	B50-54, B62, B64, B66,	12292511400 W		12395405600 W	
12147680300 W			B68, B71, B94-96, B99, B102	12292511600 W		12395410200 W	
12147680400 W			A62-64	12292550400 W		12395410400 W	
12147680500 W	,		A122, A128	12292550800 W		12395410600 W	
12147680600 W	B100-101	I 12148086600 W	A182	12292551000 W	A208	12395410800 W	A37

Номер по каталогу	Стр.	Номер по каталогу	Стр.	Номер по каталогу	Стр.	Номер по каталогу	C	тр.
12395411000 W	A37	12396463200	A63	12396826800 W	A223	12627008200 WG		B99
12395411200 W		12396463400		12396827200 W		12627010200 WG		
12395415200 W	A37	12396463600	A63	12396903600 W		12627013200 WG		B99
12395415400 W		12396463800		12396903800 W		12627016200 WG		
12395415600 W		12396464000		12396904000 W		12627019300 WG		
12395415800 W		12396464200		12396904200 W		12627270300 WG		
12395416000 W 12395416200 W		12396464400		12396904600 W 12396905000 W		12627270700 WG 12627270800 WG		
12396202200 W		12396464800		12396905400 W		12627275300 WG		
12396202600 W		12396465000		12396905800 W		12627276500 WG		
12396203200 W		12396465200		12396906400 W		12627276800 WG		
12396203600 W	A44	12396465400	A63	12396906600 W	A87	12627277700 WG	B	102
12396203800 W		12396465600		12396906800 W		12627277800 WG		
12396204200 W		12396465800		12396922600 W		12627278700 WG		
12396204600 W		12396466000		12396923000 W		12627278800 WG		
12396205000 W 12396205400 W		12396466200		12396923400 W 12396924600 W		12748305600 W 12748305800 W		
12396205800 W		12396466600		12396924800 W		12748306000 W		
12396206000 W		12396466800		12396925000 W		12748306200 W		
12396214200 W		12396470400		12396925200 W		12748306400 W		
12396214600 W	A50	12396471000	A70	12396931400 W	A86	12748306600 W	A	220
12396215000 W		12396471600		12396931600 W		12748306800 W		
12396215400 W		12396472200		12396932600 W		12748307000 W		
12396215800 W		12396472800		12396933000 W		12748600900 W	,	
12396430400 12396431000		12396473200		12396933200 W 12396933400 W		12748601400 W 12748609900 W		
12396431600		12396475200		12396943800 W		12748610000 W		-67 108
12396440600		12396475400		12396944200 W		12748610500 WA16		
12396440800		12396475600		12396944600 W		12748610600 WA16	, ,	
12396441000	A58	12396475800	A68	12396945000 W		12748610700 WA16	2-164, A170-171, A174-	175
12396441200	A58	12396480000	A69	12396945400 W		12748610800 WA16	2-164, A170-171, A174-	175
12396441400		12396480200		12396953800 W		12748610900 W		
12396441600		12396480400		12396954000 W		12748611000 W		
12396441800		12396480600		12396954200 W		16396451600		
12396442000 12396442200		12396480800		12396954400 W 12396954600 W		16396452200 16396452800		
12396442400		12396481200		12396954800 W		16396453200		
12396442600		12396481400		12396955000 W		16396453600		
12396442800		12396481600		12396955200 W		16396471600		
12396443000	A58	12396481800	A69	12396955400 W	A76	16396472200		.A70
12396443200		12396482000		12396955600 W		16396472800		
12396443400		12396482200		12396955800 W		16396473200		
12396443600 12396443800		12396804000 W 12396804400 W		12396956000 W 12600020000 WG		1639647360017050003000 K20FTIALN		
12396444000		12396804600 W		12600027800 WG		17050003000 KZOFTIALN		
12396444200		12376804800 W		12600027000 WG		17050003100 K20FTIALN		
12396450400		12396805000 W		12600043800 WG		17050003250 K20FTIALN		
12396451000	A64	12396805200 W	A216	12600208800 WG		17050003300 K20FTIALN		.B12
12396451600	A64	12396805400 W	A216	12600210900 WG	B90	17050003400 K20FTIALN		B12
12396452200		12396805600 W		12600213200 WG		17050003500 K20FTIALN		
12396452800		12396805800 W		12600215500 WG		17050003600 K20FTIALN		
12396453200 12396455800		12396806000 W		12600217800 WG 12614020100 WG		17050003700 K20FTIALN 17050003800 K20FTIALN		
12396456000		12396806400 W		12625702200 WG		17050003600 K20FTIALN		
12396456200		12376806800 W		12625703000 WG		17050003700 K20FTIALN		
12396456600		12396807200 W		12625704000 WG		17050004100 K20FTIALN		
12396456800	A62	12396814000 W	A220	12625705000 WG	B95	17050004200 K20FTIALN		.B12
12396457000		12396814600 W		12625706700 WG	,	17050004300 K20FTIALN		
12396457400		12396814800 W		12625708900 WG		17050004400 K20FTIALN		
12396457600		12396815000 W		12625804000 WG		17050004600 K20FTIALN		
12396457800		12396815200 W		12625805100 WG		17050004650 K20FTIALN		
12396458200 12396458600		12396815400 W 12396815600 W		12625806800 WG 12625902200 WG	, ,	17050004700 K20FTIALN 17050004900 K20FTIALN		
12396458800		12396815800 W		12625903000 WG		17050004900 K20FTIALN		
12396459000		12396816000 W		12625904000 WG		17050005100 K20FTIALN		
12396461600		12396816200 W		12625905000 WG		17050005200 K20FTIALN		
12396461800		12396816400 W		12625906700 WG		17050005300 K20FTIALN		
12396462000		12396816800 W		12625908900 WG		17050005400 K20FTIALN		
12396462200		12396824800 W		12626003000 WG		17050005500 K20FTIALN		
12396462400		12396825200 W		12626004000 WG		17050005550 K20FTIALN		
12396462600 12396462800		12396825600 W 12396826000 W		12626005000 WG 12626006700 WG		17050005600 K20FTIALN 17050005700 K20FTIALN		
12396463000		12396826400 W		12627006700 WG		17050005700 KZOFTIALN		
\AAAAAA\A\A\IDIA						JJOOGJOOG REGITIALN		

WWW.WIDIA.COM F13

	Номер по каталогу	Стр.	Номер по каталогу	Стр.	Номер по каталогу	Стр.	Номер по каталогу	Стр.
INDEXIDATION OF PARTY 131 INDEXIDATION 134 INDEXIDATION 134 INDEXIDATION OF PARTY 17050005900 K20FTIALN	B12	17050017000 K20FTIALN	B14	17050109400 K20FTIALN	B16	17050205300 K20FTIALN	B18	
JAMES 1997								
1985 1985								
PARTICIPATION OF THE AMERICAN 131 CONTINUOS CHIEFER 144 TOTO THOS DUTLEM 154 TOTO								
PARTICIPATION 133 PARTICIPATION 134								
196000000 DETMIN								
1965000700 DEFINITION 1975 1975001000 COPTUM 155 1980 1180 DEFINITION 155 1980 DEFINITION 155 1980 DEFINITION 155 1980 DEFINITION 155								
1999 1999								
17550007700 (1978HA)								
195000700 CEPTIMUM							17030200200 K20I HALN	D10
1950/07/07/07/07/07/07/07/07/07/07/07/07/07							17050200300 K20I HALN	D10
1960000000 DETERMIA 913 1000100000 DETERMIA 915 1000110000 DETERMIA 917 17000000000 DETERMIA 913 170010000000 DETERMIA 913 17000000000 DETERMIA 913 170010000000 DETERMIA 913 170010000000 DETERMIA 913 17000000000 DETERMIA 913 17000000000 DETERMIA 913 170000000000 DETERMIA 913 17000000000 DETERMIA 913 17000000000 DETERMIA 913 170000000000 000000000000000000000000							17050200400 KZUFIIALN	D17
TOCHNORMON CONTINUAL 313 TOCHNORMON CONTINUAL 315 TOCHNORMON CONTINUAL 317 TOCHNORMON CONTINUAL 318 TOCHNORMON CONTINUAL 318 TOCHNORMON CONTINUAL 319 TOCHNORMON CON							17050200300 KZUFIIALN	D17
19560007700 COFFINAL 513 1790000000 COFFINAL 513 1790000000 COFFINAL 513 1790000000 COFFINAL 513 17900000000 000000000000000000000000000								
1950007010 CORTINUM								
1955007900 (2076MM 83) 1750017370 (2076MM								
Dissillation Certifieds								
DESCRIPTION 2013 1750010990 (2071UM 315) 1750010990 (2071UM 315) 17500010990 (2071UM 315) 1750010990 (2071UM 315) 175001								
1950000000 CEPTIMM								
1905/000000 CRESTIMM							1/05020/300 K20FIIALN	B19
1795000000 CORDINAM 813 1795010000 CORDINAM 815 1795011000 CORDINAM 817 1795000000 CORDINAM 818 17950000000 CORDINAM 818 1795000000 CORDINAM 818 17950000000 CORDINAM 818 1795000000000000000000000000000000000000							17050207400 K20FTIALN	B19
1955000500 CEPTIMUM								
17550000700 CEPTIME								
19550002900 COPTIANN								
1795000000 (ZEPINIA)	17050008600 K20FTIALN	B13	17050104400 K20FTIALN	B15				
1755000900 CEPTINAL 8.13 1755104000 CEPTINAL 8.15 1755000900 CEPTINAL 8.17 1755000900 CEPTINAL 8.18 1755104000 CEPTINAL 8.15 17550104000 CEPTINAL 8.17 1755000900 CEPTINAL 8.17 1755000900 CEPTINAL 8.17 1755000000 CEPTINAL 8.17 1755000000 CEPTINAL 8.18 17550104000 CEPTINAL 8.15 17550104000 CEPTINAL 8.17 1755000000 CEPTINAL 8.17 1755000000 CEPTINAL 8.17 1755000000 CEPTINAL 8.17 1755000000 CEPTINAL 8.18 17550104000 CEPTINAL 8.17 1755000000 CEPTINAL 8.17 1755000000 CEPTINAL 8.18 17550104000 CEPTINAL 8.17 1755000000 CEPTINAL 8.18 17550104000 CEPTINAL 8.19 17550104000 CEPTINAL	17050008700 K20FTIALN	B13			17050112500 K20FTIALN	B17		
17550007000 COTHINN	17050008800 K20FTIALN	B13	17050104650 K20FTIALN	B15	17050112800 K20FTIALN	B17		
1755000FOIN DESTRUMN	17050008900 K20FTIALN	B13	17050104700 K20FTIALN	B15	17050113000 K20FTIALN	B17	17050208100 K20FTIALN	B19
1755001700 (2070HM)	17050009000 K20FTIALN	B13	17050104900 K20FTIALN	B15	17050113500 K20FTIALN	B17		
1755001700 (2070HM)	17050009100 K20FTIALN	B13	17050105000 K20FTIALN	B15	17050113800 K20FTIALN	B17	17050208400 K20FTIALN	B19
17550017000 2075HUM 313 77550105500 2075HUM 315 7755010500 2075HUM 317 77550005700 2075HUM 318 7755010500 17050009200 K20FTIALN	B13	17050105100 K20FTIALN	B15	17050114000 K20FTIALN	B17	17050208500 K20FTIALN	B19	
17950007400 CXCFINAN	17050009300 K20FTIALN	B13	17050105200 K20FTIALN	B15			17050208600 K20FTIALN	B19
1750007970 (XOFTIMAN 813 A750105400 (XOFTIMAN 815 A750105500 (XOFTIMAN 817 A750008800 (XOFTIMAN 819 A750008970 (XOFTIMAN 813 A750105500 (XOFTIMAN 815 A750105500 (XOFTIMAN 817 A750008970 (XOFTIMAN 819 A750009700 (XOFTIMAN 813 A750105500 (XOFTIMAN 815 A750105000 (XOFTIMAN 815 A750105000 (XOFTIMAN 817 A750009700 (XOFTIMAN 817 A7500009700 (XOFTIMAN 817 A750009700 (XOFTIMAN 817 A7500009700 (XOFTIMAN 817 A75000009700 (XOFTIMAN 817 A7500009700 (XOFTIMAN 817 A7500009700 (XOFTIMAN 817 A75000009700 (XOFTIMAN 817 A750000000 (XOFTIMAN 818 A75000000000000000000000000000000000000					17050114800 K20FTIALN	B17	17050208700 K20FTIALN	B19
1750001990 (ZOFTININ B13 17550105500 (ZOFTININ B15 17050105500 (ZOFTININ B17 17550105900 (ZOFTININ B18 B17							17050208800 K20FTIAIN	B19
1705001700 COPTIAN 813 17050105500 COPTIAN 815 1705010500 COPTIAN 815 1705010500 COPTIAN 817 17050007000 COPTIAN 818 1705010500 COPTIAN 818 1705010500 COPTIAN 818 1705010500 COPTIAN 819 1705010500 COPTIA								
17550017500 (20FTMIN B13 17550105500 (20FTMIN B15 1755010500 (20FTMIN B15 1755010500 (20FTMIN B15 1755010500 (20FTMIN B1								
17050011000 X20FTMAN								
17550011000 (20FINIM)								
17050010200 120FTIAIN								
17550010500 (20FTIAIN B.13 17550106000 (20FTIAIN B.15 17550117500 (20FTIAIN B.17 17050017500 (20FTIAIN B.18 1705010600 (20FTIAIN B.18 1705010000 (20FTIAIN B.18 17050101000 (20FTIAIN B.18 1705010000 (20FTIAIN B.18 17050100000 (20FTIAIN B.18								
175500110400 K20FTIAUN							17050207400 K20FTIALN	R19
17050010500 K20FHAIN B13 17050106200 K20FHAIN B14 17050106700 K20FHAIN B13 17050106300 K20FHAIN B13 17050106300 K20FHAIN B14 17050106700 K20FHAIN B14 17050106300 K20FHAIN B16 17050110800 K20FHAIN B17 17050201000 K20FHAIN B17 17050201000 K20FHAIN B17 17050201000 K20FHAIN B18 17050110600 K20FHAIN B17 17050201000 K20FHAIN B17 1705001000 K20FHAIN B18 1705001000 K20FHAIN B18 1705001000 K20FHAIN B18 1705001000 K20FHAIN B19 17050010000 K20FHAIN B19 17050010000 K20FHAIN B19 17050010000 K20FHAIN B19 17050010000 K20FHAIN							17050207500 K20FTIALN	R19
170500110600 K20FTMAN B13 17050116300 K20FTMAN B16 17050118500 K20FTMAN B17 17050019090 K20FTMAN B18 17050116400 K20FTMAN B19 17050010800 K20FTMAN B14 17050116500 K20FTMAN B14 17050116500 K20FTMAN B14 17050116500 K20FTMAN B14 17050116500 K20FTMAN B14 17050116600 K20FTMAN B16 1705011900 K20FTMAN B17 17050211000 K20FTMAN B19 17050011000 K20FTMAN B14 1705011000 K20FTMAN B16 17050119000 K20FTMAN B17 170502110300 K20FTMAN B19 17050011200 K20FTMAN B17 170502110300 K20FTMAN B19 17050011200 K20FTMAN B19								
17050010700 K20FTIALN								
17050011800 K20FTIAIN								
17050011900 K20FTIAIN								
17050011000 K20FIIAIN							17030210100 KZUFIIALN	D10
17050011100 K20FIIALN								
17050011200 K20FTIALN							17050210300 KZUFIIALN	B17
17050011300 K20FTIALN							17050210400 KZUFIIALN	
17050011400 K20FTIALN							17050210500 K20FIIALN	B19
17050011500 K20FTIALN								
17050011600 K20FTIALN								
17050011700 K20FTIALN B14 17050107500 K20FTIALN B16 17050203400 K20FTIALN B18 17050211000 K20FTIALN B20 17050011800 K20FTIALN B14 17050107600 K20FTIALN B16 17050203500 K20FTIALN B18 17050211100 K20FTIALN B20 17050012000 K20FTIALN B14 17050107700 K20FTIALN B16 17050203500 K20FTIALN B18 17050211200 K20FTIALN B20 17050012500 K20FTIALN B14 17050107800 K20FTIALN B16 17050203700 K20FTIALN B18 17050211300 K20FTIALN B20 17050012500 K20FTIALN B14 17050107900 K20FTIALN B16 17050203700 K20FTIALN B18 17050211300 K20FTIALN B20 17050012500 K20FTIALN B14 170501200800 K20FTIALN B16 17050203700 K20FTIALN B18 17050211300 K20FTIALN B20 17050012800 K20FTIALN B14 170501200800 K20FTIALN B16 17050203700 K20FTIALN B18 17050211500 K20FTIALN B20 17050013500 K20FTIALN B14 17050108300 K20FTIALN B16 17050204000 K20FTIALN B18 17050211500 K20FTIALN B20 17050013500 K20FTIALN B14 17050108300 K20FTIALN B16 17050204000 K20FTIALN B18 17050211500 K20FTIALN B20 17050013500 K20FTIALN B14 17050108300 K20FTIALN B16 17050204000 K20FTIALN B18 17050211500 K20FTIALN B20 17050014500 K20FTIALN B14 17050108500 K20FTIALN B16 17050204400 K20FTIALN B18 17050212000 K20FTIALN B20 17050014500 K20FTIALN B14 17050108600 K20FTIALN B16 17050204400 K20FTIALN B18 17050212000 K20FTIALN B20 17050015000 K20FTIALN B14 17050108700 K20FTIALN B16 17050204400 K20FTIALN B18 17050212000 K20FTIALN B20 17050015000 K20FTIALN B14 17050108700 K20FTIALN B16 17050204400 K20FTIALN B18 17050212000 K20FTIALN B20 17050015000 K20FTIALN B16 17050204500 K20FTIALN B18 17050212000 K20FTIALN B20 17050015000 K20FTIALN B16 17050204500 K20FTIALN B18 17050212300 K20FTIALN B20 17050015000 K20FTIALN B16 17050204500 K20FTIALN B18 17050213500 K20FTIALN B20 17050015000 K20FTIALN B16 17050204500 K20FTIALN B18 17050213500 K20FTIALN B20 17								
17050011800 K20FTIALN								
17050011900 K20FTIALIN								
17050012000 K20FTIALIN								
17050012500 K20FTIALIN								
17050012800 K20FTIALN								
17050013000 K20FTIALN								
17050013500 K20FTIALN								
17050013800 K20FTIALN								
17050014000 K20FTIALIN								
17050014500 K20FTIALIN	17050013800 K20FTIALN	B14	17050108400 K20FTIALN	B16	17050204200 K20FTIALN	B18		
17050014800 K20FTIALIN	17050014000 K20FTIALN	B14	17050108500 K20FTIALN	B16	17050204300 K20FTIALN	B18	17050211900 K20FTIALN	B20
17050015000 K20FTIALIN	17050014500 K20FTIALN	B14	17050108600 K20FTIALN	B16	17050204400 K20FTIALN	B18		
17050015500 K20FTIALIN B14 17050016900 K20FTIALIN B16 170500204700 K20FTIALIN B18 17050213000 K20FTIALIN B20 17050015800 K20FTIALIN B14 17050016000 K20FTIALIN B16 170500204900 K20FTIALIN B18 17050213500 K20FTIALIN B20 17050016000 K20FTIALIN B14 17050109100 K20FTIALIN B16 17050205000 K20FTIALIN B18 17050213800 K20FTIALIN B20 17050016500 K20FTIALIN B14 17050109200 K20FTIALIN B16 17050205100 K20FTIALIN B18 17050213800 K20FTIALIN B20 17050016500 K20FTIALIN B14 17050109200 K20FTIALIN B16 17050205100 K20FTIALIN B18 17050213800 K20FTIALIN B20	17050014800 K20FTIALN	B14	17050108700 K20FTIALN	B16	17050204600 K20FTIALN	B18	17050212500 K20FTIALN	B20
17050015800 K20FTIALIN B14 170500109000 K20FTIALIN B16 170500204900 K20FTIALIN B18 17050213500 K20FTIALIN B20 17050016000 K20FTIALIN B14 170500101000 K20FTIALIN B16 170500205000 K20FTIALIN B18 17050213800 K20FTIALIN B20 17050016500 K20FTIALIN B14 170500109200 K20FTIALIN B16 17050025100 K20FTIALIN B18 17050214000 K20FTIALIN B20	17050015000 K20FTIALN	B14	17050108800 K20FTIALN	B16	17050204650 K20FTIALN	B18	17050212800 K20FTIALN	B20
17050016000 K20FTIALN B14 170500190100 K20FTIALN B16 170500205000 K20FTIALN B18 17050213800 K20FTIALN B20 17050016500 K20FTIALN B14 17050019200 K20FTIALN B16 17050025100 K20FTIALN B18 17050214000 K20FTIALN B20	17050015500 K20FTIALN	B14	17050108900 K20FTIALN	B16	17050204700 K20FTIALN	B18	17050213000 K20FTIALN	B20
17050016000 K20FTIALN B14 170500190100 K20FTIALN B16 170500205000 K20FTIALN B18 17050213800 K20FTIALN B20 17050016500 K20FTIALN B14 17050019200 K20FTIALN B16 17050025100 K20FTIALN B18 17050214000 K20FTIALN B20	17050015800 K20FTIALN	B14	17050109000 K20FTIALN	B16	17050204900 K20FTIALN	B18	17050213500 K20FTIALN	B20
	17050016000 K20FTIALN	B14	17050109100 K20FTIALN	B16	17050205000 K20FTIALN	B18	17050213800 K20FTIALN	B20
17050016800 K20FTIALNB14 17050109300 K20FTIALNB16 17050205200 K20FTIALNB18 17050214500 K20FTIALNB20	17050016500 K20FTIALN	B14	17050109200 K20FTIALN	B16	17050205100 K20FTIALN	B18	17050214000 K20FTIALN	B20
	17050016800 K20FTIALN	B14	17050109300 K20FTIALN	B16	17050205200 K20FTIALN	B18	17050214500 K20FTIALN	B20

	Номер по каталогу	Стр.	Номер по каталогу	Стр.	Номер по каталогу	Стр.	Номер по каталогу	Стр.
1905 1906	17050214800 K20FTIALN	R20	17050314000 K20FTIALN	B22	17051109500 K20FTIAIN	R24	17051205400 K20FTIAI N	B26
1905 1906 DEFINION 120 1905 1906 DEFINION 127 1905 1906 DEFINION 129 1905 1906 DEFINION 120 1905 1906 DEFINION	17050215500 K20FTIALN	B20	17050314500 K20FTIALN	B22	17051109700 K20FTIALN	B24	17051205550 K20FTIALN	B26
1905 1905	17050215800 K20FTIALN	B20	17050314800 K20FTIALN	B22			17051205600 K20FTIALN	B26
1905 1905								
195001790007070144 290 19500007070144 592 19510190000707144 592 19510190000707144 592 19510190000707144 593 195101900000707144 593 195101900000707144 593 195101900000707144 593 195101900000707144 593 195101900000000000000000000000000000000								
Treatment Communication Treatment Treatment Communication Trea								
1966 176 19								
PRODUCTION COMPANIES 19.00 17.00								
PROSESSION CONTINUE								
1950 1950								
PASSES PRODUCED FINAL PASS PASSES PROFINEN PASSES PROFINEN PASS PAS								
PASSEST PROTECTION CONTINUE DESTRUMENT								
PARSEQUENCY MAIN 1971 1985 1995 1985								
PRESIDENCE CHINA 221 775111800 COSTINUS 223 775111800 COSTINUS 225 775502000 COSTINUS 227 77550200 COSTINUS 227 775502000 COSTINUS 227 775502000 COSTINUS 227 7755020000 COSTINUS 227 775502000 COSTINUS 227 775502000 COSTINUS								
POST POST	17050220000 K20FTIALN	B20	17051103600 K20FTIALN	B23	17051111200 K20FTIALN	B25	17051207000 K20FTIALN	B27
1909-1909-00-00-00-00-00-00-00-00-00-00-00-00-	17050303000 K20FTIALN	B21	17051103700 K20FTIALN	B23	17051111300 K20FTIALN	B25	17051207100 K20FTIALN	B27
1995GEGRING CEPTIMA	17050303300 K20FTIALN	B21	17051103800 K20FTIALN	B23	17051111400 K20FTIALN		17051207200 K20FTIALN	B27
1795535500 CERTINIAN								
1755838000 DOTAM 27 175518000 DOTAM 23 175511800 DOTAM 257 175583000 DOTAM 257 17558								
1755000470 CORTINA 9.27 7551 104000 PORTINA 8.23 7551 111000 CORTINA 8.25 7551 104000 PORTINA 8.27 7550004700 CORTINA 8.27								
175556376 COTINION								
1755089000 COPTION 22 1755104900 COPTION 23 2755104900 COPTION 26 2755104900 COPTI								
PASSONOPHIC NOTIFIED 22 1765 10460 CORTINAL 827 1775 17660 CORTINAL 827 1775								
PARSONSHAME DEFINING 22 1705 104700 COTININS 23 1705 104700 COTININS 26 1705 104900 COTININS 27 1705 104900 COTININS 28 1705								
1755808900 COTTIALN								
1755805000 (20FBM)								
1765005500 CVEFINIM								
1775/05055500 CEPTIMN	17050305160 K20FTIALN	B21	17051105100 K20FTIALN	B23	17051114000 K20FTIALN	B25	17051208400 K20FTIALN	B27
1705003000 COFFINIM	17050305500 K20FTIALN	B21	17051105200 K20FTIALN	B23	17051114500 K20FTIALN	B25	17051208500 K20FTIALN	B27
1765809590 COPTINIAN	17050305560 K20FTIALN	B21	17051105300 K20FTIALN	B23			17051208600 K20FTIALN	B27
1705/3006/00 COPTIMAN								
1705/08/09/500 (20PTIALN 221 1705 1105/09 (20PTIALN 223 1705 1116/00 (20PTIALN 225 1705 1209/100 (20PTIALN 227 1705 1005/09 (20PTIALN 2								
1705/0306/500 (20PTIALN 221 1705/100700 (20PTIALN 223 1705/100700 (20PTIALN 227 1705/0306/500 (20PTIALN 221 1705/100700 (20PTIALN 223 1705/100700 (20PTIALN 227 1705/0306/500 (20PTIALN 221 1705/100700 (20PTIALN 223 1705/100700 (20PTIALN 227 1705/0306/500 (20PTIALN 221 1705/100700 (20PTIALN 223 1705/100700 (20PTIALN 227 1705/0306/500 (20PTIALN 221 1705/0406/60PTIALN 224								
17650369600 K20FTIMM								
17051096000 K20FHMN								
17650307000 КОРТНЫМ B27 1765106000 КОРТНЫМ B27 1765106000 КОРТНЫМ B27 17650307500 КОРТНЫМ B27 176503000 КОРТНЫМ B27 176503000 KOPTHAM B27 176503000 KOPTHAM B27 1765030								
17053037140 K26FILMN								
170500307540 K20FTMIN B21 17051106300 K20FTMIN B24 17051118500 K20FTMIN B25 17051209700 K20FTMIN B27 1705106300740 K20FTMIN B27 17051	17050307140 K20FTIALN	B21						
17050309700 K20FINAN 821 17051106400 K20FINAN 824 17051119000 K20FINAN 825 1705120900 K20FINAN 827 17050309000 K20FINAN 821 17051106500 K20FINAN 824 17051119000 K20FINAN 825 17051210000 K20FINAN 827 17050309000 K20FINAN 821 17051106600 K20FINAN 824 17051119000 K20FINAN 825 17051210000 K20FINAN 827 17050309000 K20FINAN 821 17051106600 K20FINAN 824 1705110900 K20FINAN 825 1705120000 K20FINAN 827 17050309000 K20FINAN 821 17051100600 K20FINAN 824 1705110000 K20FINAN 825 1705120000 K20FINAN 827 17050309000 K20FINAN 821 1705110700 K20FINAN 824 170510000 K20FINAN 826 1705120000 K20FINAN 827 17050309500 K20FINAN 821 1705110700 K20FINAN 824 17051203000 K20FINAN 826 1705120000 K20FINAN 827 17050309500 K20FINAN 821 1705110700 K20FINAN 824 17051203000 K20FINAN 826 1705120000 K20FINAN 827 17050309500 K20FINAN 821 1705110700 K20FINAN 824 17051203000 K20FINAN 826 1705120000 K20FINAN 827 17050309500 K20FINAN 821 1705110700 K20FINAN 824 17051203000 K20FINAN 826 1705120000 K20FINAN 828 17051	17050307500 K20FTIALN	B21	17051106200 K20FTIALN	B24	17051118000 K20FTIALN	B25	17051209600 K20FTIALN	B27
17050307940 K20FIIALN	17050307540 K20FTIALN	B21	17051106300 K20FTIALN	B24	17051118500 K20FTIALN	B25	17051209700 K20FTIALN	B27
1705030000 K20FTIAIN B21 17051106600 K20FTIAIN B24 17051119600 K20FTIAIN B25 17051210100 K20FTIAIN B27 17050308300 K20FTIAIN B21 17051106700 K20FTIAIN B24 17051102000 K20FTIAIN B25 17051210200 K20FTIAIN B27 17051030900 K20FTIAIN B27 17051								
170510308330 K20FIIAIN								
170510308500 K20FIIAIN								
17050309000 K20FTIALN B21 17051107000 K20FTIALN B24 17051203000 K20FTIALN B26 17051210400 K20FTIALN B27 170510200 K20FTIALN B28 1705102000 K20FTIALN B29 1705102000 K20FTIALN B2								
17050309730 K20FTIALN B.21 17051107100 K20FTIALN B.24 17051203100 K20FTIALN B.26 17051210500 K20FTIALN B.27 170503099500 K20FTIALN B.21 17051107200 K20FTIALN B.24 17051203200 K20FTIALN B.26 17051210500 K20FTIALN B.27 170503099500 K20FTIALN B.21 17051107300 K20FTIALN B.24 17051203300 K20FTIALN B.26 17051210700 K20FTIALN B.28 17051203300 K20FTIALN B.26 17051211300 K20FTIALN B.28 17051203300 K20FTIALN B.26 17051211300 K20FTIALN B.28 17051203300 K20FTIALN B.26 17051203300 K20FTIALN B.28 17051203300 K20FTIALN B.28 17051203300 K20FTIALN B.26 17051203300 K20FTIALN B.28 17051203300 K20FTIALN B.2								
17053039500 K20FTIALN								
17050309720 K20FTIALN								
17050309800 K20FTIALN								
17050309920 K20FTIALN								
17050310200 K20FTIALIN B21 17051107700 K20FTIALIN B24 17051203600 K20FTIALIN B26 17051211100 K20FTIALIN B28 17050310320 K20FTIALIN B22 17051107800 K20FTIALIN B24 17051203700 K20FTIALIN B26 17051211200 K20FTIALIN B28 17050310720 K20FTIALIN B27 17051108000 K20FTIALIN B28 17051203800 K20FTIALIN B26 17051211300 K20FTIALIN B28 17050310800 K20FTIALIN B27 17051108000 K20FTIALIN B28 17051203800 K20FTIALIN B26 17051211300 K20FTIALIN B28 170512031800 K20FTIALIN B26 17051211300 K20FTIALIN B28 1705120311000 K20FTIALIN B27 17051031100 K20FTIALIN B27 17051031100 K20FTIALIN B28 1705120331100 K20FTIALIN B28 1705120331100 K20FTIALIN B29 1705120331100 K20FTIALIN B27 170510311500 K20FTIALIN B28 1705120331100 K20FTIALIN B29 17051203300 K20FTIALIN B29 17	17050309920 K20FTIALN	B21	17051107500 K20FTIALN	B24	17051203400 K20FTIALN	B26	17051210900 K20FTIALN	B28
17050310320 K20FTIALN B22 17051107800 K20FTIALN B24 17051203700 K20FTIALN B26 17051211200 K20FTIALN B28 17050310500 K20FTIALN B22 17051108000 K20FTIALN B24 17051203800 K20FTIALN B26 17051211300 K20FTIALN B28 17050310720 K20FTIALN B27 17051108100 K20FTIALN B28 17051203800 K20FTIALN B26 17051211400 K20FTIALN B28 17050310800 K20FTIALN B27 17051108100 K20FTIALN B28 17051203800 K20FTIALN B26 17051211500 K20FTIALN B28 17050311000 K20FTIALN B27 1705108300 K20FTIALN B28 17051204000 K20FTIALN B26 17051211600 K20FTIALN B28 17050311500 K20FTIALN B27 1705108400 K20FTIALN B28 17051204000 K20FTIALN B26 17051211600 K20FTIALN B28 17050311500 K20FTIALN B27 1705108400 K20FTIALN B28 17051204300 K20FTIALN B29 17051108800 K20FTIALN B28 17051204300 K20FTIALN B29 17051204300 K20FTIALN B29 17051204300 K20FTIALN B29 17051204300 K20FTIALN B28 17051204300 K20FTIALN B29 17051204300 K20FTIALN B28 17051204300 K20FTIALN B29 1705120	17050310000 K20FTIALN	B21	17051107600 K20FTIALN	B24	17051203500 K20FTIALN	B26	17051211000 K20FTIALN	B28
17050310500 K20FTIALN B22 17051107900 K20FTIALN B24 17051203800 K20FTIALN B26 17051211300 K20FTIALN B28 17050310800 K20FTIALN B27 1705108000 K20FTIALN B28 17051203900 K20FTIALN B28 17051201100 K20FTIALN B28 17050310800 K20FTIALN B29 1705108100 0 K20FTIALN B29 1705108100 K20FTIALN B29 1705	17050310200 K20FTIALN	B21	17051107700 K20FTIALN	B24	17051203600 K20FTIALN	B26	17051211100 K20FTIALN	B28
17050310720 K20FTIALN B22 17051108000 K20FTIALN B24 17051203900 K20FTIALN B26 17051211400 K20FTIALN B28 17050310800 K20FTIALN B26 17051211500 K20FTIALN B28 17050311000 K20FTIALN B27 1705108300 K20FTIALN B28 17051204000 K20FTIALN B28 17050311500 K20FTIALN B29 1705108400 K20FTIALN B24 17051204000 K20FTIALN B26 17051211600 K20FTIALN B28 17050311500 K20FTIALN B27 1705108400 K20FTIALN B28 1705108400 K20FTIALN B29 1705108500 K20FTIALN B29 17051218500								
17050310800 K20FTIALN B22 17051108100 K20FTIALN B24 17051204000 K20FTIALN B26 17051211500 K20FTIALN B28 17050311500 K20FTIALN B27 1705108300 K20FTIALN B28 17051204100 K20FTIALN B28 17051204100 K20FTIALN B28 17051204100 K20FTIALN B28 17050311500 K20FTIALN B29 1705108400 K20FTIALN B24 17051204200 K20FTIALN B26 17051211700 K20FTIALN B28 17050311800 K20FTIALN B27 1705108500 K20FTIALN B28 17051204300 K20FTIALN B28 17051204300 K20FTIALN B29 1705120								
17050311000 K20FTIALN B22 17051108300 K20FTIALN B24 17051204100 K20FTIALN B26 170512111000 K20FTIALN B28 17050311500 K20FTIALN B27 1705108400 K20FTIALN B28 1705108500 K20FTIALN B29 17051213500								
17050311500 K20FTIALN B22 17051108400 K20FTIALN B24 17051204200 K20FTIALN B26 17051211700 K20FTIALN B28 17050311800 K20FTIALN B27 1705108500 K20FTIALN B28 1705108500 K20FTIALN B29 1705108600 K20FTIALN B29 17051213800 K20FTIALN B29 17051213300 K20FTIALN B29 1705120313300 K20FTIALN B29 1705120313300 K20FTIALN B29 17051203								
17050311800 K20FTIALN B22 17051108500 K20FTIALN B24 17051204300 K20FTIALN B26 17051211800 K20FTIALN B28 17050311910 K20FTIALN B27 170510108600 K20FTIALN B28 170510108700 K20FTIALN B29 170510108700 K20FTIALN B24 17051204600 K20FTIALN B26 17051212000 K20FTIALN B28 17050312300 K20FTIALN B27 170510108800 K20FTIALN B28 170510108800 K20FTIALN B29 1705120108800 K20FTIALN B29 17051201800 K20FTIALN B29 17051201800 K20FTIALN B29 17051201800 K20FTIALN B29 17051201800 K20FTIALN B29 1								
1705031910 K20FTIALN B22 17051108600 K20FTIALN B24 17051204400 K20FTIALN B26 17051211900 K20FTIALN B28 17050312000 K20FTIALN B22 17051108700 K20FTIALN B24 17051204600 K20FTIALN B26 17051212000 K20FTIALN B28 17050312300 K20FTIALN B27 17051108800 K20FTIALN B28 17051204600 K20FTIALN B29 17051								
17050312000 K20FTIALN B22 17051108700 K20FTIALN B24 17051204600 K20FTIALN B26 17051212000 K20FTIALN B28 17050312300 K20FTIALN B26 17051212500 K20FTIALN B28 17050312500 K20FTIALN B26 17051212500 K20FTIALN B28 17050312500 K20FTIALN B27 17050312500 K20FTIALN B28 17050312500 K20FTIALN B28 17050312500 K20FTIALN B29 1705								
17050312300 K20FTIALN B22 17051108800 K20FTIALN B24 17051204650 K20FTIALN B26 17051212500 K20FTIALN B28 170510312500 K20FTIALN B26 17051212500 K20FTIALN B27 17051204700 K20FTIALN B28 17051204700 K20FTIALN B28 17051204700 K20FTIALN B28 17051204700 K20FTIALN B29 170								
17050312500 K20FTIALN B22 17051108900 K20FTIALN B24 17051204700 K20FTIALN B26 17051212800 K20FTIALN B28 170510312700 K20FTIALN B26 17051212800 K20FTIALN B27 17051204900 K20FTIALN B28 17051204900 K20FTIALN B28 17051204900 K20FTIALN B28 17051204900 K20FTIALN B28 17051204900 K20FTIALN B29 170								
17050312700 K20FTIALN B22 17051109000 K20FTIALN B24 17051204900 K20FTIALN B26 17051213000 K20FTIALN B28 17050312800 K20FTIALN B22 17051109100 K20FTIALN B24 17051205000 K20FTIALN B26 17051213500 K20FTIALN B28 17050313000 K20FTIALN B22 17051109200 K20FTIALN B24 17051205100 K20FTIALN B26 17051213800 K20FTIALN B28 17050313500 K20FTIALN B22 17051109300 K20FTIALN B24 17051205200 K20FTIALN B26 17051214000 K20FTIALN B28 17050313800 K20FTIALN B22 17051109400 K20FTIALN B24 17051205200 K20FTIALN B26 17051214000 K20FTIALN B28 17050313800 K20FTIALN B22 17051109400 K20FTIALN B24 17051205200 K20FTIALN B26 17051214000 K20FTIALN B28								
17050313000 K20FTIALN B22 17051109200 K20FTIALN B24 17051205100 K20FTIALN B26 17051213800 K20FTIALN B28 17050313500 K20FTIALN B22 17051109300 K20FTIALN B24 17051205200 K20FTIALN B26 17051214000 K20FTIALN B28 17050313800 K20FTIALN B22 17051109400 K20FTIALN B24 17051205300 K20FTIALN B26 17051214500 K20FTIALN B28								
17050313500 K20FTIALN								
17050313800 K20FTIALN								
		B22	1 1/U51109400 K20FTIALN	B24	1 1/051205300 K20FTIALN	B26	1/051214500 K20FTIALN	B28

WWW.WIDIA.COM F15

Номер по каталогу	Стр.	Номер по каталогу	Стр.	Номер по каталогу	Стр.	Номер по каталогу	Стр.
17051214800 K20FTIALN	B28	BDMT070302ERMS TN6425	A60	DV40BRFX185060M WG	B103	HPGTO6T3DZERGD3W TN6525	A39
17051215000 K20FTIALN	B28	BDMT070302ERMS TN6430		DV40BRFX245060M WG	B103	HPGTO6T3DZERGD3W TN7525	A39
17051215500 K20FTIALN	B28	BDMT070304ERML TN6405	A60	DV40BRFX320060M WG	B103	HPGTO6T3DZERLD TN2510	A38
17051215800 K20FTIALN	B28	BDMT070304ERML TN6425		DV40BRFX420060M WG	B103	HPGTO6T3DZERLD TN5515	A38
17051216000 K20FTIALN		BDMT070304ERML TN6430		DV40BRFX550065M WG		HPGTO6T3DZERLD TN6510	
17051216500 K20FTIALN		BDMT070304ERMS TN6405		DV50BRFX320060M WG		HPGTO6T3DZERLD TN6520	
17051216800 K20FTIALN		BDMT070304ERMS TN6425		DV50BRFX420060M WG		HPGTO6T3DZERLD TN6525	
17051217000 K20FTIALN		BDMT070304ERMS TN6430		DV50BRFX550060M WG		HPGTO6T3DZERLD TN7525	
17051217500 K20FTIALN		BDMT070308ERML TN6405		DV50BRFX720065M WG		HPGTO6T3DZFRLDAL THM	
17051217800 K20FTIALN		BDMT070308ERML TN6425		HNGJ070432ANENLD TN6510		HPGTO6T3DZFRLDAL THM-U	
17051218000 K20FTIALN		BDMT070308ERML TN6430		HNGJ070432ANENLD TN6525		HPGTO6T3DZFRLDAL TN6501	
17051218500 K20FTIALN		BDMT11T304ERMLTN6405		HNGJO70432ANENLD TN6540		HPGTO6T3DZFRLDAL TN6502	
17051218800 K20FTIALN		BDMT11T304ERMLTN6430		HNGJO704ANENLD TN5515		HPPTO6T3DZENGD TN5515 HPPTO6T3DZENGD TN6510	
17051219000 K20FTIALN 17051219500 K20FTIALN		BDMT11T304ERMS TN6425 BDMT11T304ERMS TN6430		HNGJO7O4ANENLD TN6505 HNGJO7O4ANENLD TN6510			
17051219800 K20FTIALN		BDMT11T304ERMS TN6430BDMT11T308ERML TN6405		HNGJO704ANENLD TN6520		HPPTO6T3DZENGD TN6520 HPPTO6T3DZENGD TN6525	
17051219000 K20FTIALN		BDMT11T308ERMLTN6430		HNGJO704ANENLD TN6525		HPPTO6T3DZENGD TN6540	
193.338		BDMT11T308ERMS TN6425		HNGJ0704ANENLD TN6540		HPPTO6T3DZENGD TN7525	
193.341		BDMT11T308ERMS TN6430		HNGJO704ANFNLDJ THM-U		HPPTO6T3DZENGD TN7535	
193.342		BDMT11T312ERML TN6405		HNGIO704ANFNI.DI TN6501		HSK100ARFX420080M WG	
193.343		BDMT11T312ERMLTN6430		HNGJ0905ANSNHD TN6520		HSK100ARFX550090M WG	
193.364		BDMT11T316ERMLTN6405		HNGIO905ANSNHD TN6525		HSK100ARFX720105M WG	
AONT10T308MH TN5515		BDMT11T316ERMLTN6430		HNGJ0905ANSNHD TN6540		HSK63ARFX185060M WG	
AONT10T308MH TN5515		BDMT11T320ERMLTN6405		HNGJ0905ANENLD TN5515		HSK63ARFX245060M WG	
AONT10T308MH TN6525		BDMT11T320ERMLTN6430		HNGJ0905ANENLD TN6520		HSK63ARFX320060M WG	
AONT10T308MH TN6525	A109	BDMT11T331ERML TN6405	A65	HNGJ0905ANENLD TN6525	A26	HSK63ARFX420070M WG	B105
AONT10T308MH TN6540	A88	BDMT11T331ERML TN6430	A65	HNGJ0905ANENLD TN6540	A26	HSK63ARFX550080M WG	B105
AONT10T308MH TN6540	A109	BDMT170404ERML TN6405	A71	HNGJ0905ANENLD TN7535	A26	HSK63ARFX720095M WG	B105
AONT10T308MH TN7525	A88	BDMT170404ERML TN6430	A71	HNGJ0905ANFNLDJ THM-U	A31	KM32TSFBH022029 WG	B101
AONT10T308MH TN7525	A109	BDMT170404ERMS TN6425	A71	HNGJ0905ANFNLDJ TN6501	A31	KM32TSFBH029038 WG	B101
AONT10T308MH TN7535	88A	BDMT170404ERMS TN6430	A71	HNGJ0905ANSNGD TN5515	A27, A31	KM32TSFBH038050 WG	B101
AONT10T308MH TN7535		BDMT170408ERML TN6405		HNGJ0905ANSNGD TN6520		KM32TSTCHS022030 WG	
AONT10T308MH TTM		BDMT170408ERML TN6430		HNGJ0905ANSNGD TN6525	,	KM32TSTCHS030039 WG	
AONT10T308MH TTM		BDMT170408ERMS TN6425		HNGJ0905ANSNGD TN6540	,	KM32TSTCHS039050 WG	
AONT10T308ML THM		BDMT170408ERMS TN6430		HNGJ0905ANSNGD TN7535	,	KM40TSFBH029038 WG	
AONT10T308ML THM		BDMT170412ERML TN6405		HNGJ0905ANSNHD TN5515	, ,	KM40TSFBH038050 WG	
AONT10T308ML TN5515		BDMT170412ERML TN6430		HNGJ0905ANSNHD TN6520	,	KM40TSFBH050065 WG	
AONT10T308ML TN5515		BDMT170416ERML TN6405		HNGJ0905ANSNHD TN6525	,	KM40TSFBHBB006022 WG	
AONT10T308ML TN6501		BDMT170416ERML TN6430		HNGJ0905ANSNHD TN6540	,	KM40TSTCD110R3M W	
AONT10T308ML TN6501		BDMT170420ERML TN6405		HNPJ070432ANSNHD TN6510		KM40TSTCD120R3M W	
AONT10T308ML TN6510 AONT10T308ML TN6510		BDMT170420ERML TN6430 BDMT170431ERML TN6405		HNPJ070432ANSNHD TN6520 HNPJ070432ANSNHD TN6540		KM40TSTCD130R3M W	
AONT10T308ML TN6510		BDMT170431ERML TN6430		HNPJO70432ANSNHD TN7535		KM40TSTCD140R3M W KM40TSTCD150R3M W	
AONT101300ML TN6520		BT40BRFX185060M WG		HNPJO704ANSNGD TN5515		KM40TSTCD160R3M W	
AONT101306ML TN6525	•••••••••••••••••••••••••••••••••••••••	BT40BRFX245060M WG		HNP10704ANSNGD TN6510		KM40TSTCD170R3M W	
AONT10T308ML TN6525		BT40BRFX320060M WG		HNPJ0704ANSNGD TN6520		KM40TSTCD180R3M W	
AONT10T308ML TN6540		BT40BRFX420060M WG		HNPJ0704ANSNGD TN6540		KM40TSTCD190R3M W	
AONT10T308ML TN6540		BT40BRFX550065M WG		HNPJ0704ANSNGD TN7535		KM40TSTCD200R3M W	
AONT10T308ML TN7525		BT50BRFX320060M WG		HNPJ0704ANSNHD TN5515		KM40TSTCD210R3M W	
AONT10T308ML TN7525		BT50BRFX420060M WG		HNPJ0704ANSNHD TN6510		KM40TSTCD220R3M W	
AONT10T308ML TN7535		BT50BRFX550065M WG		HNPJ0704ANSNHD TN6520		KM40TSTCD230R3M W	
AONT10T308ML TN7535		BT50BRFX720070M WG		HNPJ0704ANSNHD TN6540		KM40TSTCD240R3M W	
AONT10T308MM THM	A88	CPNT060204T THM	A123	HNPJ0704ANSNHD TN7535	A19	KM40TSTCD250R3M W	B53
AONT10T308MM THM	A109	CPNTO60204T TN7535	A123	HNPJ090543ANSNHD TN6520	A27, A31	KM40TSTCHS030039 WG	B89
AONT10T308MM TN5515	88A	CPNT060204T TTM	A123	HNPJ090543ANSNHD TN6540	A27, A31	KM40TSTCHS039050 WG	B89
AONT10T308MM TN5515	A109	CPNT080308T THM	A123	HNPJ0905ANSNGD TN5515	A27, A31	KM40TSTCHS050067 WG	B89
AONT10T308MM TN7525	A88	CPNT080308T TN7535	A123	HNPJ0905ANSNGD TN6520	A27, A31	KM50TSFBH050065 WG	B101
AONT10T308MM TN7525	A109	CPNT080308T TTM	A123	HNPJ0905ANSNGD TN6540	A27, A31	KM50TSFBH065088 WG	B101
AONT10T308MM TN7535	88A	CPNTO9T308T THM	A123	HNPJ0905ANSNGD TN7535	A27, A31	KM50TSTCD110R3M W	
AONT10T308MM TN7535		CPNT09T308T TN7535		HNPJ0905ANSNHD TN5515	A27, A31	KM50TSTCD120R3M W	B54
AONT10T308MM TTI25		CPNTO9T308T TTM		HNPJ0905ANSNHD TN6520		KM50TSTCD130R3M W	
AONT10T308MM TTI25		CPNT120408T THM		HNPJ0905ANSNHD TN6540	,	KM50TSTCD140R3M W	
BDGT11T302FRAL THR-S		CPNT120408T TN7535		HPGTO6T3DZENGD TN2510		KM50TSTCD150R3M W	
BDGT11T304FRAL THR-S		CPNT120408T TTM		HPGTO6T3DZENGD TN5515		KM50TSTCD160R3M W	
BDGT11T308FRAL THR-S		CV40BRFX185236 WG		HPGTO6T3DZENGD TN6510		KM50TSTCD170R3M W	
BDGT170404FRAL THR-S		CV40BRFX245236 WG		HPGTO6T3DZENGD TN6520		KM50TSTCD180R3M W	
BDGT170408FRAL THR-S		CV40BRFX320236 WG		HPGTO6T3DZENGD TN6525		KM50TSTCD190R3M W	
BDGT170420FRAL THR-S		CV40BRFX420236 WG		HPGTO6T3DZENGD TN6540		KM50TSTCD200R3M W	
BDGT170431FRAL THR-S		CV40BRFX550256 WG		HPGTO6T3DZENGD TN7525		KM50TSTCD210R3M W	
BDMT070302ERML TN6405BDMT070302ERML TN6425		CV50BRFX320236 WG		HPGTO6T3DZENGD TN7535 HPGTO6T3DZERGD3W TN2510		KM50TSTCD220R3M W KM50TSTCD230R3M W	
BDMT070302ERML TN6430		CV50BRFX550236 WG		HPGTO6T3DZERGD3W TN5515		KM50TSTCD240R3M W	
BDMT070302ERMS TN6405BDMT070302ERMS TN6405		CV50BRFX720276 WG		HPGTO6T3DZERGD3W TN6510		KM50TSTCD250R3M W	
DOMEON GOOZENING INCHUS	AUU	. CTJUDNINI LULI U 11U		01001002EA000W INOJIU	AJ/	MINDUIDICULAUMONI III	۳

Стр. Номер по каталогу KM50TSTCHS050067 WGB89 KM50TSTCHS067088 WGB89 KM50TSTCP250R3M WB68 KM50TSTCP260R3M WB68 KM50TSTCP270R3M WB68 KM50TSTCP280R3M WB68 KM50TSTCP290R3M WB68 KM50TSTCP300R3M WB68 KM50TSTCP310R3M WB68 KM50TSTCP320R3M WB68 KM50TSTCP330R3M WB68 KM50TSTCP340R3M WB68 KM50TSTCP350R3M WB68 KM50TSTCP360R3M WB68 KM50TSTCP370R3M WB68 KM50TSTCP380R3M WB68 KM50TSTCP390R3M WB68 KM50TSTCP400R3M WB68 KM50TSTCP410R3M WB68 KM50TSTCP420R3M WB68 KM50TSTCP430R3M WB68 KM50TSTCP440R3M WB68 KM50TSTCP450R3M WB68 KM63TSFBH065088 WGB101 KM63TSFBH088115 WGB101 KM63TSTCHS067088 WGB89 KM63TSTCHS088115 WGB89 KM63TSTCP350R3M WB70 KM63TSTCP360R3M WB70 KM63TSTCP370R3M WB70 KM63TSTCP380R3M WB70 KM63TSTCP390R3M WB70 KM63TSTCP400R3M WB70 KM63TSTCP410R3M WB70 KM63TSTCP420R3M WB70 KM63TSTCP430R3M WB70 KM63TSTCP440R3M WB70 KM63TSTCP450R3M WB70 KM63TSTCP460R3M WB70 KM63TSTCP470R3M WB70 KM63TSTCP480R3M WB70 KM63TSTCP490R3M WB70 KM63TSTCP500R3M WB70 KM63XMZTCP350R3YM WB69 KM63XMZTCP360R3YM WB69 KM63XMZTCP370R3YM WB69 KM63XMZTCP380R3YM WB69 KM63XMZTCP390R3YM WB69 KM63XMZTCP400R3YM WB69 KM63XMZTCP410R3YM WB69 KM63XMZTCP420R3YM WB69 KM63XMZTCP430R3YM WB69 KM63XMZTCP440R3YM WB69 KM63XMZTCP450R3YM WB69 KM63XMZTCP460R3YM WB69 KM63XMZTCP470R3YM WB69 KM63XMZTCP480R3YM WB69 KM63XMZTCP490R3YM WB69 KM63XMZTCP500R3YM WB69 LPGX06T10334 TN6030B55 LPGX06T10334 TN7015B55 LPGX06T10334 TPC35......B55 LPGX07T20434 TN6030B55 LPGX07T20434 TN7015B55 LPGX07T20434 TPC35......B55 LPGX07T20436 THMB55 LPGX07T20436 TN5515B55 LPGX07T20436 TN6030B55 LPGX07T20436 TN7015B55 LPGX07T20436 TPC35B55 LPGX10030834 TN6030B55 LPGX10030834 TN7015B55 Номер по каталогу Стр. LPGX10030836 THM ..B55 LPGX10030836 TN5515B55 LPGX10030836 TN6030 LPGX10030836 TN7015 LPGX10030836 TPC35B55 M1200D025Z02A20HN07L120A17 M1200D025Z02A25HN07L200 M1200D025Z02B20HN07A16 M1200D025Z02M16HN07A16 M1200D025Z03A20HN07L120A17 M1200D025Z03A25HN07L200A17 M1200D025Z03B20HN07A16 M1200D025Z03M16HN07A16 M1200D032Z03A25HN07L130 M1200D032Z03B25HN07A16 M1200D032703M16HN07 A16 M1200D032Z04A25HN07L130A17 M1200D032Z04B25HN07A16 M1200D032Z04M16HN07A16 M1200D040Z03B25HN09A24 M1200D040Z03HN09 M1200D040Z04B25HN09A24 M1200D040Z04HN07A18 M1200D040Z04HN09A25 M1200D040Z04M16HN07A16 M1200D040Z05HN07 M1200D040Z05M16HN07A16 M1200D050Z04HN07A18 M1200D050Z04HN09 M1200D050705HN07A18 M1200D050Z05HN09......A25 M1200D050Z06HN07A18 M1200D063Z04HN07 M1200D063Z04HN09..... M1200D063Z06HN07A18 M1200D063Z06HN09..... .A25 M1200D063Z07HN09A25 M1200D063Z08HN07......A18 M1200D080Z05HN07A18 M1200D080Z05HN09 M1200D080Z06HN09A25 M1200D080Z08HN07A18 M1200D080Z09HN09..... Δ25 M1200D080Z10HN07 M1200D100Z06HN07......A18 M1200D100Z06HN09......A25 M1200D100Z08HN09 M1200D100709HN07 ...A18 M1200D100Z11HN09......A25 M1200D100Z12HN07..... M1200D125Z08HN09 M1200D125710HN09 M1200D125Z14HN09......A25 M1200D160712HN09 .A25 M1200D160Z16HN09..... ..A25 M1200D200Z16HN09......A25 M1200D250Z20HN09A25 M1200D315Z24HN09..... M1200HF050Z04HN09A30 M1200HF080Z06HN09A30 M1200HF100Z08HN09A30 M1200HF160Z12HN09A30 M170D012Z02A12RD07TL100..... M170D012Z02A16RD07TL120......A136 M170D012Z02A16RD07TL140......A136 M170D012Z02M06RD07T......A136 M170D012Z02M08RD07TA136 M170D015Z02A16RD07L110A139 M170D015Z02A16RD07L150A139 M170D015Z02B16RD07A138

M170D015Z02M08RD07......A138

Номер по каталогу M170D015Z03A16RD07TL130..... .A136 M170D015Z03M08RD07TA136 M170D016Z02A16RD07L150A139 M170D016Z03A16RD07L110 M170D016Z03M08RD07......A138 M170D020Z02A20RD10L140A145 M170D020Z02A25RD10L160A145 M170D020Z02A25RD10L180A145 M170D020Z02B20RD10A144 M170D020Z02M10RD10......A144 M170D020Z03A20RD07L140A139 M170D020Z04A20RD07L115A139 M170D020Z04M10RD07......A138 M170D022Z02A2ORD10L160A145 M170D024Z02M12RD12......A150 M170D025Z02A25RD10L180A145 M170D025Z02A25RD10L220A145 M170D025Z02M12RD10......A144 M170D025Z03B25RD10A144 M170D025Z03M12RD10......A144 M170D025Z05M12RD07......A138 M170D028Z02A25RD10L200A145 M170D030Z04M16RD10......A144 M170D030Z05M16RD07......A138 M170D032Z02A32RD12L200A151 M170D032Z02A32RD12L300A151 M170D032Z02M16RD16......A156 M170D032Z03B32RD12A150 M170D035Z02A32RD12L300A151 M170D035Z03M16RD12......A150 M170D035Z04M16RD12......A150 M170D035Z05M16RD10......A144 M170D035Z06M16RD07......A138 M170D040Z04RD12A152 M170D040Z05RD10A146 M170D042Z05M16RD12......A150 M170D042Z05RD10A146 M170D042Z06M16RD10......A144 M170D050Z04RD16A156 M170D050Z05RD12A152 M170D050Z06RD10A146 M170D052Z04RD16A156 M170D052Z05RD12A152 M170D052Z06RD10A146 M170D063Z05RD16A156 M170D063Z06RD12A152 M170D066Z05RD16A156 M170D066Z06RD12A152 M170D080Z06RD16A156 M170D080Z07RD12A152 M170D100Z07RD16A156 M170D100Z08RD12A152 M270BD010A12L140 WA164 M270BD010A12L140C WA164 M270BD010B12L90 WA163 M270BD010M08 WA162 M270BD012A12L145 WA164 M270BD012A12L145C WA164 M270BD012B12L95 WA163 M270BD012M08 WA162 M270BD016A16L155C WA164 M270BD016B16L105 WA163 M270BD016M08 WA162 M270BD020A20L170 WA164 M270BD020A20L170C WA164 M270BD020B20L120 WA163 M270BD020M10 WA162 M270BD025A25L195 WA164

M270BD025B25L145 WA163

M270BD025M12 WA162

M270BD032A32L205 WA164

Номер по каталогу Стр. M270BD032B32L155 WA163 M270BD032M16 WA162 M270BF10 THMA165 M270BF10 TN2505..... M270BF10 TN2510......A165 M270BF12 THMA165 M270BF12 TN2505......A165 M270BF12 TN2510......A165 M270BF12 TN6525......A165 M270BF16 THMA165 M270BF16 TN2510......A165 M270BF16 TN6525......A165 M270BF16 TTI25A165 M270BF16 TTM......A165 M270BF20 THM A165 M270BF20 TN2505......A165 M270BF20 TN2510......A165 M270BF20 TN6525......A165 M270BF20 TTM......A165 M270BF25 THMA165 M270BF25 TN2505......A165 M270BF25 TN2510......A165 M270BF25 TTM......A165 M270BF32 THMA165 M270BF32 TN2505......A165 M270BF32 TN2510......A165 M270BR10 THMA165 M270BR10 TN2510A165 M270BR10 TN7525A165 M270BR10 TN7535A165 M270BR10 TTMA165 M270BR12 TN2510A165 M270BR12 TN6540A165 M270BR12 TN7525A165 M270BR12 TN7535A165 M270BR12 TTMA165 M270BR16 THMA165 M270BR16 TN2510A165 M270BR16 TN6540A165 M270BR16 TN7535A165 M270BR16 TTMA165 M270BR20 THM A165 M270BR20 TN2510A165 M270BR20 TN6540A165 M270BR20 TN7525A165 M270BR20 TN7535A165 M270BR20 TTMA165 M270BR25 THMA165 M270BR25 TN2510A165 M270BR25 TN7535A165 M270BR25 TTMA165 M270BR32 TN2510A165 M270BR32 TN7525A165 M270BR32 TN7535A165 M270HF10 TN6540......A176 M270HF12 TN2505..... M270HF12 TN6540......A176 M270HF13 TN2505......A176 M270HF13 TN6540..... ...A176 M270HF16 TN2505......A176 M270HF16 TN6540......A176 M270HF17 TN2505..... ...A176 M270HF17 TN6540..... M270HF20 TN2505......A176 M270HF20 TN6540......A176 M270TD010A10L120A170, A174

LPGX10030834 TPC35 B55

M270TD010A10L120C......A171, A175

Номер по каталогу	Стр.	Номер по каталогу	Стр.	Номер по каталогу	Стр.	Номер по каталогу	Стр.
M270TD010A10L150C	A171. A175	RDHW0802M0ML TN2510	A183	RFX185RFX185030M WG	B106	SDMT1204PDRML TN7535	A103
M270TD012A12L120C	A171, A175	RDHW1003M0MH TN2510		RFX185TCHS022030 WG		SDMT1204PDRML TTI25	
M270TD012A12L140		RDHW1003M0ML TN2510	A187	RFX245FBH029038 WG	B100	SDMT1204PDRML TTI25	A103
M270TD012A12L160C	A171, A175	RDHW1204M0MH TN2510	A192	RFX245LS WG	B103-106	SDMT1204PDRML TTM	A77
M270TD012M08		RDHW1204M0ML TN2510	A192	RFX245RFX245035M WG		SDMT1204PDRML TTM	
M270TD016A16L140C		RDHX07T1M0SNMH TN2505	A137	RFX245TCHS030039 WG		SDMT1506PDRMH TN2510	81
M270TD016A16L160		RDHX07T1M0SNMH TN6525	A137	RFX320FBH038050 WG	B100	SDMT1506PDRMH TN5515	81
M270TD016A16L180C		RDHX07T1M0SNMH TN6540	A137	RFX320LS WG		SDMT1506PDRMH TN6540	A81
M270TD016M08		RDMT0802M0T TN7525		RFX320RFX185030M WG		SDMT1506PDRMH TN7525	
M270TD020A20L150C		RDMT0802M0T TN7535		RFX320RFX245040M WG		SDMT1506PDRMH TN7535	
M270TD020A20L180		RDMT1003M0T THM	-	RFX320RFX320050M WG		SDMT1506PDRMH TTI25	
M270TD020A20L200C		RDMT1003M0T TN6525	-	RFX320TCHS039050 WG		SDMT1506PDRMH TTM	
M270TD020M10		RDMT1003M0T TN6540	-	RFX420FBH050065 WG		SDMT1506PDRML TN2510	•
M270TF10R03 TN2510		RDMT1003MOT TN7525		RFX420FBHBB006022 WG		SDMT1506PDRML TN5515	
M270TF10R05 TN2510		RDMT1003MOT TN7535	-	RFX420LS WG		SDMT1506PDRML TN6540	
M270TF10R05 TN2525		RDMT1003M0T TTM		RFX420RFX185035M WG		SDMT1506PDRMLTN7525	
M270TF10R1 TN2505 M270TF10R1 TN2525		RDMT1204MOTX TN2510		RFX420RFX245045M WG RFX420RFX320045M WG		SDMT1506PDRML TN7535SDMT43PDRMH TN2510	
M270TF12R03 TN2510		RDMT1204MOTX TN6525		RFX420RFX420060M WG		SDMT43PDRMH TN2510SDMT43PDRMH TN2510	
M270TF12R03 TN2525		RDMT1204MOTX TN6540		RFX420TCHS050067 WG		SDMW090308 THM	
M270TF12R05 TN2510		RDMT1204MOTX TN7525		RFX550CS27030M WG		SDMW090308 TN7525	
M270TF12R05 TN2525		RDMT1204MOTX TN7535		RFX550FBH065088 WG		SDMW090308 TTM	
M270TF12R1 TN2510		RDMT1204MOTX TTM		RFX550LS WG		SDMW090308 TTR	
M270TF12R1 TN2525		RDMT1605MOTX THM		RFX550RFX185040M WG		SDMX432RMH TN5515	
M270TF12R2 TN2505		RDMT1605M0TX TN2510		RFX550RFX245050M WG		SDMX432RMH TN5515	
M270TF12R2 TN2525		RDMT1605M0TX TN6525		RFX550RFX320050M WG		SDMX432RMH TN6540	
M270TF16R03 TN2510		RDMT1605M0TX TN6540	A197	RFX550RFX420055M WG		SDMX432RMH TN6540	
M270TF16R03 TN2525	A172	RDMT1605M0TX TN7525	A197	RFX550RFX550090M WG	B106	SDMX432RMH TN7525	A77
M270TF16R05 TN2510	A172	RDMT1605M0TX TN7535	A197	RFX550TCHS067088 WG	B88	SDMX432RMH TN7525	A103
M270TF16R05 TN2525	A172	RDMT1605M0TX TTM	A197	RFX720CS40035M WG	B105	SDMX432RMH TN7535	A77
M270TF16R1 TN2510	A172	RDMW0802M0 THM	A183	RFX720FBH088115 WG	B100	SDMX432RMH TN7535	A103
M270TF16R1 TN2525	A172	RDMW0802M0 TN2510	A183	RFX720LS WG	B103-106	SDMX432RMM TN6525	
M270TF16R2 TN2510	A172	RDMW0802M0T TN6540	A183	RFX720RFX420060M WG	B106	SDMX432RMM TN6525	A103
M270TF16R2 TN2525	A172	RDMW0802M0T TN7535	A183	RFX720RFX550060M WG	B106	SDMX432RMM TN6540	
M270TF16R3 TN2505		RDMW1003M0 TN2510	-	RFX720RFX720100M WG		SDMX432RMM TN6540	
M270TF16R3 TN2525		RDMW1003M0 TN5515		RFX720TCHS088115 WG		SDMX432RMM TN7525	
M270TF20R03 TN2510		RDMW1003M0T TN6540	-	SDMT1204PDRMH THM		SDMX432RMM TN7525	
M270TF20R03 TN2525		RDMW1003M0T TN7525	-	SDMT1204PDRMH THM		SDMX432RMM TN7535	
M270TF20R05 TN2510		RDMW1003M0T TN7535		SDMT1204PDRMH TN5515		SDMX432RMM TN7535	
M270TF20R05 TN2525		RDMW1003M0T TTI25		SDMT1204PDRMH TN5515		SDMX433RMH TN5515	
M270TF20R1 TN2510		RDMW1003M0T TTM	-	SDMT1204PDRMH TN6510		SDMX433RMH TN5515	
M270TF20R1 TN2525		RDMW1204MOTX TN2510		SDMT1204PDRMH TN6510		SDMX433RMH TN6520	
M270TF20R2 TN2510 M270TF20R2 TN2525		RDMW1204MOTX TN5515		SDMT1204PDRMH TN6520SDMT1204PDRMH TN6520		SDMX433RMH TN6520SDMX433RMH TN6525	
M270TF20R4 TN2505		RDMW1204MOTX TN6540 RDMW1204MOTX TN7525		SDMT1204PDRMH TN6525		SDMX433RMH TN6525SDMX433RMH TN6525	
M270TF20R4 TN2525		RDMW1204M0TX TN7535		SDMT1204PDRMH TN6525		SDMX433RMH TN6540	
MASCFCRO9CAO6F WG		RDMW1204MOTX TTM		SDMT1204PDRMH TN6540		SDMX433RMH TN6540	
MASCLCR09CA06F WG		RDMW1605M0TX TN2510		SDMT1204PDRMH TN6540		SDMX433RMH TN7525	
MASTFCR09CA11F WG		RDMW1605M0TX TN5515		SDMT1204PDRMH TN7525		SDMX433RMH TN7525	
MS1254CG		RDMW1605M0TX TN6540		SDMT1204PDRMH TN7525		SDMX433RMH TN7535	
MS1294CG	,	RDMW1605M0TX TN7525		SDMT1204PDRMH TN7535		SDMX433RMH TN7535	
MS2038CG	,	RDMW1605M0TX TN7535		SDMT1204PDRMH TN7535		SDMX433RMM TN5515	
MS2072CG	,	RDMW1605MOTX TTM		SDMT1204PDRMH TTI25		SDMX433RMM TN5515	
RCMT1606M043 THM	, ,	RDPX0702M0SNMH TN2505		SDMT1204PDRMH TTI25		SDMX433RMM TN6525	
RCMT1606M043 TN5515	A201	RDPX0702M0SNMH TN6525	A140	SDMT1204PDRMH TTM	A77	SDMX433RMM TN6525	A103
RCMT1606M043M TN6525	A201	RDPX0702M0SNMH TN6540	A140	SDMT1204PDRMH TTM	A103	SDMX433RMM TN6540	A77
RCMT1606M043M TN6540	A201	RDPX1003M0SNMH TN2505	A147	SDMT1204PDRML THM	A77	SDMX433RMM TN6540	A103
RCMT1606M043M TN7525	A201	RDPX1003M0SNMH TN6525	A147	SDMT1204PDRML THM	A103	SDMX433RMM TN7525	A77
RCMT1606M043M TN7535	A201	RDPX1003M0SNMH TN6540	A147	SDMT1204PDRML TN2510	A77	SDMX433RMM TN7525	A103
RCMT1606M0TX TN2510	A201	RDPX1003M0SNMM TN6525	A147	SDMT1204PDRML TN2510	A103	SDMX433RMM TN7535	A77
RCMT1606M0TX TN5515		RDPX1003M0SNMM TN6540	A147	SDMT1204PDRML TN5515	A77	SDMX433RMM TN7535	A103
RCMT1606M0TX TN6525		RDPX12T3M0SNMH TN2505		SDMT1204PDRML TN5515		SDMX434RMH TN5515	
RCMT1606MOTX TN6540		RDPX12T3M0SNMH TN6525		SDMT1204PDRML TN6510		SDMX434RMH TN5515	
RCMT1606M0TX TN7525		RDPX12T3MOSNMH TN6540		SDMT1204PDRML TN6510		SDMX434RMH TN6540	
RCMT1606M0TX TN7535		RDPX12T3MOSNMM TN6525		SDMT1204PDRML TN6520		SDMX434RMH TN6540	
RDHT0802M0T TN7525		RDPX12T3MOSNMM TN6540		SDMT1204PDRML TN6520		SDMX434RMH TN7535	
RDHT1003M0T TN7525		RDPX1604M0SNMH TN2505		SDMT1204PDRML TN6525		SDMX434RMH TN7535	
RDHT1003M0T TTM		RDPX1604M0SNMH TN6525		SDMT1204PDRMLTN6525		SDMX543RMH TN5515	
RDHT1204MOTX TN5515		RDPX1604M0SNMH TN6540		SDMT1204PDRMLTN6540		SDMX543RMH TN6540	
RDHT1204MOTX TN7525		RDPX1604M0SNMM TN6525		SDMT1204PDRMLTN6540		SDMX543RMH TN7525	
RDHT1204MOTX TTI25RDHT1605MOTX TTI25		RDPX1604M0SNMM TN6540 RFX185FBH022029 WG		SDMT1204PDRML TN7525 SDMT1204PDRML TN7525		SDMX543RMH TN7535 SDMX543RMM TN5515	
RDHW0802MOMH TN2510		RFX185FBH022029 WG		SDMT1204PDRMLTN7525SDMT1204PDRMLTN7535		SDMX543RMM 1N5515SDMX543RMM TN6540	
RUITTUUUZMUMII INZOIU	A103	I W VIONED ALD			A/ /		A0 I

Номер по каталогу	Стр.
	<u> </u>
SDMX543RMM TN7525SDMX543RMM TN7535	
SDMX544RMH TN5515	
SDMX544RMH TN6540	81
SDMX544RMH TN7535	
SDNT090308T THM	
SDNT0703061 TNZ510	
SDNT090308T TN7535	
SDNT090308T TTM	
SDNT322T TTR SEAN1203AFN1 THM	
SEAN1203AFN1 TN5515	
SEAN1203AFN1 TTI25	
SEAN1203AFN1 TTM	
SEAN1204AFN1 THM	
SEKN1203AFN1 THM SEKN1203AFN1 THR	
SEKN1203AFN1 TN5515	
SEKN1203AFN1 TN6540	
SEKN1203AFN1 TN7525 SEKN1203AFN1 TN7535	
SEKN1203AFN1 TTI25	
SEKN1203AFN1 TTM	
SEKN1203AFN1 TTR	
SEKN1204AFN1 THM	
SEKN1204AFN1 TN5515 SEKN1204AFN1 TN7525	
SEKN1204AFN1 TN7535	
SEKN1204AFN1 TTI25	
SEKN1204AFN1 TTM	
SEKN1204AFN1 TTR SEKN1504AFN1 THM	
SEKN1504AFN1 TN5515	
SEKN1504AFN1 TN6540	
SEKN1504AFN1 TN7525	
SEKN1504AFN1 TN7535 SEKN1504AFN1 TTI25	
SEKN1504AFN1 TTM	
SEKN1504AFN1 TTR	
SEKR1203AFNMS THM SEKR1203AFNMS THR	
SEKR1203AFNMS TN5515	
SEKR1203AFNMS TN7525	
SEKR1203AFNMS TN7535	
SEKR1203AFNMS TTM SEKR1204AFNMS THM	
SEKR1204AFNMS TN5515	
SEKR1204AFNMS TN7525	
SEKR1204AFNMS TN7535	
SEKR1204AFNMS TTM SEKR1504AFNMS TN5515	
SEKR1504AFNMS TN7525	
SEKR1504AFNMS TN7535	
SMAC087 WG	
SMAC200 WG SNKT1205AZER20 TN2510	
SNKT1205AZER20 TN2510	
SNKT1205AZER20 TN6540	
SNKT1205AZER20 TN7525	
SNKT1205AZER20 TN7535 SNKT1205AZER20 TTI25	
SNKT1205AZR21 THM	
SNKT1205AZR21 TN2510	A46
SNKT1205AZR21 TN7525	
SNKT1205AZR21 TTI25 SNKT1205AZR31 TN2510	
SNKT1205AZR31 TN6525	
SNKT1205AZR31 TN6540	
SNKT1205AZR31 TN7525	
SNKT1205AZR31 TN7535	
SNKT1205AZR31 TIM	
\	

Номер по каталогу	Стр.
SNKT1505AZR31 TN5515	
SNKT1505AZR31 TN7525	
SNKT1505AZR31 TN7535 SNKT435AZR21 TN5515	
SNKT435AZR31 TN5515	
SNMT1205AZR31 TN2510	
SNMT1205AZR31 TN5515	A46
SNMT1205AZR31 TN7525	
SNMT1205AZR31 TN7535SNMT1205AZR31 TTM	
SNMT1203AZK31 TIM	
SNMT1505AZR31 TN6525	A51
SNMT1505AZR31 TN7525	
SNMT1505AZR31 TN7535	
SNMT435AZR31 TN6525 SNMT435AZR31 TN6540	
SPAN1203EDR THM	
SPAN1203EDR TTM	A228
SPKN1203EDL THM	
SPKN1203EDL TN5515SPKN1203EDL TTM	
SPKN1203EDR TN5515	
SPKN1203EDTR TN7525	
SPKN1203EDTR TN7535	
SPKN1203EDTR TTI25	
SPKN1203EDTR TTMSPKN1203EDTR TTR	
SPKN1504EDL THM	
SPKN1504EDL TTM	
SPKN1504EDR TN5515	
SPKN1504EDR TN7525	
SPKN1504EDR TN7535SPKN1504EDR TTM	
SPKN1504EDR TTR	
SPKN42EDR THM	A228
SPKN53EDR THM	
SPKR1203EDLMS TN7525SPKR1203EDRMS THM	
SPKR1203EDRMS THR	
SPKR1203EDRMS TN5515	
SPKR1203EDRMS TN7525	
SPKR1203EDRMS TN7535	
SPKR1203EDRMS TTMSPMW432 THM	
SPMW432 THR	
SPMW432 TN5515	A210
SPMW432 TN7535	
SPMW432 TTMSPMW432 TTR	
SPNT120408 THM	
SPNT120408 TN5515	
SPNT120408 TN7525	
SPNT120408 TN7535	
SPNT120408 TTR	
TCAX1103ZZ18 TTM	
TCAX1103ZZ21 THM	A129
TCAX1103ZZ21 TTM	
TCAX1103ZZ26 THMTCD110R2SN12M W	
TCD110R3SN12M W	
TCD115R2SN12M W	
TCD115R3SN12M W	
TCD120R2SN12M W	
TCD120R3SN12M W TCD125R2SN16M W	
TCD125R3SN16M W	
TCD130R2SN16M W	
TCD130R3SN16M W	
TCD135R2SN16M W	
TCD135R3SN16M W TCD140R2SNF25M W	
TCD140R3SNF25M W	

Стр.		Стр.
A51	TCD140R4SNF25M W	
A51 A51	TCD150R2SNF25M W	
A31	TCD150R4SNF25M W	
A46	TCD160R2SNF25M W	
A46	TCD160R3SNF25M W	
A46	TCD160R4SNF25M W	
A46	TCD170R2SNF25M W	
A46 A46	TCD170R3SNF25M W TCD170R4SNF25M W	
A46 A51	TCD175R2SNF25M W	
A51	TCD175R3SNF25M W	
A51	TCD175R4SNF25M W	
A51	TCD180R2SNF25M W	
A46	TCD180R3SNF25M W	
A46 .A228	TCD180R4SNF25M WTCD190R2SNF25M W	
.A228	TCD190R3SNF25M W	
.A228	TCD190R4SNF25M W	
.A228	TCD200R2SNF25M W	B50
.A228	TCD200R3SNF25M W	
.A228	TCD200R4SNF25M W	
.A228 .A228	TCD210R2SNF25M W	
.A220	TCD210R4SNF25M W	
.A228	TCD220R2SNF25M W	
.A228	TCD220R3SNF25M W	B51
.A228	TCD220R4SNF25M W	
.A228	TCD230R2SNF25M W	
.A228 .A228	TCD230R3SNF25M WTCD230R4SNF25M W	
.A228	TCD240R2SNF25M W	
.A228	TCD240R3SNF25M W	
.A228	TCD240R4SNF25M W	
.A228	TCD250R2SNF25M W	
.A228 .A228	TCD250R3SNF25M WTCD250R4SNF25M W	
.A228	TCP190R2SNF25M W	
.A228	TCP190R3SNF25M WG	
.A228	TCP190R4SNF25M W	
.A228	TCP200R2SNF25M W	
.A228 .A228	TCP200R3SNF25M WG TCP200R4SNF25M W	
.AZZO .A210	TCP210R2SNF25M W	
.A210	TCP210R3SNF25M WG	
.A210	TCP210R4SNF25M W	B66
.A210	TCP220R2SNF25M W	
.A210	TCP220R3SNF25M WG	
.A210 .A210	TCP220R4SNF25M WTCP230R2SNF25M W	
.A210	TCP230R3SNF25M WG	
.A210	TCP230R4SNF25M W	
.A210	TCP240R2SNF25M W	
.A210	TCP240R3SNF25M WG	
.A210 .A129	TCP240R4SNF25M W	
.A129	TCP250R2SNF32M W TCP250R3SNF32M WG	
.A129	TCP250R4SNF32M W	
.A129	TCP260R2SNF32M W	B62
B50	TCP260R3SNF32M WG	
B51	TCP260R4SNF32M W	
B50 B51	TCP270R2SNF32M W TCP270R3SNF32M WG	
B50	TCP270R4SNF32M W	
B51	TCP280R2SNF32M W	
B50	TCP280R3SNF32M WG	
B51	TCP280R4SNF32M W	
B50 B51	TCP290R2SNF32M W TCP290R3SNF32M WG	
B51 B50	TCP290R4SNF32M W	
B51	TCP300R2SNF32M W	
B50	TCP300R3SNF32M WG	
B51	TCP300R4SNF32M W	B66

Номер по кат	гал	огу С	τŗ
TCP310R2SNF32M	W		B6
TCP310R4SNF32M	W		B6
TCP320R2SNF32M	W		B6
TCP320R3SNF32M	WG		B6
TCP320R4SNF32M	W		B6
TCP330R2SNF32M	W		B6
TCP330R3SNF32M	WG		B6
TCP370R3SNF40M	WG		B6
TCP370R4SNF40M	W		B6
TCP420R3SNF40M	WG		B6
TCP450R3SNF40M	WG		B6
TCP450R4SNF40M	W		B6
TCP490R3SNF40M	WG		B6
TCP490R4SNF40M	W		B6
TCP540R3SNF40M	WG		B6

TCP540R4SNF40M W .

Номер по каталогу	Стр.	Номер по каталогу	Стр.	Номер по каталогу	Стр.	Номер по каталогу	Стр.
TCP550R3SNF40M WG	B65	TDM0960UPM K20FTIALN	B34	TDM1450UPM K20FTIALN	B36	TDM200R3SCF25M WG	B40
TCP550R4SNF40M W	B67	TDM09690UP K20FTIALN	B38	TDM145R3SCF16M WG	B40	TDM200R5SCF25M WG	B41
TCP560R2SNF40M W	B63	TDM0990UPM K20FTIALN	B34	TDM145R5SCF16M WG	B41	TDM200R8SCF25M WG	
TCP560R3SNF40M WG		TDM10000UP K20FTIALN		TDM145R8SCF16M WG	B42	TDM2010UPM K20FTIALN	
TCP560R4SNF40M W		TDM1000UPM K20FTIALN		TDM1460UPM K20FTIALN		TDM2020UPM K20FTIALN	
TCP570R2SNF40M W		TDM100R3SCF16M WG		TDM1470UPM K20FTIALN		TDM2030UPM K20FTIALN	
TCP570R3SNF40M WG		TDM100R5SCF16M WG		TDM1480UPM K20FTIALN		TDM2040UPM K20FTIALN	
TCP570R4SNF40M W		TDM100R8SCF16M WG		TDM1490UPM K20FTIALN		TDM2050UPM K20FTIALN	
TCP580R2SNF40M W		TDM1010UPM K20FTIALN		TDM1500UPM K20FTIALN		TDM2060UPM K20FTIALN	B38
TCP580R3SNF40M WG		TDM10110UP K20FTIALN		TDM150R3SCF20M WG		TDM2070UPM K20FTIALN	
TCP580R4SNF40M W		TDM10160UP K20FTIALN		TDM150R5SCF20M WG		TDM2080UPM K20FTIALN	
TCP590R2SNF40M W		TDM1020UPM K20FTIALN		TDM150R8SCF20M WG		TDM2090UPM K20FTIALN	
TCP590R3SNF40M WG		TDM1030UPM K20FTIALNTDM1040UPM K20FTIALN		TDM1510UPM K20FTIALNTDM1520UPM K20FTIALN		TDM2099UPM K20FTIALNTDM2100UPM K20FTIALN	
TCP590R4SNF40M WTCP600R2SNF40M W		TDM1050UPM K20FTIALN		TDM1520UPM K20FTIALN		TDM210R3SCF25M WG	
TCP600R3SNF40M WG		TDM105R3SCF16M WG		TDM15300PM K20FTIALN		TDM210R5SCF25M WG	
TCP600R4SNF40M W		TDM105R5SCF16M WG		TDM1550UPM K20FTIALN		TDM210R8SCF25M WG	
TDM05625UP K20FTIALN		TDM105R8SCF16M WG		TDM1560UPM K20FTIALN		TDM2150UPM K20FTIALN	R38
TDMO5774UP K20FTIALN		TDM1060UPM K20FTIALN		TDM1570UPM K20FTIALN		TDM2200UPM K20FTIALN	
TDMO5781UP K20FTIALN		TDM1070UPM K20FTIALN		TDM1580UPM K20FTIALN		TDM220R3SCF25M WG	
TDM05938UP K20FTIALN		TDM1080UPM K20FTIALN		TDM1600UPM K20FTIALN		TDM220R5SCF25M WG	
TDMO6094UP K20FTIALN		TDM1090UPM K20FTIALN		TDM160R3SCF20M WG		TDM220R8SCF25M WG	
TDM06250UP K20FTIALN		TDM1100UPM K20FTIALN		TDM160R5SCF20M WG		TDM2250UPM K20FTIALN	
TDM06310UP K20FTIALN		TDM110R3SCF16M WG		TDM160R8SCF20M WG		TDM2300UPM K20FTIALN	
TDMO6330UP K20FTIALN	B36	TDM110R5SCF16M WG		TDM1610UPM K20FTIALN		TDM230R3SCF25M WG	
TDMO6406UP K20FTIALN	B36	TDM110R8SCF16M WG	B42	TDM1620UPM K20FTIALN	B36	TDM230R5SCF25M WG	
TDMO6562UP K20FTIALN	B37	TDM1110UPM K20FTIALN	B35	TDM1630UPM K20FTIALN	B36	TDM230R8SCF25M WG	
TDMO6643UP K20FTIALN	B37	TDM1120UPM K20FTIALN	B35	TDM1640UPM K20FTIALN	B36	TDM2350UPM K20FTIALN	B38
TDMO6719UP K20FTIALN	B37	TDM1130UPM K20FTIALN	B35	TDM1650UPM K20FTIALN	B37	TDM2400UPM K20FTIALN	B38
TDMO6875UP K20FTIALN	B37	TDM1140UPM K20FTIALN	B35	TDM1660UPM K20FTIALN	B37	TDM240R3SCF25M WG	B40
TDM07031UP K20FTIALN	B37	TDM1150UPM K20FTIALN	B35	TDM1670UPM K20FTIALN	B37	TDM240R5SCF25M WG	
TDMO7188UP K20FTIALN		TDM115R3SCF16M WG	B40	TDM1680UPM K20FTIALN	B37	TDM240R8SCF25M WG	
TDMO7344UP K20FTIALN		TDM115R5SCF16M WG		TDM1690UPM K20FTIALN		TDM2450UPM K20FTIALN	
TDM07500UP K20FTIALN		TDM115R8SCF16M WG		TDM1700UPM K20FTIALN		TDM2500UPM K20FTIALN	
TDM07570UP K20FTIALN		TDM1160UPM K20FTIALN		TDM170R3SCF20M WG		TDM250R3SCF25M WG	
TDM07580UP K20FTIALN		TDM1170UPM K20FTIALN		TDM170R5SCF20M WG		TDM250R5SCF25M WG	
TDM07590UP K20FTIALN		TDM1180UPM K20FTIALN		TDM170R8SCF20M WG		TDM250R8SCF25M WG	B42
TDM07620UP K20FTIALN		TDM1190UPM K20FTIALN		TDM1710UPM K20FTIALN		TDM2550UPM K20FTIALN	
TDM07656UP K20FTIALN		TDM1200UPM K20FTIALN		TDM1720UPM K20FTIALN		TDM2599UPM K20FTIALN	
TDM07812UP K20FTIALN		TDM120R3SCF16M WG		TDM1730UPM K20FTIALN		TNAX1604ZZ26 THM	
TDM07969UP K20FTIALN		TDM120R5SCF16M WG		TDM1740UPM K20FTIALN		TNAX1604ZZ26 TTM	
TDM0800UPM K20FTIALN		TDM120R8SCF16M WG		TDM1750UPM K20FTIALNTDM1760UPM K20FTIALN		TNAX1604ZZ31 THM	
TDM080R3SCF12M WGTDM080R5SCF12M WG		TDM1210UPM K20FTIALNTDM1220UPM K20FTIALN		TDM1760UPM K20FTIALN		TNAX1604ZZ31 TTMTNAX1604ZZ41 THM	
TDM080R8SCF12M WG		TDM1240UPM K20FTIALN		TDM1770UPM K20FTIALN		TNAX1604ZZ41 TTM	
TDM0810UPM K20FTIALN		TDM1250UPM K20FTIALN		TDM1790UPM K20FTIALN		TNAX2206ZZ41 TTM	A127
TDMO8125UP K20FTIALN		TDM125R3SCF16M WG		TDM1800UPM K20FTIALN		TNAX2206ZZ51 TTM	A129
TDM0830UPM K20FTIALN	B34	TDM125R5SCF16M WG	B41	TDM180R3SCF25M WG	B40	TPKN1603PDR TN5515	A229
TDM0840UPM K20FTIALN		TDM125R8SCF16M WG		TDM180R5SCF25M WG		TPKN1603PDR TN7525	
TDM08440UP K20FTIALN		TDM1260UPM K20FTIALN		TDM180R8SCF25M WG		TPKN1603PDR TN7535	
TDM0850UPM K20FTIALN		TDM1280UPM K20FTIALN		TDM1810UPM K20FTIALN		TPKN1603PDR TTI25	
TDM085R3SCF12M WG		TDM1300UPM K20FTIALN		TDM1820UPM K20FTIALN		TPKN2204PDL TN7525	
TDM085R5SCF12M WG		TDM130R3SCF16M WG		TDM1830UPM K20FTIALN		TPKN2204PDL TTM	
TDM085R8SCF12M WG		TDM130R5SCF16M WG		TDM1840UPM K20FTIALN		TPKN2204PDR THM	
TDM0860UPM K20FTIALN	B34	TDM130R8SCF16M WG	B42	TDM1850UPM K20FTIALN	B37	TPKN2204PDR TN5515	A229
TDM0870UPM K20FTIALN	B34	TDM1320UPM K20FTIALN	B35	TDM1860UPM K20FTIALN	B37	TPKN2204PDR TN7525	A229
TDM08750UP K20FTIALN	B38	TDM1330UPM K20FTIALN	B35	TDM1870UPM K20FTIALN	B37	TPKN2204PDR TN7535	A229
TDM0880UPM K20FTIALN	B34	TDM1340UPM K20FTIALN	B35	TDM1880UPM K20FTIALN	B37	TPKN2204PDR TTI25	A229
TDM08840UP K20FTIALN	B38	TDM1350UPM K20FTIALN	B35	TDM1890UPM K20FTIALN	B37	TPKN2204PDR TTR	A229
TDM0890UPM K20FTIALN	B34	TDM135R3SCF16M WG	B40	TDM1900UPM K20FTIALN	B37	TPKR1603PDRMS TN5515	A229
TDM0900UPM K20FTIALN	B34	TDM135R5SCF16M WG		TDM190R3SCF25M WG		TPKR1603PDRMS TN7525	A229
TDM090R3SCF12M WG	B40	TDM135R8SCF16M WG	B42	TDM190R5SCF25M WG	B41	TPKR1603PDRMS TN7535	
TDM090R5SCF12M WG		TDM1360UPM K20FTIALN	B35	TDM190R8SCF25M WG	B42	TPKR1603PDRMS TTM	A229
TDM090R8SCF12M WG		TDM1370UPM K20FTIALN		TDM1910UPM K20FTIALN		TPKR2204PDRMS TN5515	
TDM0910UPM K20FTIALN		TDM1380UPM K20FTIALN		TDM1920UPM K20FTIALN		TPKR2204PDRMS TN7525	
TDM0920UPM K20FTIALN		TDM1400UPM K20FTIALN		TDM1930UPM K20FTIALN		TPKR2204PDRMS TN7535	
TDM0930UPM K20FTIALN		TDM140R3SCF16M WG		TDM1940UPM K20FTIALN		TPKR2204PDRMS TTM	
TDM09375UP K20FTIALN		TDM140R5SCF16M WG		TDM1950UPM K20FTIALN		XNGJ0704ANENLD3W TN5515	
TDM0940UPM K20FTIALN		TDM140R8SCF16M WG		TDM1960UPM K20FTIALN		XNGJ0704ANENLD3W TN6510	
TDM0950UPM K20FTIALN		TDM1410UPM K20FTIALN		TDM1970UPM K20FTIALN		XNGJO704ANENLD3W TN6520	
TDM095R3SCF12M WG		TDM1420UPM K20FTIALN		TDM1980UPM K20FTIALN		XNGJO7O4ANENLD3W TN6525	
TDM095R5SCF12M WG		TDM1430UPM K20FTIALNTDM1440UPM K20FTIALN		TDM1990UPM K20FTIALN		XNGJO7O4ANENLD3W TN6540	
TDM095R8SCF12M WG	542	I IDM 14400FM KZUFIIALN	556	TDM2000UPM K20FTIALN	ნებ	XNGJ0704ANFNLDJ3W THM-U	AZU

Номер по каталогу	Стр.
XNGJ0704ANFNLDJ3W TN6501	A20
XNGJ0905ANFNLDJ3W THM-U	A28
XNGJ0905ANFNLDJ3W TN6501	
XNGJ0905ANSNGD3W TN6510	
XNGJ0905ANSNGD3W TN6520XNGJ0905ANSNGD3W TN6525	
XNGJ0905ANSNGD3W TN6540	
XNKT1205AZER11 THM	
XNKT1205AZER11 TN2510	A47
XNKT1205AZER11 TN5505	
XNKT1205AZER11 TN5515	
XNKT1205AZER11 TN7525XNKT1205AZER11 TTI25	
XNKT1205AZEKT1 11125XNKT1205AZEKT1 11125	
XNKT1205AZTR12 TN5505	
XNKT1205AZTR12 TN5515	A47
XNKT1205AZTR12 TN7525	
XNKT1205AZTR12 TTI25	
XOMTO4T10334 THM XOMTO4T10334 TN5515	
XOMT04T10334 TN6030	
XOMT04T10334 TN7015	
XOMT04T10334 TPC35	
XOMTO4T10335 THM	
XOMTO4T10335 TN5515XOMTO4T10335 TN6030	
XOMT04T10335 TN7015	
XOMT04T10335 TPC35	
XOMT05020434 THM	B72
XOMT05020434 TN5515	
XOMT05020434 TN6030	
XOMT05020434 TN7015 XOMT05020434 TPC35	
XOMT05020434 TrC53 XOMT05020435 THM	
XOMTO5020435 TN5515	
XOMT05020435 TN6030	B72
XOMT05020435 TN7015	
XOMT05020435 TPC35	
XOMT05020436 TN6030XOMT05020436 TN7015	
XOMT05020436 TPC35	
XOMT07030434 THM	B72
XOMT07030434 TN5515	
XOMTO7030434 TN6030	
XOMTO7030434 TN7015 XOMTO7030434 TPC35	
XOMTO7030434 TFC93	
XOMT07030435 TN5515	
XOMT07030435 TN6030	B72
XOMTO7030435 TN7015	
XOMTO7030435 TPC35XOMTO7030436 TN6030	
XOMTO7030436 TN7015	
XOMTO7030436 TPC35	
XOMT09T30634 THM	B72
XOMT09T30634 TN5515	
XOMTO9T30634 TN6030XOMTO9T30634 TN7015	
XOMTO9T30634 TPC35	
XOMT09730635 THM	
XOMT09T30635 TN5515	B72
XOMT09T30635 TN6030	
XOMT09T30635 TN7015	
XOMTO9T30635 TPC35XOMTO9T30636 TN6030	
XOMTO9T30636 TN7015	
XOMTO9T30636 TPC35	
XOMT12T30834 THM	B72
XOMT12T30834 TN5515	
XOMT12T30834 TN6030 XOMT12T30834 TN7015	
XOMT12T30834 TPC35	
XOMT12T30835 THM	

Номер по каталогу	Стр.
OMT12T30835 TN5515	
OMT12T30835 TN6030 OMT12T30835 TN7015	
OMT12T30835 TPC35	
OMT12T30836 TN6030	
OMT12T30836 TN7015 OMT12T30836 TPC35	
OMT16050834 THM	
OMT16050834 TN5515	B72
OMT16050834 TN6030	
OMT16050834 TN7015	
OMT16050835 THM	
OMT16050835 TN5515	
OMT16050835 TN6030 OMT16050835 TN7015	
OMT16050835 TPC35	
OMT16050836 TN6030	
OMT16050836 TN7015 OMT16050836 TPC35	
PHT160404ALP THM-U	
PHT160404ALP THM-U	A114
PHT160408 TN2510	
PHT160408 TN2510 PHT160408 TN6510	
PHT160408 TN6510	
PHT160408 TN6520	
PHT160408 TN6520	
PHT160408 TN6540 PHT160408 TN6540	
PHT160408AL THM	
PHT160408AL THM	
PHT160408AL TN6502PHT160408AL TN6502	
PHT160408ALP THM-U	
PHT160408ALP THM-U	
PHT160408ALP TN6501PHT160408ALP TN6501	
PHT160408ERGE TN5515	
PHT160408ERGE TN5515	
PHT160408ERGE TN6510	
PHT160408ERGE TN6510PHT160408ERGE TN6520	
PHT160408ERGE TN6520	
PHT160408ERGE TN6525	
PHT160408ERGE TN6525PHT160408ERGE TN6540	
PHT160408ERGE TN6540	
PHT160408ERGE TN7525	A94
PHT160408ERGE TN7525	
PHT160408ERGE TN7535PHT160408ERGE TN7535	
PHT160408ERGE TTI25	
PHT160408ERGE TTI25	
PHT160412 THR PHT160412 THR	
PHT160412 TN2510	
PHT160412 TN2510	A115
[PHT160412 TN6510	
PHT160412 TN6510PHT160412 TN6520	
PHT160412 TN6520	
PHT160412 TN6525	
PHT160412 TN6525PHT160412 TN6540	
PHT160412 TN6540PHT160412 TN6540	
PHT160412 TTI25	A95
PHT160412 TTI25	
PHT160412 TTR PHT160412 TTR	
PHT160412AL THM	
PHT160412AL THM	
PHT160412ALP THM-U	A94

Номер по каталогу	Стр.
XPHT160412ALP THM-U	A114
XPHT160412ERGE TN6510	A94
XPHT160412ERGE TN6510	
XPHT160412ERGE TN6520	
XPHT160412ERGE TN6520	
XPHT160412ERGE TN6525XPHT160412ERGE TN6525	
XPHT160412ERGE TN6540XPHT160412ERGE TN6540	
XPHT160412ERGE TN6540	
XPHT160412MR TN2510	
XPHT160412MR TN2510	A115
XPHT160412MR TN6525	
XPHT160412MR TN6525	
XPHT160412MR TN6540	
XPHT160412MR TN6540XPHT160416 TN2510	
XPHT160416 TN2510	
XPHT160416 TN6540	
XPHT160416 TN6540	A115
XPHT160416AL THM	
XPHT160416AL THM	
XPHT160420 TN5515	
XPHT160420 TN5515	
XPHT160420 TN7525XPHT160420 TN7525	
XPHT160420 TN7535	
XPHT160420 TN7535	
XPHT160420AL THM	
XPHT160420AL THM	A114
XPHT160425 TN7515	A95
XPHT160425 TN7515	
XPHT160425 TN7525	
XPHT160425 TN7525	
XPHT160425 TN7535XPHT160425 TN7535	
XPHT160425AL THM	
XPHT160425AL THM	
XPHT160432 TN5515	
XPHT160432 TN5515	A115
XPHT160432 TN7525	
XPHT160432 TN7525	
XPHT160432 TN7535	
XPHT160432 TN7535XPHT160432AL THM	
XPHT160432AL THM	
XPHT160440 TN5515	
XPHT160440 TN5515	
XPHT160440 TN7525	A95
XPHT160440 TN7525	
XPHT160440 TN7535	
XPHT160440 TN7535	
XPHT160440AL THMXPHT160440AL THM	
XPHT3310 TN5515	
XPHT3310 TN5515	
XPHT3310 TN7525	
XPHT3310 TN7525	A115
XPHT3310 TN7535	A95
XPHT3310 TN7535	
XPHT332 TN5515	
XPHT332 TN5515XPHT332 TN7525	
XPHT332 TN7525XPHT332 TN7525	
XPHT332 TN7535	
XPHT332 TN7535	
XPHT333 THM	
XPHT333 THM	
XPHT333 TN5515	
XPHT333 TN5515	
XPHT333 TN7525XPHT333 TN7525	
XPHT333 TN7535	
XPHT333 TN7535	

Номер по каталогу	Стр.
XPHT333ERGE TN5515	A94
XPHT333ERGE TN5515	
XPHT333ERGE TN7525	A94
XPHT333ERGE TN7525	A114
XPHT333ERGE TN7535	A94
XPHT333ERGE TN7535	A114
XPHT333ERGE TTI25	
XPHT333ERGE TTI25	A114
XPHT333MR TN5515	A95
XPHT333MR TN5515	A115
XPHT333MR TN7525	A95
XPHT333MR TN7525	A115
XPHT333MR TN7535	
XPHT333MR TN7535	A115
XPHT334 TN5515	A95
XPHT334 TN5515	A115
XPHT334 TN7525	A95
XPHT334 TN7525	A115
XPHT334 TN7535	A95
XPHT334 TN7535	A115
XPHT336 TN5515	A95
XPHT336 TN5515	A115
XPHT336 TN7525	A95
XPHT336 TN7525	A115
XPHT336 TN7535	A95
XPHT336 TN7535	A115
XPNT160412 TN2510	A95
XPNT160412 TN2510	A115
XPNT160412 TN6525	A95
XPNT160412 TN6525	A115
XPNT160412 TN6540	A95
XPNT160412 TN6540	A115
XPNT333 TN5515	A95
XPNT333 TN5515	A115
XPNT333 TN7525	A95
XPNT333 TN7525	A115
XPNT333 TN7535	
XPNT333 TN7535	

Контактная Информация по Металлообработке

Северная Америка

Соединенные Штаты

Оптовые продажи: 800-979-4342 Техническая поддержка: 888-539-5145 *w-us.service@widia.com*

• Канада

Оптовые продажи: 800-979-4342Техническая поддержка: 888-539-5145 *w-ca.service@widia.com*

• Мексика

Оптовые продажи: 001-888-402-4963 *w-mx.service@widia.com*

Центральная и Южная Америка

• Аргентина

Оптовые продажи: (011) 4719-0700 *w-ar.service@widia.com*

Бразилия

Оптовые продажи: 55 19 3936 9200 w-br.service@widia.com

Чили

Оптовые продажи: 56-2-2641177 w-cl.service@widia.com

• Сальвадор

Оптовые продажи: (503) 2218 8096 prometca@salnet.net

• Венесуэла

Оптовые продажи: 305-595-5175 *paxi@bellsouth.net*

Африка

Египет

Оптовые продажи: +20 2-263-9828 w-uk.service@widia.com

• Южная Африка

Оптовые продажи: +27 11-397-3540 *w-za.service@widia.com*

Европа

• Австрия

Оптовые продажи: +43-2236-379898 Техническая поддержка: 0800 291630 w-at.service@widia.com

• Бельгия

Оптовые продажи: +32 4 248 48 48 Техническая поддержка: 0800 80410 w-be.service@widia.com

Чешская Республика

Оптовые продажи: 800 900 840 w-cz.service@widia.com

Франция

Оптовые продажи: +33 1 69 77 83 83 Техническая поддержка: 080 5540 379 *w-fr.service@widia.com*

• Германия

Оптовые продажи: +49 6172 737-0 Техническая поддержка: 0800 1015774 *w-de.service@widia.com*

Великобритания

Оптовые продажи: 0800 072 4528 Техническая поддержка: 0800 028 2996 *w-uk.service@widia.com*

• Венгрия

Оптовые продажи: +36 96 618 158 w-hu.service@widia.com

• Ирландия

Оптовые продажи: +44 28-9084-9433 w-ie.service@widia.com

• Италия

Оптовые продажи: +39 02-895-961 Техническая поддержка: 800 916568 *w-it.service@widia.com*

• Люксембург

Оптовые продажи: +32 4 248 48 48 *w-be.service@widia.com*

• Нидерланды

Оптовые продажи: +31 26 384 48 51 Техническая поддержка: 0800 0201131 *w-nl.service@widia.com*

• Польша

Оптовые продажи: +48 61 6656501 Техническая поддержка: 00800 4411943 *w-pl.service@widia.com*

• Португалия

Оптовые продажи: +351 22 4119 400 w-pt.service@widia.com

• Россия

Оптовые продажи: 81080021431044 w-ru.service@widia.com

Словакия

Оптовые продажи: 0800-044053 w-sk.service@widia.com

• Испания

Оптовые продажи: +34 93706 06 10 w-es.service@widia.com

Турция

Оптовые продажи: +90 216-574-4780 w-tr.service@widia.com

G2 VVIDIA WWW.WIDIA.COM

Страны Восточной Азии и Тихоокеанского региона

• Австралия

Оптовые продажи: 613 9755 5302 w-au.service@widia.com

• Бахрейн

Оптовые продажи: 00 971 (0) 5572371 w-uk.service@widia.com

• Китай

Оптовые продажи: +86 400 889 2136 Техническая поддержка: +86 400 889 2136 *w-cn.service@widia.com*

• Дубай

Оптовые продажи: +971 433 911 46 w-uk.service@widia.com

• Гонконг

Оптовые продажи: +86 21 3860 8288 *w-cn.service@widia.com*

Индия

Оптовые продажи: +91 80 2219 8341 *w-in.service@widia.com*

• Индонезия

Оптовые продажи: +62 81 1148 8217 *w-sg.service@widia.com*

• Израиль

Оптовые продажи: 972 3 556 2211 w-il.service@widia.com

• Япония

Оптовые продажи: 813 3820 2855 *w-jp.service@widia.com*

• Корея

Оптовые продажи: +82 2-2109-6100 w-kr.service@widia.com

• Кувейт

Оптовые продажи: 00 971 (0) 5572371 w-uk.service@widia.com

• Малайзия

Оптовые продажи: (6) 03-5569 9080 *w-my.service@widia.com*

• Новая Зеландия

Оптовые продажи: 613 9755 5302 w-nz.service@widia.com

• Пакистан

Оптовые продажи: +92 21 2465305 *itsystem@brain.net.pk*

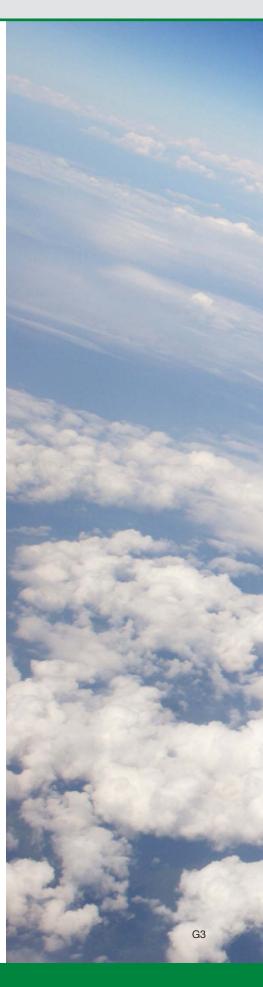
• Индонезия

Оптовые продажи: +65 6 2659222 *w-sg.service@widia.com*

• Сингапур

Оптовые продажи: +65 6 265-9222 w-sg.service@widia.com

• Тайвань


Оптовые продажи: +886-4-2350 1920 *w-tw.service@widia.com*

• Таиланд

Оптовые продажи: 662 642 3455 *w-th.service@widia.com*

• Вьетнам

Оптовые продажи: +84 8 3520 2764 w-sg.service@widia.com

Классификация обрабатываемых материалов • DIN

DIN ISO 513	VDI 3323	Материа	л	Состояние материала	Rm H/MM ²	Твердость 30 НВ	Марки представители		
	1	Нелегированная сталь/	C < 0,25%	G	420	125	9 SMn 28, St 37.3, C 10, Ck 22, GS-16 Mn 5		
	2	литая сталь	$0.25 \le C < 0.55\%$	G	650	190	35 S 20, GS-45, GS-52, St 52.3, C 25, C 45, Ck 45, Cf 53		
	3	Автоматная сталь		V	850	250	35 S 20, GS-45, GS-52, St 52.3, C 25, C 45, Ck 45, Cf 53		
	4		0,55% ≤ C	G	750	220	GS-60, 60 S 20, C 60, Ck 67, C 60 W, Ck 75, C 105 W 1, C 110 W		
	5			V	1000	300	GS-60, 60 S 20, C 60, Ck 67, C 60 W, Ck 75, C 105 W 1, C 110 W		
	6	Низколегированная ста	ль/литая сталь	G	600	180	15 Cr 3, 16 MnCr 5, 17 CrNiMo 6, 25 CrMo 4, 29 CrMoV 9, 30 CrNiMo8		
Р	7		V	930	275	31 CrV 3, 42 CrMo 4, 51 CrV 4, 62 SiMnCr 4, 100 Cr 6, G-105 W 1			
	8			V	1000	300	105 WCr 6		
	9			V	1200	350	105 WCr 6		
	10	Высоколегированная ст	аль/литая сталь	G	680	200	X 210 Cr 12, X 40 CrMoV 5 1, X 30 WCrV 9 3, X 85 CrMoV 18 2		
	11	Инструментальная стал	ь	V	1100	325	X 38 CrMoV 5 3, X 23 CrNi 17, X 155 CrVMo 12 1, S 6-5-2-5		
	12	Нержавеющая сталь/ли	тая сталь	FE/MA	680	200	1.4000, 1.4005, 1.4021, 1.4109, 1.4119, 1.4120, 1.4313, 1.4510, 1.4512, 1.4523		
	13.1			MA	820	240	1.4000, 1.4002, 1.4005, 1.4006, 1.4024, 1.4119, 1.4120, 1.4313, 1.4510, 1.4512, 1.4523		
	13.2			MA-PH	1060	330	1.4542, 1.4548, 1.4923		
	14.1	Нержавеющая сталь/ли	тая сталь	AU	600	180	1.4301, 1.4401, 1.4436, 1.4541, 1.4550, 1.4568, 1.4571, 1.4573, 1.4580		
M	14.2			DU	740	230	1.4362, 1.4417, 1.4410, 1.4460, 1.4462, 1.4575, 1.4582		
IVI	14.3			S-AU	680	200	1.4465, 1.4505, 1.4506, 1.4529 (254SMO), 1.4539, 1.4563, 1.4577, 1.4586, 654SMO		
	14.4			AU-PH	1060	330	1.4504, 1.4568		
	15	Серый чугун GG		FE/PE		180	GG-10, GG-15, GG-170 HB		
	16			PE		260	GG20, GG-25, GG-30, GG-25Cr		
K	17	Чугун с шаровидным графитом GGG		FE		160	GGG-35.3, GGG-40, GGG-50, GGV-30		
N	18			PE		250	≥GGG-60, GGV-40		
	19	Ковкий чугун GTS/GTW		FE		130	GTS-35-10, GTS-45-06, GTW-S-38-12		
	20			PE		230	GTW-35-04, GTS-55-04, GTS-65-02		
	21	Деформируемые алюминиевые сплавы		NAG		60	Al 99,5, AlMg 1		
	22			AG		100	AlCuMg 1, AlMgSiPb, AlMgSi 1		
	23	Литье алюминиевое	Si < 12%	NAG		75	G-AISi 10 Mg, G-AISi12		
	24			AG		90	G-AICu 5 Si 3		
N	25	Si > 12%				130	G-AISi 17, G-AISi 23		
IN	26	Медь/медные сплавы	Pb > 1%			110	Автоматная латунь, CuNi 18 Zn 19 Pb		
	27					90	Латунь, томпак, CuZn33, сплавы CuZn и CuSnZn		
	28					100	Бронза, электролитическая медь, CuNi 3 Si, сплавы CuSn		
	29	Неметаллы					Реактопласт, FVK, волокнит, бакелит		
	30					Эбонит			
	31	Жаропрочные Спл	авы на основе Fe	G		200	1.4864, 1.4865, 1.4876		
	32	сплавы		AG		280	1.4864, 1.4865, 1.4876		
	33	Сплавы	на основе Ni и Со	G		250	INCONEL® 718, Nimonic 80 A, Hasteloy, Udimet		
S	34			AG		350	INCONEL 718, Nimonic 80 A, Hasteloy, Udimet		
	35			GO		320	INCONEL 718, Nimonic 80 A, Hasteloy, Udimet		
	36	Титан/титановые сплави			400		Титан		
	37	сплавы с альфа-бета-ст	груктурой	AG	1050		TiAl 6 V 4		
	38.1	Закаленная сталь		Н		45 HRC	90 MnV 8, Hardox 400		
	38.2			Н		55 HRC	Hardox 500		
	39.1			Н		60 HRC	HSS, 90 MnV 8		
	39.2			Н		> 62 HRC	HSS, 90 MnV 8		
	40.1	Отбеленный чугун		GO		400	G-X 260 Cr 27, G-X 260 NiCr 42, G-X 300 CrNiSi 9 5 2, G-X 330 NiCr 42		
	40.2			GO		> 440	G-X 260 Cr 27, G-X 260 NiCr 42, G-X 300 CrNiSi 9 5 2, G-X 330 NiCr 42		
	41.1	Высокопрочный чугун		Н		55 HRC	G-X 300 NiMo 3 Mg		
	41.2		Н			G-X 300 NiMo 3 Mg			

Группы и состояние материала

Многие материалы, особенно стали, могут иметь различную микроструктуру, которая существенно влияет на их обрабатываемость. В связи с этим существует подразделение вышеупомянутых материалов в зависимости от их фактического состояния.

AG — подвергнутый старению

AU — аустенитный

ВБ — термически обработанный для GG — серый чугун получения заданной прочности GGG — чугун с шаро

BG — термически обработанный для

получения требуемой микроструктуры Н — закаленный нодвергнутый термической обработке МА — мартенситный ВУ — подвергнутый термической обработке для улучшения обрабатываемости

DU — дуплексная нержавеющая сталь (аустенитно-ферритная)

FE — ферритный

G — отожженный

GGG — чугун с шаровидным графитом

GO — отливка

N — нормализованный

NAG — не подвергаемый старению

РН — закаленный с последующим старением

S-AU — супераустенитный

U — термически необработанный V — термически обработанный

var1 — неустойчивый

Указатель по информационным изображениям

Типы операций

Торцевое фрезерование	Обработка кармана	Коническое зенкование/ снятие фаски	Сверление
Фрезерование уступов: плоское дно	Фрезерование уступов: фреза со сферическим/ полусферическим концом	Развертывание: сквозное отверстие	Сверление: врезание под углом к поверхности
Врезание под углом	Фрезерование винтовых канавок	Развертывание: глухое отверстие	Сверление: выход под углом к поверхности
3D профильное фрезерование	Обработка паза: фреза со сферическим/ полусферическим концом	Развертывание: сквозное и пересекающееся отверстия	Сверление: пакет деталей
Обработка паза: плоское дно	Обработка паза: боковая	Развертывание: глухое и пересекающееся отверстия	Сверление: выпуклая поверхность
Обработка паза: Т-образный паз	Обработка фаски		

Геометрические характеристики инструмента

	Хвостовик: цилиндрический	R	Хвостовик: SN	Хвостовик: Weldon с двумя лысками	Хвостовик: SK (Rübig™)
SH6	Хвостовик: цилиндрический по ≤ H6		Хвостовик: насадная фреза (Shell Mill)	Хвостовик: с лыской	Хвостовик: SSF
	Хвостовик: SF		Хвостовик: Weldon°	Хвостовик: навинчивающийся (Screw-On)	Хвостовик: КМ™

Особенности обработки

Инструмент: 2 стружечные канавки/ 2 ленточки/внутренний подвод СОЖ		Инструмент: 2 стружечные канавки/ 4 ленточки/без внутреннего подвода СОЖ	Обработка с подачей СОЖ к режущим кромкам сверла	Обработка с подачей СОЖ через центр сверла
Инструмент: 2 стружечные канавки/ 4 ленточки/внутренний подвод СОЖ	DIN 6537	Hoмep DIN: 6537	Сверление с наружным подводом СОЖ	

DIN — Немецкий институт стандартизации

Информация по безопасности

ОСНОВНЫЕ РЕКОМЕНДАЦИИ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ

Прочтите перед тем как использовать инструмент из этого каталога!

Опасность вылета металлической стружки

Современные операции металлообработки проходят на очень высоких скоростях, с высокими температурами и усилиями резания. Поэтому в процессе обработки не исключено вылетание очень горячей стружки из зоны резания на высокой скорости. Также может произойти вылет элементов инструментальной наладки при их несоответствующем закреплении по причине износа некоторых деталей или при возникновении чрезмерных нагрузок.

Меры предосторожности:

- Во время работы на металлорежущих станках или находясь вблизи них всегда используйте соответствующие индивидуальные средства защиты, в т.ч. защитные очки.
- Всегда проверяйте наличие защитного кожуха на станке.

Опасность при вдыхании и попадании на кожу токсичных веществ

Шлифование поверхностей режущих инструментов, изготовленных из твердых сплавов или других современных материалов, сопровождается выделением пыли и паров, содержащих частицы металла. Вдыхание токсичных паров или пыли, особенно в течение длительного периода времени, может вызвать острые или хронические заболевания дыхательных путей или иным образом негативно сказаться на здоровье. Воздействие пыли и паров может вызвать раздражение глаз, кожи и слизистых оболочек, а также осложнить имеющиеся кожные заболевания.

Меры предосторожности:

- При шлифовании всегда надевайте защитную дыхательную маску и защитные очки.
- Обеспечивайте достаточную вентиляцию, а также собирайте и правильно утилизируйте пыль, пары и шлам после шлифования.
- Избегайте кожного контакта с пылью и парами.

Для получения дополнительной информации изучите соответствующий паспорт безопасности по обращению с материалами, предоставляемый компанией Kennametal, и «Общие положения по технике безопасности и охране труда» (часть 1910, раздел 29 Кодекса федеральных правил США).

Эти инструкции по технике безопасности носят общий характер. Существует огромное количество факторов, влияющих на процесс механической обработки, и невозможно предусмотреть все возможные ситуации. Техническая информация, содержащаяся в этом каталоге, и рекомендации по работе на металлорежущем оборудовании могут оказаться неприменимыми к вашей конкретной операции. Для получения дополнительных сведений обращайтесь к брошюре Kennametal Metalcutting Safety, которую можно заказать бесплатно по телефону 724-539-5747 или факсу 724-539-5439. По вопросам эксплуатационной безопасности изделий и защиты окружающей среды обращайтесь в Corporate Environmental Health and Safety Office по телефону 724-539-5066 или факсу 724-539-5372.

AluSurf, ArCut, Circle, Clapp-DiCO, Green Box, GTD, Hanita, HSR, Manchester, NINA, Rübig, VariMill, VariMill, Vision Plus, WavCut, WavCut I, WavCut II, WIDIA и X-Feed являются торговыми марками компании Kennametal и поэтому используются в настоящем документе. Отсутствие наименования изделия, наименования услуги или логотипа в данном списке не означает отказа от прав на торговую марку Kennametal или иных прав интеллектуальной собственности на данное наименование или логотип.

INCONEL® является зарегистрированной торговой маркой Корпорации специальных металлов (Special Metals Corporation).

ФРЕЗЫ СО СМЕННЫМИ ПЛАСТИНАМИ И ОСЕВОЙ ИНСТРУМЕНТ

Центральный офис и офисы в различных странах мира

Kennametal Inc. WIDIA Products Group 1600 Technology Way

Латроб, Пенсильвания 15650 США

Телефон: 800.979.4342

Электронная почта: w-us.service@widia.com

Европейский офис

Kennametal Europe GmbH WIDIA Products Group Rheingoldstrasse 50 CH 8212 Neuhausen am Rheinfall Швейцария

Телефон: (41) 52.6750.100

Электронная почта: w-ch.service@widia.com

Офис в азиатско-тихоокеанском регионе

Kennametal (Singapore) Pte. Ltd. WIDIA Products Group No. 11 Gul Link Jurong Сингапур 629381 Телефон: (65) 6.2659222

Электронная почта: w-sg.service@widia.com

Офис в Индии

Kennametal India Limited WIDIA Products Group 8/9th Mile, Tumkur Road Бангалор - 560 073

Телефон: +91 (80) 2839 4321

Электронная почта: w-in.service@widia.com

©2010 Kennametal Inc. Все права защищены. A-09-02081RU

